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ABSTRACT

Simulation has primarily been used for offline static system design problems, and the simulation-based
online decision making has been a weakness as the online decision epoch is tight. This work extends the
scenario-dependent ranking and selection model by considering online scenario and budget. We propose a
unified offline-online learning (UOOL) paradigm via simulation to find the best alternative conditional on the
online scenario. The idea is to offline learn the relationship between scenarios and mean performance, and
then dynamically allocates the online simulation budget based on the learned predictive model and online
scenario information. The superior performance of UOOL paradigm is validated on four test functions by
comparing it with artificial neural networks and decision tree.

1 INTRODUCTION

There are many systems in which their performances can only be estimated via simulation, and decisions
should be periodically made based on the scenario observed at that time (Hong and Jiang 2019; Pedrielli
et al. 2019). As the scenarios in practice are unpredictable, we thus refer them to as online scenarios.
The best alternative with respect to some performance criterion generally is not universal but depends
on the scenario. As depicted in Figure 1, after an online scenario is revealed, the available decision
epoch (e.g., one hour) before the decision deadline typically is tight such that we cannot conduct many
simulation replications online, which actually poses great challenges to the scenario-dependent selection of
best alternatives. We can view it as an online decision-making problem aiming to find the best alternative
conditioning on the online scenario.

Recently, a few works have considered the scenario-dependent ranking and selection (R&S) problems,
where the scenarios are also known as the covariates, contexts, or side information. Gao et al. (2019)
considered a discrete scenario space and proposed an optimal computing budget allocation (OCBA) rule to
maximize the rate function of probability of false selection. Under a robust perspective, Li et al. (2020) also
considered a number of finite and discrete scenarios and developed a dynamic sampling policy to optimize
the worst-case probability of correct selection (PCS) of all scenarios. Ding et al. (2019) considered a
continuous scenario space and developed the integrated knowledge gradient (KG) policy to dynamically
maximize the expected increment in the maximum over scenario space. Under the indifference-zone
formulation, Shen et al. (2021) developed two-stage procedures to achieve the targeted PCS which takes
the average over the continuous scenario space. These works mainly emphasize offline simulation budget
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Figure 1: Online scenarios and decision epoch.

allocation to maximize unconditional PCS or expected opportunity cost (EOC). However, we are interested
in selecting the best alternative conditional on online scenario, by bridging offline and online simulation
and utilizing online scenario information.

To our knowledge, existing works in fact assume that simulation is performed offline, and then offline
learn parametric (Brantley et al. 2013; Xiao et al. 2015; Xiao et al. 2021; Shen et al. 2021) or non-
parametric (Scott et al. 2011; Ding et al. 2019) regression models predicting the mean performance of each
alternative. As a result, the learned model will be deployed to inform the scenario-dependent selection.
Since the online budget typically is insignificant relative to offline simulation budget, there is little study
considering online simulation. Nevertheless, the value of online scenario and budget may be consistently
underestimated and overlooked, which motivates us to propose a unified offline-online learning paradigm
and utilize the online information to make better scenario-dependent selection.

In this paper, we consider a continuous scenario space, which implies that it is impossible to exhaustively
simulate all the scenarios even if the simulation is performed offline, and during online phase there will be
many new scenarios we never encounter. In this case, the scenario-dependent selection will benefit greatly
from the online budget and scenario information. During offline phase, we can model the mean performance
of each alternative as a function of scenarios taking a nonparametric form, and model the randomness in
performance as additive Gaussian noise. We deploy offline simulation to generate samples and learn the
mean functions. Upon observing an online scenario, we run online simulation to obtain additional samples.
Then, we retrain the model based on offline and online samples and accordingly update the mean functions.
As a result, the learned functions can be deployed to select the best alternative conditional on the online
scenario. We formalize these procedures in a so-called unified offline-online learning paradigm. Notice
that the UOOL paradigm is dynamic, that is, we can keep it learning in practice by consecutively feeding
new samples.

This paper makes the following contributions. First, we extend the scenario-dependent R&S model by
considering online scenarios and budget, and bridge offline and online simulation by proposing a generic
UOOL framework. Second, we place a Gaussian process (GP) prior over the mean of alternatives and model
it as a function of scenarios using GP regression with a squared exponential covariance kernel, in which
we are able to model our uncertainty about the mean function and the noise in alternative performance
simultaneously. Third, we develop an online budget allocation policy to dynamically determine the scenarios
and alternatives should be sampled by utilizing the information of online scenario. Given any online scenario,
we show that it is better to sample the location where the online scenario lies at each time step. Finally,
we demonstrate the superior performance of UOOL paradigm on four test functions in comparison with
artificial neural networks and decision tree.

The rest of the paper is organized as follows. Section 2 introduces the problem formulation and the
method of learning unknown mean performance. Then, we define the value of new information in Section
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3 and propose our UOOL framework in Section 4. Section 5 provides numerical experiments on synthetic
test functions. The final section offers conclusions.

2 PROBLEM FORMULATION

Suppose that there are K competing alternatives, and the performance Ya of each alternative a = 1, . . . ,K
depends on the scenario xxx := (x1, . . . ,xd)

> ∈X ⊂ Rd characterized by a d-dimensional vector, where X
is the collection of scenarios, and the total number of scenarios may be infinite. For each alternative, we
assume that the conditional performance (i.e., Ya | xxx) at different scenarios follows a normal distribution

Ya | xxx∼N
(
µa(xxx),σ2

a
)
, a = 1, . . . ,K,

where the mean µa(xxx) and variance σ2
a are unknown but can be estimated via sampling. The scenario-

dependent best alternative is defined as

a∗(xxx) := argmax
a=1,...,K

µa(xxx).

Without loss of generality, we assume the number of offline observations for each alternative is equal,
and define the offline dataset as

D0 = {(xxx1
a,y

1
a), . . . ,(xxx

n0
a ,yn0

a ),a = 1, . . . ,K}.

After an online scenario is revealed, we have a short time to run a small number of simulation replications.
During the online phase, we need to make a sequence of sampling decisions

{at ,xxxt : t = 1, . . . ,T},

which indicates that the t-th replication is allocated to some alternative at ∈ {1, . . . ,K} and scenario xxxt ∈X .
Denote yt

a as the resulting observation for (at ,xxxt), drawn independently from the normal distribution

yt
a | xxxt ,at ∼N

(
µat (xxxt),σ2

at

)
.

Denote D t as the information set including all the offline data and online observations collected up
to time t, i.e., D t = D t−1∪{(xxxt

a,y
t
a)} for t = 1, . . . ,T , where xxxt

a denotes the sampling decision (at ,xxxt) for
notational convenience. Denote xxxs ∈X as the online scenario. Then, we can sequentially learn the truth
µa(xxxs) for a = 1, . . . ,K at each time t based on the available samples D t , and estimate the best alternative
a∗(xxxs) accordingly.

2.1 Learn Unknown Mean Performance Via Gaussian Process

Taking the Bayesian viewpoint, we treat the unknown mean µa(xxx) as a random variable for each alternative,
and assign a Gaussian process prior over the truth µa(xxx). Under the GP prior, every finite collection of
{µa(xxx) : xxx ∈X } is a Gaussian process with mean function µ0

a (xxx) := E[µa(xxx)] and covariance function
k0

a(xxx,xxx
′) := Cov[µa(xxx),µa(xxx′)], where xxx′ ∈X . Consequently, we express the GP priori over µa(xxx) as

µa(xxx)∼ G P
(
µ

0
a (xxx),k

0
a(xxx,xxx

′)
)
, a = 1, . . . ,K. (1)

Let Xt
a denote the set of scenarios sampled up to time t for alternative a, i.e.,

Xt
a := {xxx1

a, . . . ,xxx
n0
a }∪{xxx` : xxx` = a, `= 1, . . . , t},

and define yt
a := {y1

a, . . . ,y
n0
a }∪{y` : xxx` = a, `= 1, . . . , t} likewise. With slight abuse of notation, we treat

Xt
a as a matrix wherein each row represents a scenario and arranged in the order of appearance, and yt

a as
the corresponding column vector. Then, we define the estimated mean at time t as

µ
t
a(xxx) := E

[
µa(xxx)|D t] , a = 1, . . . ,K.
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For ease of notation, we use Et [·] = E [·|D t ] and define Covt [·] likewise. Consequently, the covariance
function at time t can be expressed as

kt
a(xxx,xxx

′) := Covt [µa(xxx),µa(xxx′)]. (2)

The covariance matrix at time t can be defined as Kt
a = Covt [Xt

a] with entries calculated via (2). A
convention is to place a zero-mean GP prior over the function value (Williams and Rasmussen 2006),
and the covariance function in essence is the crucial ingredient in a GP predictor, because it encodes our
assumptions about the function which we wish to learn.

The fundamental assumption under a GP is that the close locations (i.e., xxx) are likely to have similar
outputs, and sampled scenarios should be informative about the prediction at new scenarios. In fact, the
covariance function defines the nearness or similarity, and we adopt the squared exponential (SE) kernel
that is infinitely differentiable, expressed by

k(xxx,xxx′) = β
2 exp

(
−1

2
(xxx− xxx′)>L(xxx− xxx′)

)
, (3)

where L = l−2I with I being an identify matrix, β is referred to as the signal amplitude controlling the
uncertainty of our belief about the function µa(xxx), and l is the length scale representing how smooth µ0

a (xxx)
at each dimension of xxx. Without loss of generality, the GP prior for all alternatives is the SE kernel (3).

We can see that the covariance of two variables defined by (3) increases as the distance between them
decreases, thus resulting in much larger correlation. Moreover, the covariance function by definition is
positive, i.e., k(xxx,xxx′)> 0,∀xxx,xxx′ ∈X , implying that any scenario is positively correlated with other scenarios.
In addition, the covariance function can be parametrized by hyper-parameters β and l. Typically, we have
only rather vague information about β and l. Thus in order to learn the truth µa(xxx) efficiently, it is also
essential to learn the hyper-parameters β and l for each alternative. Note that although the functional form
of kernel for all alternatives is same, the hyper-parameters are trained individually and thus are different.

In fact, we are learning parameters µa(xxxs) and θθθ a := (β 2, l2,σ2
a )
> simultaneously for a = 1, . . . ,K

based on offline and online simulation data. At the end of online simulation, the estimated best for online
scenario xxxs ∈X is given by

â(xxxs) := argmax
a=1,...,K

µ
T
a (xxxs), (4)

which means that we will select the alternative that appears to be the best.

2.2 Updating Equations

After the first t online sampling decisions, we obtain the training observations {Xt
a,yt

a} for each alternative
a. Under the GP prior (1), the observed outputs yt

a and the function value µ t
a(xxx) are jointly Gaussian

distributed as [
yt

a
µa(xxx)

]
∼N

([
µµµ0

a
µ0

a (xxx)

]
,

[
K0

a +σ2
a I ka

k>a k0
a(xxx,xxx

′)

])
, ∀xxx ∈X , a = 1, . . . ,K, (5)

where K0
a is the covariance matrix with entries calculated by k0

a(xxx,xxx
′), and I is the identity matrix, ka is a

covariance vector between the test scenario x and training scenarios Xt
a calculated by k0

a(xxx,xxx
′) with xxx′ ∈Xt

a.
Then, the conditional distribution of µ t

a(xxx) can be explicitly derived as

µa(xxx) | Xt
a,y

t
a,θa,σa ∼ N

(
µ

t
a(xxx),k

t
a(xxx,xxx)

)
, a = 1, . . . ,K, (6)

where

µ
t
a(xxx) = µ

0
a (xxx)+k>a

[
K0

a +σ
2
a I
]−1

(yt
a−µµµ

0
a) (7)

kt
a(xxx,xxx

′) = k0
a(xxx,xxx

′)−k>a
[
K0

a +σ
2
a I
]−1 ka. (8)



Liu, Jin, Li, Lee, and Chew

The readers can refer to (Williams and Rasmussen 2006) for more details on the computation of (6)-(8).
Equation (7) implies that the mean prediction is a linear combination of observations yt

a, while the
variance kt

a(xxx,xxx) in (8) depends on the inputs Xt
a instead of yt

a, because kt
a(xxx,xxx) models our uncertainty about

the mean µa(xxx) rather than the output Ya(xxx). As the second term in the right-hand side of (8) representing
the information the observations give about µa(xxx), is positive, the posterior variance in (8) is thus smaller
than the prior, that is, the uncertainty on the unknown function µa(xxx) is reduced. As a result, we can plug
in the online scenario xxxs and dynamically learn the truth {µa(xxxs)}K

a=1 via (7)-(8).
We are now in a position to compute the predictive distribution of next observation yt+1, as the

distribution of yt+1 represents our belief about the next observation given the sampling decision (at ,xxxt).
Under the GP model the prior on the unknown function is normal, and the performance of each alternative
is assumed to be normal. As a result, the conditional distribution of yt+1 is also normally distributed as

yt+1 | at ,xxxt ,D t ∼N
(
µ

t
at (xxxt),kt

at (xxxt ,xxxt)+σ
2
at

)
. (9)

After we have made the sampling decision (at ,xxxt) but before the next observation yt+1 is available,
µ t+1

a (xxx) is also normally distributed. Then, we refer to (Frazier et al. 2009; Scott et al. 2011) to derive the
recursions which express µ t+1

a (xxx) and kt+1
a (xxx,xxx′) as functions of µ t

a(xxx), kt
a(xxx,xxx

′), at , xxxt , and yt , given by

µ
t+1
a (xxx) = µ

t
a(xxx)+ σ̃(xxx,xxxt ,at)

yt+1−µ t
at (xxx)√

σ2
at + kt

at (xt ,xxxt)
·1{at = a} (10)

kt+1
a (xxx,xxx′) = kt

a(xxx,xxx
′)− σ̃(xxx,xxxt ,at)σ̃ t(xxx′,xxxt ,at) ·1{at = a}, (11)

where 1{·} is an indicator function, and σ̃ t is a function defined as

σ̃
t(xxx,xxx′,a) =

kt
a(xxx,xxx

′)√
σ2

a + kt
a(xxx′,xxx′)

. (12)

Define Zt+1 =
yt+1−µ t

at (xxx)√
σ2

at + kt
at (xxxt ,xxxt)

. It can be shown that Zt+1 ∼N (0,1) by (9). Then, we substitute the

complex term in (7) with a standard normal variable Zt+1 and rewrite (7) as

µ
t+1
a (xxx) = µ

t
a(xxx)+ σ̃

t(xxx,xxxt ,at)Zt+1 ·1{at = a}. (13)

3 VALUE OF INFORMATION

One crucial class of the approximate sampling policies for sequential learning problems is developed based
on the concept of expected improvement criterion (Jones et al. 1998), in which the value of information
is measured by the expected single-period improvement in the objective value for some sampling decision
before the next observation occurs. Although we do not know exactly how a new observation yt+1 will
change our beliefs about the unknown functions {µa(xxx)}K

a=1, we can compute the expected difference over
the predictive distribution of yt+1 in (9), and this quantity is referred to as knowledge gradient in (Williams
and Rasmussen 2006). Given a sampling decision (xxxt ,at) at time t, the value of new information for our
problem is defined as

ν
t(xxx,a;xxxs) := Et

[
max

i=1,...,K
µ

t+1
i (xxxs)

∣∣ xxxt = xxx,at = a
]
− max

i=1,...,K
µ

t
i (xxxs), (14)

where the conditional expectation is taken with respect to the distribution of our belief on yt+1.
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Note that the predictive distribution of µ t+1
a (xxx) is characterised by (10)-(13). We can rewrite (14) as

ν
t(xxx,a;xxxs) = Et

[
max

i=1,...,K

(
µ

t
i (xxxs)+ σ̃

t(xxxs,xxxt ,at)Zt+1 ·1{at = i}
) ∣∣ xxxt = xxx,at = a

]
− max

i=1,...,K
µ

t
i (xxxs).

Then, the policy in (15) chooses the sampling decision at time t by maximizing the expected value of
information:

(xxxt ,at) ∈ argmax
xxx∈X , a=1,...,K

ν
t(xxx,a;xxxs). (15)

Define a function ζ t : Rd×R 7→ (−∞,0] as

ζ
t(xxx,a;xxxs) :=−

∣∣∣∣µ t
a(xxxs)−maxi6=a µ t

i (xxxs)

σ̃ t(xxxs,xxx,a)

∣∣∣∣ , (16)

and then define Ψ : R 7→ R as
Ψ(ζ ) := ζ Φ(ζ )+φ(ζ ),

where Φ(·) is the normal cumulative distribution function, and φ(·) is the normal probability density. As
a result, given xxxs ∈X , we can further write (14) as

ν
t(xxx,a;xxxs) = σ̃

t(xxxs,xxx,a)Ψ
(
ζ

t(xxx,a;xxxs)
)
. (17)

Theorem 1 For any xxxs ∈X and a ∈ {1, . . . ,K}, we have

∂

∂xxx
ν

t(xxx,a;xxxs)

∣∣∣∣
xxx=xxxs

= 000, ∀ xxxs ∈X , a = 1 . . . ,K, (18)

and the solution to
∂

∂xxx
ν

t(xxx,a;xxxs) = 000 is unique.

Theorem 1 is fundamental to computing the sampling decision (xxxt ,at), because it implies that the online
budget should be always allocated to scenario xxxs no matter which alternative is sampled. As a result, we
only need to solve the following problem

at ∈ argmax
a=1,...,K

σ̃
t(xxxs,xxxs,a)Ψ(ζ t(xxxs,a,xxxs)). (19)

4 UNIFIED OFFLINE-ONLINE LEARNING PARADIGM

In this section, we formally present the unified offline-online learning paradigm via simulation, which
provides an elegant way to simultaneously utilize the offline-online simulation data and online scenario
information, to learn the best decision for the revealed online scenario. The underlying belief in UOOL
paradigm is that the mean performances at different locations xxx ∈X have correlations, and thus historical
data can provide information on inferring the mean performance at new scenario. It is known that GPs in
fact work mainly depending on the correlation (i.e., covariance kernels). Therefore, we propose deploying
a GP to model the true performance means of alternatives, and the unknown variances are learned by
maximizing the log-likelihood under GP prior. To generate more informative online simulation data, we
should measure the location where the online scenario lies in. Then, we deploy the offline and online data
to train GP models, and leverage the trained GP models to learn the mean µa(xxxs) at online scenario xxxs.
Based on above generic ideas, we develop an Algorithm 1 containing all procedures explicitly.

First note that we do not focus on offline simulation budget allocation, but think of offline data as a
fixed setting, thus generating offline data D0 randomly. Then, θθθ a is updated by maximizing the marginal
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Algorithm 1 Unified Offline-Online Learning Paradigm via Simulation
Input: online scenario xxxs ∈X , covariance kernel k(·, ·;β , l), number of alternative K, number of offline

samples n0, online budget T , parameters θθθ a, t← 0.
1: Randomly sample n0 locations for each alternative a and run simulation to observe corresponding

outputs, which constitutes the offline data D0 = {(xxx1
a,y

1
a), . . . ,(xxx

n0
a ,yn0

a ),a = 1, . . . ,K}.
2: Initialize {θθθ a}K

a=1 based on D0 by maximizing the log marginal likelihood in (20).
3: Update the mean function µ t

a(xxx) and covariance function kt
a(xxx
′,xxx;θθθ a) for a = 1, . . . ,K via (7), (8), (12)

and (16).
4: Increase t← t +1.
5: if t ≤ T then
6: Obtain the sampling decision (xxxt ,at) by setting xxxt = xxxs and solving (19) to get at .
7: Run one simulation replication at location xxxt for alternative at , and get new observation (xxxt

a,y
t
a).

8: Update information set D t , yt
a, Xt

a, and then update θθθ at by solving (20).
9: Update µ t

a, kt
a, σ̃ t and ζ t via (7), (8), (12) and (16).

10: Increase t← t +1.
11: end if
12: Return the best design â(xxxs) by solving (2).

likelihood (or evidence) p(yt
a | Xt

a,θθθ a) which is the integral of the likelihood times the GP prior. By
observing that yt

a ∼N
(
µµµ0

a,K0
a +σ2

a I
)

from (5), we can directly obtain the log marginal likelihood

log p
(
yt

a | Xt
a,θθθ a

)
=−1

2
yt

a
> (K0

a +σ
2
a I
)−1 yt

a−
1
2

logdet
(
K0

a +σ
2
a I
)
− |y

t
a|

2
log2π, (20)

where det(·) stands for the determinant of a matrix, and | · | returns the number of elements in a vector. Now
it is evident that Algorithm 1 in fact is an adaptive learning framework, because θθθ a is updated dynamically.

5 NUMERICAL EXPERIMENTS

In this section, we assess the performance of UOOL paradigm on several test functions by comparing it
with artificial neural networks (ANNs) and decision tree. We consider a two-layer ANN with each layer
of five nodes, and the training of both ANNs and decision tree is performed by using MATLAB built-in
functions with default settings.

5.1 Experiment Settings

We choose the Griewank function which has many widespread local minima, and modify it by adding an
additional term a/2 at each dimension of xxx, i.e.,

µa(xxx) =
d

∑
i=1

(xi +a/2)2

4000
−

d

∏
i=1

cos
(

xi +a/2√
i

)
+1, a = 1, . . . ,K. (21)

To better understand the modified Griewank function, we plot the surface of µa(xxx) for a = 1, . . . ,K and d = 2
in Figures 2-3. We can see that the best alternative a∗(xxx) is not universal but changes with scenarios. In this
paper, we consider d = 1,2,3,4. The modified function (21) is deployed as the true mean of alternatives,
and a normally distributed observation noise with a mean of zero and standard deviation of one is imposed
on the function (21), i.e., σ2

a = 1,a = 1, . . . ,K.
For numerical experiments, we consider the scenario space X = [0,4]d and K = 8. The offline

data for each alternative is generated by randomly sampling n0 = 3000 locations from X and obtaining
corresponding observations. For performance evaluation, we randomly generate Ns = 40 online scenarios.
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Figure 2: Surfaces of modified Griewank functions a = 1,2,3,4.

In order to achieve fair comparison, all algorithms used the same offline data and online scenarios. For
performance evaluation, we define the empirical opportunity cost as

Eoc(xxxs) = Nr
−1

Nr

∑
r=1

(
µa∗(xxxs)(xxxs)−µâ(xxxs;ωr)(xxxs)

)
, (22)

and the average opportunity cost by averaging over scenarios as

Aoc = Ns
−1

Ns

∑
s=1

Eoc(xxxs), (23)

where â(xxxs;ωr) ∈ argmaxa µT
a (xxxs;ωr) denotes the estimated best alternative under sample path ωr in

replication r, and Nr and Ns denote the number of replications and online scenarios, respectively. Note that
we calculate (23) in such a way that given each online scenario we independently run Nr replications for
every algorithm, rather than we choose Nr scenarios after each simulation replication is finished. There
are substantial differences between the two ways. As a by-product of Eoc(xxxs), we define

Eocmax := max
1≤s≤Ns

Eoc(xxxs)
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Figure 3: Surfaces of modified Griewank functions for a = 5,6,7,8.

and
Eocmin := min

1≤s≤Ns
Eoc(xxxs),

where Eocmax and Eocmin respectively represent the worst and best scenario cases, and we can assess the
robustness of algorithms from the measure Eocmax. Throughout the paper, we set Nr = 30 and T = 100.

5.2 Numerical Results

As the empirical opportunity costs obtained by the three algorithms are near or equal to zero, to better
observe the differences among them we take the natural logarithm of Eoc. Then, we plot the logarithm of
empirical opportunity cost over 40 scenarios in Figure 4. Note that when the empirical opportunity cost
is equal to zero, the log of zero is infinity, resulting in missing points and disconnected lines in Figure 4.
Therefore, less points and smaller values indicate a better performance.

We can see that the UOOL algorithm achieves overall better performance compared to ANNs and
decision tree over the four test functions. As the dimension of scenarios increases, the problem of finding
the scenario-dependent best alternative also gradually becomes more difficult. When the dimension of
Griewank function is equal to one or two, our algorithm can find the best alternative for most of scenarios at
each simulation replication. In addition, Figure 4 shows that the performance of algorithms is significantly
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affected by online scenarios, which validates the necessity of considering online scenario and budget for
dealing with the online decision-making problems.
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Figure 4: Empirical opportunity cost against scenarios.

In addition, we summarize the numerical results over the 40 scenarios in Table 1. We can explicitly
observe that UOOL algorithm has achieved superior performance in terms of the average opportunity cost
and worst-case Eoc, because the Aoc and Eocmax values obtained by UOOL algorithm are smaller than that
achieved by ANNs and decision tree. Moreover, the three algorithms are able to find the best alternative
for some scenarios due to the fact that Eocmin = 0.

Table 1: Opportunity cost obtained by different algorithms.

UOOL ANNs Decision Tree UOOL ANNs Decision Tree

Griewank Aoc 0.0012 0.0079 0.0305 Griewank Aoc 0.0083 0.0440 0.0563
d = 1 Eocmax 0.0258 0.0649 0.3068 d = 2 Eocmax 0.0532 0.2444 0.5426

Eocmin 0 0 0 Eocmin 0 0 0
Griewank Aoc 0.0407 0.0915 0.1439 Griewank Aoc 0.0458 0.1000 0.1638
d = 3 Eocmax 0.1896 0.2344 0.8387 d = 4 Eocmax 0.1478 0.2669 0.7977

Eocmin 0 0 0 Eocmin 0 0 0



Liu, Jin, Li, Lee, and Chew

6 CONCLUSIONS

The era of big data has created new opportunities for simulation-based online decision making. Instead of
performing offline simulation to only estimate the static system performance measures, nowadays we can
store all the offline simulation data with a low cost and perform a number of online simulation replications
efficiently, and then utilize the offline and online simulation data jointly for informing the online decision
making. This work is the first step toward unifying offline and online simulation to address online decision-
making problems. In comparison with the well-known ANNs and decision tree in machine learning, our
UOOL algorithm achieves superior performance.

ACKNOWLEDGEMENTS
This paper is supported by the Centre of Excellence in Modelling and Simulation for Next Generation
Ports (C4NGP).

REFERENCES
Brantley, M. W., L. H. Lee, C.-H. Chen, and A. Chen. 2013. “Efficient simulation budget allocation with regression”. IISE

Transactions 45(3):291–308.
Ding, L., L. J. Hong, H. Shen, and X. Zhang. 2019. “Knowledge gradient for selection with covariates: Consistency and

computation”. arXiv preprint arXiv:1906.05098.
Frazier, P., W. Powell, and S. Dayanik. 2009. “The knowledge-gradient policy for correlated normal beliefs”. INFORMS Journal

on Computing 21(4):599–613.
Gao, S., J. Du, and C.-H. Chen. 2019. “Selecting the optimal system design under covariates”. In 2019 IEEE 15th International

Conference on Automation Science and Engineering, 547–552. Institute of Electrical and Electronics Engineers, Inc.
Hong, L. J., and G. Jiang. 2019. “Offline simulation online application: A new framework of simulation-based decision making”.

Asia-Pacific Journal of Operational Research 36(06):1940015.
Jones, D. R., M. Schonlau, and W. J. Welch. 1998. “Efficient global optimization of expensive black-box functions”. Journal

of Global optimization 13(4):455–492.
Li, H., H. Lam, Z. Liang, and Y. Peng. 2020. “Context-dependent ranking and selection under a bayesian framework”. In 2020

Winter Simulation Conference, 2060–2070: Institute of Electrical and Electronics Engineers, Inc.
Pedrielli, G., K. Selcuk Candan, X. Chen, L. Mathesen, A. Inanalouganji, J. Xu, C.-H. Chen, and L. H. Lee. 2019. “Generalized

Ordinal Learning Framework (GOLF) for Decision Making with Future Simulated Data”. Asia-Pacific Journal of Operational
Research 36(06):1940011.

Scott, W., P. Frazier, and W. Powell. 2011. “The correlated knowledge gradient for simulation optimization of continuous
parameters using gaussian process regression”. SIAM Journal on Optimization 21(3):996–1026.

Shen, H., L. J. Hong, and X. Zhang. 2021. “Ranking and selection with covariates for personalized decision making”. INFORMS
Journal on Computing.

Williams, C. K., and C. E. Rasmussen. 2006. Gaussian processes for machine learning. Cambridge: Massachusetts Institute
of Technology press.

Xiao, H., L. H. Lee, and C.-H. Chen. 2015. “Optimal budget allocation rule for simulation optimization using quadratic
regression in partitioned domains”. IEEE Transactions on Systems, Man, and Cybernetics: Systems 45(7):1047–1062.

Xiao, H., L. H. Lee, D. Morrice, C.-H. Chen, and X. Hu. 2021. “Ranking and selection for terminating simulation under
sequential sampling”. IISE Transactions 53(7):735–750.

AUTHOR BIOGRAPHIES
HAITAO LIU is a Ph.D. candidate in the Department of Industrial Systems Engineering and Management at National
University of Singapore. His research interests include simulation optimization and statistical learning. His email address is
haitao liu@u.nus.edu.

XIAO JIN is a Research Fellow in the Centre of Excellence in Modelling and Simulation for Next Generation Ports (C4NGP).
He received his Ph.D. degree in Department of Industrial Systems Engineering and Management from National University of
Singapore. His research interest includes simulation optimization and artificial intelligence with applications on logistics and
maritime studies. His email address is isejinx@nus.edu.sg.

mailto://haitao_liu@u.nus.edu
mailto://isejinx@nus.edu.sg


Liu, Jin, Li, Lee, and Chew

HAOBIN LI is a Senior Lecturer in the Department of Industrial Systems Engineering and Management at National University
of Singapore. He received his Ph.D. degree in Department of Industrial Systems Engineering and Management from National
University of Singapore. His research interests are in operations research, simulation optimization and designing high perfor-
mance optimization tools with application on logistics and maritime studies. He is the designer of O2DES.Net framework for
simulation integrated optimization. His email address is li haobin@nus.edu.sg.

LOO HAY LEE is currently Professor in the Department of Industrial Systems Engineering and Management at National Uni-
versity of Singapore. He received his Ph.D. in engineering science from Harvard University, USA. His research interests include
logistics, vehicle routing, supply chain modeling, and simulation-based optimization. His email address is iseleelh@nus.edu.sg.

EK PENG CHEW is currently Professor in the Department of Industrial Systems Engineering and Management at National
University of Singapore. He received his Ph.D. in Industrial Engineering from Georgia Institute of Technology, USA. His
current research areas are in port logistics and maritime transportation, simulation optimization and inventory management.
His email address is isecep@nus.edu.sg.

mailto://li_haobin@nus.edu.sg
mailto://iseleelh@nus.edu.sg
mailto://isecep@nus.edu.sg

	INTRODUCTION
	PROBLEM FORMULATION
	Learn Unknown Mean Performance Via Gaussian Process
	Updating Equations

	VALUE OF INFORMATION
	UNIFIED OFFLINE-ONLINE LEARNING PARADIGM
	NUMERICAL EXPERIMENTS
	Experiment Settings
	Numerical Results

	CONCLUSIONS

