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ABSTRACT

We consider the contextual ranking and selection problem that aims to learn the best treatment as a function
of covariates when expected outcomes are unknown but can be learned from noisy observations. We develop
a sequential allocation policy based on Bayesian expected value of information methods, called fEVI, to
learn the best treatment for a finite set of covariates. We observe good performance of the fEVI allocation
policy in simulation experiments and find that prior distributions which accurately reflect correlations across
treatments and patient types can improve sampling effectiveness with limited sample sizes. We compare
the performance between the case when covariates are random arrivals from a population, and the case
when the allocation policy chooses covariates. In experiments, the benefit of fEVI over allocation policies
that sample randomly is much larger than the benefit from being able to choose covariates, or from using
a prior that accurately reflects correlations.

1 INTRODUCTION

Consider a heterogeneous population that requires treatment for a condition. We have a set of available
treatments and would like to learn how to personalize the treatments to observable covariates of the subjects
in the population. The treatment effects are unknown, but noisy observations can be obtained by assigning
subjects to treatment and observing the outcome of interest. We call this the contextual Ranking and
Selection (contextual R&S) problem. We tackle the problem of allocating sequentially arriving subjects to
treatments in order to learn, as accurately as possible, the strategy as a function of subject covariates that
maximizes the expected value of the outcomes of the population.

This problem is found in simulation optimization (Xiong 2020) and clinical trial design (e.g., Zhou
et al. 2008). Compared to simulation optimization problems, in clinical trial settings there is generally
less control over the conditions in which the noisy observations are obtained. Clinical trials are restricted
to the covariates of patients that randomly arrive at recruitment sites, they generally face longer delays in
observing patient outcomes (noisy observations), and they require randomization to prevent biases from
the attending physicians. This paper focuses on the case of random arrival of covariates and discusses the
implications compared to simulation optimization problems.

The Ranking and Selection (R&S) literature has extensively studied the problem of selecting the best
among a set of alternative systems (Kim and Nelson 2006; Chen et al. 2015). Until recently, the R&S
literature has focused on systems without external covariates to which the best alternative can be tailored.
Recently, the R&S problem of choosing the best system as a function of covariates (contextual R&S)
has started to receive attention. Shen et al. (2021) study the problem from the frequentist indifference
zone perspective and develop a two-stage approach. Gao et al. (2019) develop a sequential procedure
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based on the optimal computing budget allocation that achieves the asymptotically optimal rate function
in the decay of the probability of incorrect selection. They show that the rate of decay is the same when
the probability of incorrect selection is defined as the average, maximum, or worst-case over the set of
covariates. Xiong (2020) proposes two algorithms based on the expected improvement and confidence
bound criteria. Li et al. (2020) provide a Bayesian dynamic scheme to maximize the minimum probability
of correct selection among a finite set of covariates. Pearce and Branke (2017) develop algorithms to
estimate the Expected Improvement, a sequential sampling method often used in Bayesian optimization.
Finally, Zhang et al. (2019) provide an algorithm using the Expected Value of Information (EVI) method
and prove its consistency when the patient outcomes follow a Gaussian process in the covariate space.
While all these papers on contextual R&S have focused on the simulation optimization setting, we are, to
the best of our knowledge, the first to apply R&S methods to the clinical trial design setting in which the
random arrival of patients constrains covariates.

The contextual bandit literature (e.g., Goldenshluger and Zeevi 2013, Bastani and Bayati 2020, Villar
and Rosenberger 2018) tackles a similar problem, with the most notable applications being in online
advertising. In contextual bandits, an arm among many is pulled under a random context to obtain a reward.
The objective is to maximize the cumulative rewards by balancing the exploration-exploitation trade-off.
Contextual bandits are online learning problems, as they maximize online rewards. The contextual R&S
is an offline learning problem because it focuses on the best selection at the end of sampling, disregarding
in its objective the rewards accrued online. In this paper, we focus on the offline learning problem.

In this paper, we take the EVI approach. The EVI is a Bayesian approach that has been extensively
applied in the R&S problem (e.g., Chick and Inoue 2001, Branke et al. 2007, Frazier et al. 2009). Unlike
Zhang et al. (2019), we allow the model to have random covariates and correlated mean outcomes across
treatments as is found in clinical trials. Moreover, while they use a model with continuous covariates, we
assume a finite set of covariate values (patient types) which simplifies the model and allows for a prior
covariance matrix that does not only depend on the difference of covariates. The benefits of using discrete
covariates are twofold. First, we can formulate an algorithm that is significantly easier to compute. Second,
we develop a more practical understanding of the problem, particularly concerning the impact of the prior
distribution and the correlation structure that can be imposed. Xie et al. (2016) and Chick et al. (2021)
consider correlated means, but do not allow for selecting the best treatment as a function of covariates.

Because of the focus of contextual R&S on the simulation context where both the treatment and
covariates can be selected, we show how to adapt our algorithm to additionally select covariates. This
allows us to compare the settings with random versus with selected covariates in simulation experiments
(see Section 6.4) and observe that the ability to choose the covariates translates into a significant increase
in performance in selecting the best treatment strategy.

Section 2 introduces the model, and Section 3 presents the Bayesian inference procedure. Section 4
presents our fEVI algorithms for the contextual R&S problem with a finite set of covariate values. Section 5
discusses the correlation structure of the prior distribution and its consequences on the design of effective
allocation policies. Section 6 presents simulation experiments that investigate the empirical performance
of the fEVI algorithm, and Section 7 concludes with a summary and directions for future work.

2 PROBLEM FORMULATION

We formulate a model of a sequential trial with a budget to enroll a fixed number of patients T . For each
patient t = 1, . . . ,T , we observe Xt ∈X , where X = {1, . . . ,m} is a finite set of patient types that reflect
the subgroups in the population that have relevant interactions with treatment and patient outcomes. The
patients arrive in a random fashion such that the type of each patient is drawn i.i.d., and the probability of
observing a patient of type x is assumed to be p(x). After observing the type of a patient, we allocate the
patient to treatment Wt ∈W , where W = {1, . . . ,n} is a finite set of potential treatments. After treating a
patient, we observe the outcome Yt ∈ Y ⊆ R, where we assume that larger values represent better health
outcomes for the patient.
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At the conclusion of the trial, we select a treatment strategy f ∈ f, where f is the set of functions that
map patient types to treatments, i.e., f = { f : X →W }. The size of f is given by all possible allocations of
treatments to patient types so that |f|= nm. Our objective is to find the treatment strategy that maximizes
the expected health outcomes of each patient type in the population.

To formally define the objective, let µ(w,x) be the unknown expected outcome for a patient of type
x who receives treatment w, i.e., E[Yt |Wt ,Xt ,µ(Wt ,Xt)] = µ(Wt ,Xt ,). We let µµµ be the nm-dimensional
vector of expected outcomes arranged in lexicographic order:

µµµ = (µ(1,1), . . . ,µ(1,m), . . . ,µ(n,1), . . . ,µ(n,m))> (1)

We say that (µ(w,1),µ(w,2), . . . ,µ(w,m))∈Rm are the elements of µµµ associated with treatment w and that
(µ(1,x),µ(2,x), . . . ,µ(n,x)) ∈Rn are the elements of µµµ associated with type x. We use the lexicographic
ordering and this terminology in defining all vectors.

We use a Bayesian model with normal conjugate priors by assuming the following statistical model:

Yt | Xt ,Wt ,µµµ
i.i.d.∼ N (µ(Wt ,Xt),σ

2(Wt ,Xt)) ∀t ∈ {1, . . . ,T} (2)

µµµ ∼N (θθθ 0,Σ0), (3)

where σ2(w,x) are presumed to be known sampling variances for any w ∈ W and any x ∈X , θθθ 0 is a
known prior mean vector, and Σ0 is a known prior covariance matrix. In practice, σ2(w,x), θθθ 0, and Σ0 are
unknown but might be fit using pilot data and adaptations of empirical Bayes estimation techniques (e.g.,
Xie et al. 2016; Chick et al. 2021) if (w,x) is embeddable in Euclidean space.

In Section 3, we show how these assumptions lead to a conjugate model where all the information
about µµµ obtained after observing the type, treatment, and outcome of the first t patients can be summarized
in posterior updates of θθθ t and Σt such that

µµµ |W1,X1,Y1, . . . ,Wt ,Xt ,Yt ∼N (θθθ t ,Σt).

The treatment strategy fθθθ t that maximizes the posterior means for each type is:

fθθθ t (x) = argmax
w∈W

θt(w,x), (4)

where θt(w,x) is the posterior mean outcome of a patient of type x treated with w. At the conclusion of
the trial, the treatment strategy fθθθ T is implemented in the population.

An allocation policy π = (πt)t=1,...,T is composed of a set of T functions that map the available
information prior to allocating the treatment of the patient — including the type of patient t — to the
treatment to be allocated Wt :

Wt = πt(θθθ t−1,Σt−1,Xt).

Let p̃(x) ∈ [0,1] be the fraction of the population that is of type x such that ∑x∈X p̃(x) = 1, and X̃
be a random patient type from the population. The probabilities p̃(x) may differ from p(x) if the patients
enrolled in the trial are not fully representative of the population of patients. We can interpret p̃(x) as the
relative importance we assign to finding the best treatment for type x.

Our objective is to find an allocation policy π that maximizes the expected health benefit to future
patients treated with strategy fθθθ T identified on the basis of the T patients in the trial. We refer to this as
the value function:

V π = Eπ
[
µ( fθθθ T (X̃), X̃)

]
(5)

where Eπ is the expectation induced by allocation policy π . By conditioning on µµµ and X̃ , and using the
definition of fθθθ T , we can rewrite (5) as

V π = Eπ

[
∑

x∈X
p̃(x)max

w∈W
θT (w,x)

]
. (6)
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We end this section by summarizing the aspects that our objective and decision variables do not consider
compared to other related models. Our objective does not maximize the probability of correct selection,
which is presumed to be high when the value function is maximized. In addition, the objective does not
include a cost of sampling. Thus, the decision variables of this base model do not consider a stopping time
or an option to not enroll a patient based on the type.

3 INFERENCE MODEL

Let e(w,x) be the nm-dimensional vector composed of all zeros except for a one in the entry associated
with treatment w and type x — the associated entry uses the same lexicographic ordering introduced in (1)
to define the vector of expected outcomes. We can recursively update the prior mean vector and covariance
matrix using the following recursive equations (Powell and Ryzhov 2012, Section 8.2.2):

θθθ t+1 = θθθ t +
(Yt+1−θt(Wt+1,Xt+1))

σ2(Wt+1,Xt+1)+ e>(Wt+1,Xt+1)Σte(Wt+1,Xt+1)
Σte(Wt+1,Xt+1), (7)

Σt+1 = Σt −
Σte(Wt+1,Xt+1)e>(Wt+1,Xt+1)Σt

σ2(Wt+1,Xt+1)+ e>(Wt+1,Xt+1)Σte(Wt+1,Xt+1)
. (8)

From the recursive equations, we can also derive the distribution of θθθ t+1 given that we have allocated a
patient of type Xt+1 to treatment Wt+1 but have not observed the patient’s outcome. We define the so-called
posterior predictive standard deviation as

σ̃σσ(Σ,w,x) =
Σe(w,x)√

σ2(w,x)+ e>(w,x)Σt−1e(w,x)
. (9)

One can show that θθθ t+1 | θθθ t ,Σt ,Xt+1,Wt+1 ∼N (θθθ t , σ̃σσ
>(Σt ,Wt+1,Xt+1)σ̃σσ(Σt ,Wt+1,Xt+1)), or equivalently

θθθ t+1
D
= θθθ t + σ̃σσ(Σt ,Wt+1,Xt+1)Z (10)

where D
= represents equality in distribution and Z ∼N (0,1). That is, σ̃σσ(Σt ,Wt+1,Xt+1) is the standard

deviation of the (random) posterior mean to be observed at time t +1, given the information at time t, and
the patient type and treatment choice for patient t+1, but before the outcomes for patient t+1 is observed.

4 EXPECTED VALUE OF INFORMATION HEURISTIC

Expected value of information (EVI) allocation policies maximize the value gained each time a decision
is made. These allocation policies are not optimal; they are myopic in the sense that they maximize the
current value gained even when larger gains in future decisions would compensate for lower current gains.
However, computing an optimal allocation policy is generally computationally infeasible, and the EVI
heuristics have been found to perform well in practice for related problems (Branke et al. 2007; Frazier
et al. 2008). This section defines the fEVI allocation policy, particularly tailored to the setting where the
aim is to find the best treatment strategy f under random arrival of patients. We show how to efficiently
compute the fEVI allocation policy, extending ideas from Frazier et al. (2009) as described below. The
algorithmic contribution is a modest — yet non-trivial — extension of the algorithm in Frazier et al. (2009).

The fEVI allocation policy relies on computing an index for each treatment in W (fEVI-indices) and
sampling the treatment with the largest index. The fEVI-indices represent the expected value gained from
sampling one more patient and then selecting a treatment strategy, over selecting a treatment strategy
without taking any additional samples. When the next patient to treat is of type Xt+1 = x, the indices are
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defined as

νt(w) = Eµµµ,Yt+1,X̃ [µ( fθθθ t+1(X̃), X̃)) | θθθ t ,Σt ,Wt+1 = w,Xt+1 = x]︸ ︷︷ ︸
Expected value of implementing after one additional observation

− EX̃ [µ( fθθθ t (X̃), X̃) | θθθ t ,Σt ]︸ ︷︷ ︸
Expected value of implementing now

= EYt+1

[
∑

x̃∈X
p̃(x̃)max

w̃∈W
θt+1(w̃, x̃)

∣∣∣∣ θθθ t ,Σt ,Wt+1 = w,Xt+1 = x

]
− ∑

x̃∈X
p̃(x̃)max

w̃∈W
θt(w̃, x̃), (11)

and the fEVI allocation policy samples

Wt+1 = argmax
w∈W

νt(w).

We compute the following auxiliary indices that represent the value gained within the subpopulation
of patients of type x̃:

ν̃t(w, x̃) = EYt+1

[
max
w̃∈W

θt+1(w̃, x̃)
∣∣∣∣ θθθ t ,Σt ,Wt+1 = w,Xt+1 = x

]
−max

w̃∈W
θt(w̃, x̃). (12)

The fEVI-index is then calculated as a weighted sum of the auxiliary indices: νt(w) = ∑x̃∈X p̃(x̃)ν̃t(w, x̃).
While the auxiliary indices look very similar to the computation of the correlated Knowledge Gradient
(cKG) in Frazier et al. (2009), we cannot immediately execute their algorithm because the set of actions is
not the same as the set of alternatives to select for implementation — the patient to be allocated to treatment
is of type x while we are evaluating the value gained for implementation in the subpopulation of type x̃,
which may differ. However, we use the procedure in Frazier et al. (2009) to compute the function

h(a,b) = E
[

max
i

ai +biZ
]
−max

i
ai,

where Z ∼N (0,1), and ai and bi are the ith entries of the vectors a and b, respectively. Frazier et al.
(2009) provide an efficient procedure to compute h(a,b) with complexity O(M log(M)), where M is the
length of the vectors a and b, which is detailed in Steps 3-11 of their Algorithm 2.

By using (10), one finds that

ν̃t(w, x̃) = E
[

max
w̃∈W

[θt(w̃, x̃)+ σ̃(Σt ,w,x)(w̃, x̃)Z]
∣∣∣∣ θθθ t ,Σt ,Wt+1 = w,Xt+1 = x

]
−max

w̃∈W
θt(w̃, x̃) = h(ã, b̃),

where ã ∈ Rn and b̃ ∈ Rn are the entries of θθθ t and σ̃σσ(Σt ,w,x), respectively, that are associated with
type x̃. Algorithm 1 summarizes the procedure we just described to compute νt(w) and choosing the
treatment according to the fEVI allocation policy. The algorithm has complexity O(mn2 log(n)). In actual
implementation, we compute the logarithms of ν̃t(w, x̃) and νt(w) for numerical stability.

The differences between Algorithm 1 to compute the fEVI and the algorithm to compute the cKG
(Algorithm 2 in Frazier et al. 2009) are subtle but important. In our setup, the cKG algorithm with inputs
θθθ t and Σt would aim to find the treatment-type combination that obtains the largest health outcome by
selecting a treatment-type combination at each time step. The fEVI differs in two aspects. First, its goal is
to find the best treatment for each patient type. Therefore, the loop in Steps 4-8 of Algorithm 1 computes
an index associated with each patient type, which are then aggregated through a weighted sum in Step 9.
Second, the action space is constrained by Xt+1 = x, the type of patient that randomly arrived, in the sense
that we cannot allocate a patient of a different type. Thus, the loop starting in Step 2 is over the set of
treatments, instead of the set of treatment-type combinations, and requires the additional input x.

We now comment on several features of the fEVI allocation policy. Interestingly, it does not depend
on the patient type probabilities of arrival p(x). This is because the allocation policy is myopic and does
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Algorithm 1 fEVI allocation policy.
1: function fEVI(θθθ t ,Σt ,x)
2: for all w ∈W do
3: b← σ̃σσ(Σt ,w,x)
4: for all x̃ ∈X do
5: ã← θθθ t(W , x̃) . subset posterior means to keep only the entries associated with type x̃
6: b̃← b(W , x̃) . subset predictive standard deviations to keep only the entries associated

with type x̃
7: ν̃t(w, x̃)← h(ã, b̃) . h is the procedure in Frazier et al. (2009)
8: end for
9: νt(w)← ∑x̃∈X p̃(x̃)ν̃t(w, x̃)

10: end for
11: return Wt+1 = argmaxw∈W νt(w)
12: end function

not consider the learning that will be gained from future patients. By design, the fEVI allocation policy
is optimal when a single patient is left to be assigned to treatment. Moreover, several allocation policies
based on EVI ideas are asymptotically optimal as the sample size T goes to infinity (e.g., Frazier et al.
2009, Zhang et al. 2019). Conditions under which the fEVI allocation policy is asymptotically optimal is
a potential area for future work.

A scenario where we can select the type and treatment to allocate next may not be appropriate in
clinical trials because trials cannot select who arrives at the recruitment centers next. However, if the supply
of patients willing to join the trial is large enough to select the patient type that we would like to enroll
next, then such a scenario is relevant. Moreover, the literature has studied this problem as discussed in
Section 1. We can adapt the fEVI algorithm to this setting with little additional work and present it here
for completeness. Zhang et al. (2019) present the Integrated Knowledge Gradient (IKG) allocation policy,
based on EVI concepts, to find the best treatment strategy in a population with continuous patient types
using a Gaussian process model. The allocation policy we present here is a special case of the IKG with
finite patient types. However, we provide an algorithm that efficiently computes the IKG allocation policy
when the patient types are finite. We refer to this algorithm as the fEVI choosing covariates and present it
in Algorithm 2. The fEVI choosing covariates allocation policy computes the same indices as defined in
(11) but does so for all possible Xt+1:

νt(w,x) = E

[
∑

x̃∈X
p̃(x̃)max

w̃∈W
θt+1(w̃, x̃)

∣∣∣∣ θθθ t ,Σt ,Wt+1 = w,Xt+1 = x

]
− ∑

x̃∈X
p̃(x̃)max

w̃∈W
θt(w̃, x̃).

The only differences between Algorithms 1 and 2 are that Algorithms 2 does not take x as an input but
instead loops over all treatment-type combinations in Step 2, and selects the largest index over the set
of treatment-type combinations in Step 11. Because we loop over all treatment-type combinations, the
complexity of Algorithm 2 is O(m2n2 log(n)).

5 MODELING CORRELATION ACROSS TREATMENTS AND PATIENT TYPES

In this section, we discuss how different correlation structures in the prior covariance matrix impact our
model’s optimal solution and the fEVI algorithm. We first discuss a special correlation structure (correlations
only within patient types) in which the optimal allocation policy can be obtained by breaking up the problem
into independent subproblems that can be solved with classical R&S methods. The fEVI algorithm resembles
EVI algorithms designed to solve the R&S problem (not contextual) in this special case. We then discuss
the correlation structure used in a well-known clinical trial and how it fits our model’s scope. Finally, we
describe a correlation structure that illustrates correlations across treatments and patient types.
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Algorithm 2 fEVI choosing covariates.
1: function fEVI choosing covariates(θθθ t ,Σt)
2: for all (w,x) ∈W ×X do
3: b← σ̃σσ(Σt ,w,x)
4: for all x̃ ∈X do
5: ã← θθθ t(W , x̃) . subset posterior means to keep only the entries associated with type x̃
6: b̃← b(W , x̃) . subset predictive standard deviations to keep only the entries associated

with type x̃
7: ν̃t(w, x̃)← h(ã, b̃) . h is the procedure in Frazier et al. (2009)
8: end for
9: νt(w,x)← ∑x̃∈X p̃(x̃)ν̃t(w, x̃)

10: end for
11: return (Wt+1,Xt+1) = argmax(w,x)∈W ×X νt(w,x)
12: end function

5.1 Correlation Only Within Patient Types

Consider a trial in which patient types have highly different characteristics, but the treatments have similar
targets. For instance, consider types as sepsis patients with different organ dysfunctions and treatments as
inhibitors of different molecules that drive the same immune response. A prior distribution on µµµ that would
appropriately model such a trial would impose elements associated with the same type to be correlated
and elements associated with different types to be uncorrelated. That is, the non-zero correlations in the
prior distribution are only for elements that are associated with the same patient type: if x1 6= x2, then
Cov(µ(w1,x1),µ(w2,x2)) = 0 for any w1,w2 ∈W . Here, the problem can be simplified to m independent
R&S subproblems with random sample sizes for each patient type because, by learning about one patient
type, we do not learn about other patient types. Thus, for each patient type, we search for an allocation
policy πx, which is only concerned with the allocation of patients of type x, that solves the following R&S
problem:

max
πx

Eπx

[
max
w∈W

θT (w,x)
]
.

For such a prior distribution, the fEVI allocation policy is equivalent to an allocation policy that
implements the Knowledge Gradient with correlated beliefs (cKG) of Frazier et al. (2009) for each patient
type independently. If µµµ has fully uncorrelated elements, i.e., Σ0 is a diagonal matrix, the fEVI allocation
policy further simplifies to the Knowledge Gradient with uncorrelated beliefs (iKG) of Frazier et al. (2008).

When prior correlation is only within patient types, it is appropriate to have independent allocation
policies for each type. However, if we can choose the patient types to be observed, as in simulation
optimization problems, it is necessary to perform a joint optimization for all patient types because the
allocation policy has to allocate the budget of observations for each type.

5.2 Correlation Only Within Treatments

Consider now the setting of the BATTLE trial (Zhou et al. 2008) for lung cancer. The patient types were
all lung cancer patients with differences in a small number of genes in tumor biopsies. The treatments were
previously approved drugs for other types of cancer. Thus, patient types were similar, but the treatments
had substantial differences. A prior distribution on µµµ that would appropriately model such a trial would
impose elements associated with the same treatment to be correlated and elements associated with different
treatments to be uncorrelated. That is, the non-zero correlations in the prior distribution are only for
elements that are associated with the same treatment: if w1 6= w2, then Cov(µ(w1,x1),µ(w2,x2)) = 0 for
any x1,x2 ∈X . For this prior distribution, we cannot reduce the problem into smaller subproblems as in
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Section 5.1 because learning about one patient type may lead to learning about other patient types, and a
good allocation policy needs to take into account the gains for all patient types.

The BATTLE trial implemented a hierarchical model to pool observations with the same treatment:

µ(w,x) | φ(w) i.i.d.∼ N (φ(w),σ2
µ) ∀x ∈X

φ(w) i.i.d.∼ N (0,σ2
φ ) ∀w ∈W ,

where φ(w) are the hyperparameters associated with the expected outcomes of patients treated with w, and
σ2

µ and σ2
φ

are given variance parameters. This hierarchical model can be formulated as a special case of
our model in (3), in the sense that the prior and posterior marginal distributions of µµµ are the same, if we
specify the prior parameters as follows (Gelman et al. 2013, Section 15.1, Intraclass correlation). Let Σ0 be
blockdiagonal with each block having size m, i.e., there is a correlation within treatment and no correlation
across different treatments. Let each diagonal element be equal to σ2

µ +σ2
φ

and each off-diagonal element
within the block diagonal be equal to σ2

φ
. Finally, let θθθ 0 be the zero vector. Thus, the prior distribution used

in the BATTLE trial is a special case of our prior in (3) with only positive correlations within treatments.

5.3 Correlation Both Within Treatments and Patient Types

The more general case has correlations both within treatments and patient types, i.e., there are similarities
among the patient types and the treatments. Here is when we expect to see the most benefits from the fEVI
allocation policy. For example, if patient types have similar or overlapping characteristics and treatments
are similar, we could see a prior distribution that assigns a positive correlation for the parameters associated
with the same treatment or the same patient type. In Section 6, we use this prior to illustrate the benefits
of the fEVI allocation policy.

Instead of assigning correlation in the prior, it would be desirable to learn correlations from the
observations. However, learning correlations would require more structure than our model’s assumptions.
For instance, we could use a linear model with multiple patient covariates as in Shen et al. (2021) or model
treatment correlations as in Chick et al. (2021). We leave this as an opportunity for future research.

6 NUMERICAL RESULTS

In this section, we specify the model parameters to simulate the trial value and draw further insight into
the following questions:

1. How does the fEVI allocation policy perform compared to other baseline policies? How does the
correlation structure affect performance?

2. What is the performance gap between being able to choose covariates and observing covariates at
random?

In Section 6.1, we describe the experimental setup and metrics used to assess the performance of the
fEVI allocation policy. Section 6.2 describes the competing allocation policies. In Section 6.3, we simulate
the performance of the policies with random instances drawn from the prior distribution to assess the
performance of the fEVI allocation policy. Section 6.4 compares the performance between when random
patient types are observed and when the allocation policy chooses the patient types. Finally, Section 6.5
assesses the performance of the allocation policies when specific instances of the true mean are fixed.

6.1 Experimental Setup

We use the following parameters as a proof of concept motivated from different clinical trial settings. We
assume four patient types (m= 4), consistent with medical applications, such as sepsis (Scicluna et al. 2017),
and close to the BATTLE trial that identified five types. We assume eight treatments (n = 8) representing
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the 23 combinations of three aspects of treatment where each aspect has two options. We assume a zero
vector for the prior mean, i.e., there is no belief that any treatment of patient type has better outcomes than
the rest. The prior covariance matrix is assumed to have the following structure representing a setting in
which the fEVI is particularly beneficial, as discussed in Section 5.3. The variance of each parameter is
fixed to one. The correlation between two parameters is equal to ρ if the parameters are associated with
the same treatment or patient type. As an illustration, for two treatment and two patient types, the prior
covariance matrix would be as follows:

Σ0 =


1 ρ ρ 0
ρ 1 0 ρ

ρ 0 1 ρ

0 ρ ρ 1

 .

We assume ρ = 0.3, a moderate correlation, and assume the sampling variance to be σ2 = 1. We assume that
the probability of observing any patient type in the population and in the trial is the same: p(x) = p̃(x) = 1/m.

We report as the main performance metric the Expected Opportunity Cost (EOC), defined as the
difference between the value function with a perfect treatment strategy and the value function of the
allocation policy (consistent with extant literature with random problem instances):

EOCπ = Eπ

[
max
w∈W

µ(w, X̃)

]
−V π .

The EOC only shifts and mirrors our value function in (6), so minimizing the EOC is equivalent to
maximizing the value function. We report the EOC because it is guaranteed to be positive and approaches
zero with good policies. Thus, it is easier to visualize and compare among competing allocation policies.

We also report the instance-dependent EOC(µµµ) in Section 6.5:

EOCπ(µµµ) = E
[

max
w∈W

µ(w, X̃)

∣∣∣∣ µµµ

]
−Eπ

[
µ( fθθθ T (X̃), X̃)

∣∣ µµµ
]
.

consistent with extant literature for specific problem instances. Here, µµµ is fixed and the expectation is over
the patient types X̃ and posterior mean θθθ T . The instance-independent EOC is the expectation over EOC(µµµ)
given the prior distribution of µµµ: EOC = E[EOC(µµµ) | θθθ 0,Σ0]. We consider specific instances discussed in
the literature to assess the performance of the allocation policies that we describe in Section 6.5.

6.2 Competing Allocation Policies

The fEVI allocates patients to treatment as described in Section 4 using the prior distribution defined in
Section 6.1. The iKG makes allocations using the fEVI with the same prior mean but with the identity
matrix as the prior covariance, i.e., assuming there is no correlation among parameters. The iKG makes
the same allocations as the iKG in Frazier et al. (2008), assuming that each patient type is a separate R&S
problem. The allocation policy random samples a treatment uniformly at random and round robin samples
in a round robin fashion, regardless of the patient type.

In Section 6.4, we also report the “fEVI choosing covariates” that is only valid if the allocation policy
chooses the patient types. It makes allocations using Algorithm 2.

6.3 Expected Opportunity Cost Comparison

Figure 1 (left panel) shows the EOC in a log-scale as a function of the sample size. The fEVI allocation
policy performs best among all competing allocation policies. Notice that iKG has equivalent performance
to fEVI for larger sample sizes but a significant gap for smaller sample sizes. While the correlation structure
speeds up learning in earlier stages, the correlation (off-diagonal entries) of the posterior covariance matrix
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Figure 1: Expected opportunity cost with random instances drawn from the prior distribution. Standard
errors were too small to be plotted. The left panel compares allocation policies when patient types are
random. The right panel compares the performance of the fEVI allocation policy when being able to choose
the patient types, versus when observing patient types at random.

diminishes with the sample size and loses relevance for larger sample sizes. We assessed the EOC when
the number of treatments and number of types were in the ranges between two and ten (results not shown
due to space constraints). We observed that the same insights hold and that the fEVI benefits become larger
with more available treatments.

The distinction between fEVI and iKG is the prior distribution. The results we have presented in this
section draw random instances from the prior used by the fEVI. We also obtained results by drawing
random samples from the prior used by the iKG (i.e., independent mean outcomes). We found that the
iKG performs better than the fEVI by about the same margin by which fEVI outperforms iKG in Figure 1
(left panel). Thus, using the prior distribution that generates the random instances leads to improvements
in EOC, particularly in small samples.

6.4 Comparison Between Choosing and Random Patient Types

Figure 1 (right panel) shows a comparison between the fEVI allocation policy when covariates are random
(our new Algorithm 1) and when covariates are chosen (Algorithm 2, a special case of Zhang et al. 2019).
Far fewer samples are required to achieve a given EOC threshold when choosing covariates. When patients
arrive through a random process, the allocation policy can only allocate the patient type that would yield
the greatest value of information with probability 1/m in this example.

To better compare the performance between the allocation policies presented in Figure 1, we now report
the sample size required to reach an EOC lower than 10−1: fEVI choosing covariates(91), fEVI(116),
iKG(130), and random(253). At this level of EOC, being able to choose covariates reduces the required
sample size (from 116 to 91) by more than using the correct prior distribution (from 130 to 116). However,
the benefits of using the EVI approach compared to random is much larger (from 253 to 116). Furthermore,
the benefits of using the correct prior diminish for larger sample sizes (lower EOC). We do not observe any
statistically significant difference between fEVI and iKG for sample sizes larger than 148 (EOC < 0.076).

While choosing covariates may be infeasible in most clinical trial contexts, this result suggests that
innovative approaches that allow to select covariates — at least partially, e.g. by selectively enrolling
patients — could allow to capture significant additional benefits.

6.5 Instance-Dependent Expected Opportunity Cost

To further understand the instances where the fEVI has benefits over the other allocation policies, we
consider the following instances of the true mean to evaluate the instance-dependent EOC.
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Figure 2: Instance-dependent EOC for the one-fits-all (left panel) and one-to-one-fit (right panel) instances.
The shaded area represents standard errors. random and round robin are mostly overlapping.

One treatment works for all patients. Figure 2 (left panel) reports the EOC under random patient
types for the generalized slippage configuration (GSC) of Shen et al. (2021). In this instance, Treatment
1 is the best treatment for any type by a constant margin. We assume that the expected outcome for any
patient receiving Treatment 1 is δ = 1, and zero for all other treatments: µ(w,x) = 1w=1δ , where 1 is the
indicator function. We refer to this instance as the one-fits-all. The fEVI outperforms the iKG because it
starts with a prior that suggests that if Treatment 1 works for any type, it works for other types as well.
Thus, fEVI learns that Treatment 1 works for all types with fewer observations.

A different treatment works for one and only one patient type. Figure 2 (right panel) reports an
instance in which each patient type has one treatment with high expected outcomes while the remaining
treatments have zero mean: µ(w,x) = 1w=xδ , δ = 1. This resembles some instances reported by Zhou
et al. (2008) and Lai et al. (2013). We refer to this instance as the one-to-one-fit. In this instance, iKG
outperforms fEVI by a small margin. The correlation structure of the prior used by fEVI may be misleading
because each type has a different treatment that obtains the largest expected outcomes. However, because
it is just a moderate correlation, the fEVI still learns the optimal treatment strategy with a performance
comparable to iKG.

We observe the same qualitative results when δ = 0.5 or δ = 2 (data not shown).

7 CONCLUSION

The contextual R&S literature has focused on the simulation optimization problem. Clinical trials pose
additional practical challenges that require specific modeling. In this paper, we have focused on modeling
the random arrival of patients instead of the typical assumption in simulation optimization that covariates
are under the control of the experimenter. We have developed the fEVI allocation policy and characterized
scenarios (different kinds of prior distributions) in which contextual R&S is and is not beneficial. We have
shown through simulations that choosing covariates may lead to significant gains in selecting treatment
strategies. While it may not be feasible to choose every patient’s type, we may obtain better performance
by denying enrollment to certain patient types, in order to save budget for other patients that are more
informative. Modeling such decisions requires investigating different trade-offs because denying enrollment
increases the length of the trial and entails costs of screening for patients.

Future work could address other practical challenges. One very relevant extension for clinical trial
applications is to allow for a delay in observing the outcomes of the patients. In addition, the high cost of
clinical trials suggests that policies should also be after an optimal stopping time that saves costs without
sacrificing a good selection of treatment strategy.
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