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ABSTRACT

In many real world problems, we are faced with the problem of selecting the best among a finite number
of alternatives, where the best alternative is determined based on context specific information. In this
work, we study the contextual Ranking and Selection problem under a finite arm - finite context setting,
where we aim to find the best alternative for each context. We use a separate Gaussian process to model
the reward for each arm, derive the large deviations rate function for both the expected and worst-case
contextual probability of correct selection, and propose an iterative algorithm for maximizing the rate
function. Numerical experiments show that our algorithm is highly competitive in terms of sampling
efficiency, while having significantly smaller computational overhead.

1 INTRODUCTION

Ranking & Selection (R&S) studies the problem of identifying the best among a finite number of alternatives
(arms), where the true performance of each alternative is only observed through noisy evaluations. The
settings of R&S can be typically categorized into fixed confidence and fixed budget. In the fixed-confidence
setting, the goal is to achieve a target probability of correct selection (PCS) of the best alternative using as
few evaluations as possible, while in the fixed-budget setting one aims to achieve a PCS as high as possible
with the given sampling budget. The R&S problem has been studied extensively over past few decades,
and we refer the reader to Kim and Nelson (2007) and Chen et al. (2015) for an overview.

In certain applications, the best alternative may not be the same across the board, and may depend on the
underlying context. The benefit of making context-dependent decisions is easily seen by a simple application
of Jensen’s inequality: Ec[maxk f (k;c)]≥maxkEc[ f (k;c)], where f (k;c) represents the reward of selecting
alternative k for the context c, and Ec[·] denotes the expectation with respect to (w.r.t.) c. Examples
of context-dependent decision making include personalized medicine, where the best drug and dose may
depend on the patient’s age, gender, and medical history; and recommender systems, where personalized
decisions have been the focus of study for over a decade (Nunes and Hu 2012). Context-dependent decision
making also arises in R&S. For example, based on a set of forecasted market conditions (contexts), we
can identify a set of alternative configurations (arms) of a complex manufacturing system, which can be
simulated under any given context to determine the most profitable configuration to use when the market
conditions are realized.

In this work, we study the contextual R&S problem, in which the rewards are a function of the context.
Our goal is to identify the best alternative for each context under a fixed budget. Much like the classical
R&S problem, at each iteration, the decision maker selects an arm-context pair to evaluate and observes
a noisy evaluation of the true reward. With a finite sampling budget and noisy observations, it is not
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possible to identify the best arm with certainty, and we need to design a sampling policy, which takes in
the current estimate of rewards and outputs the next arm-context pair to sample, in order to achieve the
highest possible “aggregated” PCS when the budget is exhausted. The aggregation is needed because in
the contextual R&S, for any sampling policy, PCS is also context dependent, i.e., for each context c there
is a PCS(c). This defines multiple objectives to consider when designing the sampling policy. In this work,
we consider two approaches to aggregate PCS(c)’s to a scalar objective. The first one is the expected PCS
(Gao et al. 2019; Shen et al. 2021), denoted PCSE , which is the expectation or the weighted average of
PCS(c) given a set of normalized weights, and the second one is the worst-case PCS (Li et al. 2020),
denoted PCSM, which is the minimum PCS(c) obtained across all contexts.

The contextual R&S problem has seen an increasing interest in past few years. Notable works that
study this problem under finite arm-context setting include but not limited to Gao et al. (2019), Jin et al.
(2019), Li et al. (2020) and Shen et al. (2021). Li et al. (2020) focus on worst-case PCS, use independent
normal random variables to model rewards, and propose a one-step look-ahead policy with an efficient value
function approximation scheme to maximize PCSM. Shen et al. (2021) assume that the reward for each
arm is a linear function of the context and propose a two-stage algorithm based on the indifference zone
formulation for optimizing the expected PCS. The most closely related work to ours is Gao et al. (2019).
They model the rewards using independent normal random variables, extend the analysis in Glynn and
Juneja (2004) to derive the large deviations rate function for the contextual PCS, and propose an algorithm
that obtains the asymptotically optimal allocation ratio for both the worst-case and expected PCS. Jin et al.
(2019) also follow a large deviations approach similar to that of Gao et al. (2019), however, their algorithm
does not perform well when only the observed data is used to make decisions.

In this work, we use a separate Gaussian process (GP) to model the reward function for each arm. By
leveraging the hidden correlation structure within the reward function, GPs offer significant improvements
in posterior inference over independent normal random variables, which are commonly used in the R&S
literature. Due to the finite solution space we focus on, when compared to a simpler multi-variate Gaussian
prior, GPs may appear to complicate things by introducing kernels, which are typically used in continuous
spaces. We prefer GPs since they have hyper-parameters that can be trained to better fit the observations
as the optimization progresses. In contrast, a multi-variate Gaussian prior is a static object that needs to
be specified beforehand based on limited domain knowledge. Using the posterior mean of the GP as the
predictor of the true rewards, we derive the large deviations rate function for the contextual PCS, and
show that it is identical for both PCSE and PCSM. We propose a sequential sampling policy that aims to
maximize the rate function, and uses the GP posterior mean and variance to select the next arm-context to
sample. Our sampling policy, GP-C-OCBA, is based on the same idealized policy as the C-OCBA policy
by Gao et al. (2019), and mainly differs in the statistical model and the predictors used. We show that our
algorithm achieves significantly improved sampling efficiency when compared with C-OCBA and DSCO
(Li et al. 2020), and is highly competitive against the integrated knowledge gradient (IKG) algorithm
(Pearce and Branke 2018), which uses the same GP model but requires significantly larger computational
effort to decide on the next point to sample.

2 PROBLEM FORMULATION

We consider a finite set of arms (alternatives) k ∈K and a finite set of contexts that are represented by
vectors c ∈ C . We assume that K is a set of categorical inputs, i.e., that there is no metric defined over
K . On the other hand, C is assumed to be subset of a known metric space, such as the Euclidean space
of the corresponding dimension.

At each iteration, the decision maker selects an arm-context pair (k,c) to evaluate, and observes
yn(k,c) = µc(k,c)+ εn(k,c), where µc(k,c) is the true (unknown) performance of arm k under context c
(with ·c standing in for correct) and {εn(k,c)}n is zero-mean i.i.d. Gaussian noise with known variance
σ2(k,c) (In implementation, σ2(k,c) is unknown and is substituted with a plug-in estimate). The decision
maker aims to find the best alternative for each context, i.e., identify π∗(c) = argmaxk µc(k,c), with a given
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sampling budget B. Given a finite sampling budget and noisy observations, µc(k,c) is not known exactly
and we cannot solve for π∗(c).

Let µn(k,c) denote our estimate of µc(k,c) at n-th iteration, and let πn(c) = argmaxk µn(k,c) denote the
predicted best arm for context c. Prior to iteration n, πn(c) is not realized and can be viewed as a random
variable defined in an appropriate probability space. Suppose that the observations and the resulting πB(c)
are generated following a given sampling policy. For any context c, we can measure the quality of this
sampling policy with its probability of correct selection

PCS(c) = P(πB(c) = π
∗(c)).

As discussed in the introduction, PCS(c) for all contexts define multiple objectives to consider while
designing a sampling policy, with each PCS becoming larger as we allocate more samples to the corresponding
c. Since we have a total sampling budget B rather than individual budgets for each context, it makes sense
to work with a scalar objective instead. In the literature, there are two common approaches for constructing
a scalar objective from [PCS(c)]c∈C . The first approach assumes that we are given a set of normalized
weights w(c) for each c ∈ C or the context variable follows a probability distribution {w(c),c ∈ C }, and
uses the expected PCS (Gao et al. 2019)

PCSE = Ec∼w(c)[PCS(c)]

as the objective to be maximized. The other alternative takes a worst-case approach and aims to maximize
the worst-case PCS (Li et al. 2020)

PCSM = min
c∈C

PCS(c).

We refer to either of PCSE and PCSM as the contextual PCS, and aim to design a sampling policy that
maximizes the contextual PCS with the given sampling budget B. We propose an iterative approach that
repeats the following steps at each iteration until the sampling budget is exhausted.

• Use the available data to update the statistical model of the reward function.
• With the objective of maximizing the large deviations rate function, use the sampling policy to

decide on next arm-context, from which to sample one more observation.

In the following sections, we introduce our statistical model, which is a Gaussian process (GP) model
that leverages the hidden correlation structure in the reward function for more efficient posterior inference,
derive the large deviations rate function using the posterior mean of the GP as the predictor of the rewards,
and introduce our sampling policy, which aims to maximize the large deviations rate function.

3 STATISTICAL MODEL

Gaussian processes are a class of Bayesian non-parametric models that are highly flexible for modeling
continuous functions. By restricting to a discrete subset of the solution space, they also provide a powerful
alternative to a multi-variate Gaussian prior for modeling a discrete set of correlated designs. Given the
history of designs evaluated up to time n and the corresponding observations, Fn = {D1:n,O1:n}, and a set
of hyper-parameters θ , the GP implies a multi-variate Gaussian posterior distribution on any finite set of
designs D∗, given by:

f (D∗) |Fn,θ ∼N (µn(D∗),Σn(D∗,D∗));

where µn(D∗) and Σn(D∗,D∗) are the posterior mean vector and covariance matrix which are given by

µn(D∗) = µ0(D∗)+Σ0(D∗,D1:n)A−1
n (O1:n−µ0(D1:n))

>,

Σn(D∗,D∗) = Σ0(D∗,D∗)−Σ0(D∗,D1:n)A−1
n Σ0(D1:n,D∗),



Cakmak, Gao, and Zhou

with An = Σ0(D1:n,D1:n)+ diag(σ2(D1:n)), where σ2(·) denotes the standard deviation of the Gaussian
observation noise. The prior mean, µ0, is commonly set to a constant, e.g., µ0(·)= 0, and the prior covariance,
Σ0, is commonly chosen from popular covariance kernels such as squared exponential, Σ0(D,D′;θ) =
θ0 exp

(
−1

2 ∑
d
i=1 θi(Di−D′i)

2
)
, and Matèrn,

Σ0(D,D′;θ) = θ0
21−ν

Γ(ν)

(√
2νd

)ν

Kν

(√
2νd

)
,

where d =
√

∑i θi(Di−D′i)2, Γ(·) is the gamma function, Kν(·) is the modified Bessel function of second
kind, ν is a shape parameter that is commonly set to ν = 5/2, and θ denotes the output-scale and the
length-scale parameters. The observation noise level, σ2(·), is commonly unknown and gets replaced with
a plug-in estimate, which is optimized jointly with the hyper-parameters θ , using maximum likelihood or
maximum a-posteriori estimation.

We model the rewards for each arm using an independent GP model, which is defined over the context
space C and trained using only the observations corresponding to that arm. There are a couple of reasons
for using an independent GP model for each arm.

• With K as a set of categorical inputs, we do not have a metric defined over K . Thus, we cannot
use a covariance kernel with the categorical arm values as the inputs. It is possible to define a latent
embedding of K into a Euclidean space and apply a covariance kernel in the embedded space
(see, e.g., Guo and Berkhahn 2016; Feng et al. 2020), however, this introduces many additional
hyper-parameters to the model, resulting in a non-convex optimization problem with many local
optima for training the model. We found the predictive performance of such models to be highly
sensitive to initial values of these hyper-parameters.

• The complexity of the GP inference is dominated by the inversion of matrix An, which has a
O(n3) cost using standard techniques. When using K := |K | independent GP models, each with
nk training inputs, we have K matrices Ak

nk
, with ∑k nk = n, where Ak

nk
corresponds to k-th arm. The

GP inference with independent models has a total cost of O(∑k n3
k). If we assume that the samples

are evenly distributed across arms, i.e., nk = n/K, this results in a O(n3/K2) cost of inference for
K independent models, which is much cheaper than O(n3) for a single GP model.

On the other hand, if the set of arms belongs to a metric space, using a single GP model with a well
defined covariance kernel over arms could lead to better sampling efficiency, and may be preferable when
the samples are expensive or the sampling budget is severely limited. Although our derivation utilizes the
independence of the models across different arms, the resulting GP-C-OCBA algorithm presented in this
work is agnostic to the specifics of the GP model, and it can be used with either a single GP defined over
the arm-context space or a GP model with the latent embedding as discussed in the first point, whenever
such models are found to be appropriate.

For the rest of the paper, we use µn(k,c) and Σn(k,c) to denote the posterior mean and posterior variance
for context c under the GP model corresponding to k-th arm, and use Σn(c,c′;k) to denote the covariance
between two contexts c and c′ for the k-th arm.

4 DERIVATION OF LARGE DEVIATIONS RATE FUNCTION

In this section, we derive the large deviations rate function for the contextual PCS measures. Our derivation
follows the ideas presented in Glynn and Juneja (2004), with modifications to accommodate the use of
posterior mean µn(k,c) instead of the sample mean. On related work, the ideas in Glynn and Juneja (2004)
have been extended to the contextual setting by Gao et al. (2019), with the significant difference being their
use of independent Gaussian random variables to model the rewards and the sample mean as the predictor
versus our use of Gaussian processes to model rewards and µn(k,c) as the predictor.
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Let p(k,c) and N(k,c) = np(k,c) denote the fraction and the total number, respectively, of samples
allocated to (k,c). Both p(k,c) and N(k,c) are determined by the sampling policy and are assumed to
be strictly positive. We ignore the technicalities arising from N(k,c) not being an integer. For sake of
simplicity, we leave implicit the dependency of the probabilities and other quantities on the sampling policy.
For a given context c, the probability of false selection PFS(c) = 1−PCS(c) is given by

PFS(c) = P(µn(π
∗(c),c)< µn(k,c),∃k 6= π

∗(c)).

We can lower and upper bound this respectively by

max
k 6=π∗(c)

P(µn(π
∗(c),c)< µn(k,c)) and (K−1) max

k 6=π∗(c)
P(µn(π

∗(c),c)< µn(k,c)).

If for k 6= π∗(c), limn→∞
1
n logP(µn(π

∗(c),c)< µn(k,c)) =−G(k,c)(p(π∗(c),c), p(k,c)) for some rate func-
tion G(k,c), then limn→∞

1
n logPFS(c) =−mink 6=π∗(c) G(k,c)(p(π∗(c),c), p(k,c)). Similarly, the PFS∼ corre-

sponding to both PCSE and PCSM can be lower and upper bounded by maxc PFS(c) and (K−1)maxc PFS(c)
(or with an additional constant factor maxc w(c)/minc w(c) if w(c) are not uniform), respectively. Thus,
we can extend this to write the rate function of contextual PCS as

lim
n−→∞

1
n

logPFS∼ =−min
c∈C

min
k 6=π∗(c)

G(k,c)(p(π∗(c),c), p(k,c)). (1)

To make use of (1), we need to find G(k,c)(p(π∗(c),c), p(k,c)). We will follow the analysis of Glynn and Juneja
(2004) and use the Gartner-Ellis Theorem (Dembo and Zeitouni 1998) to find G(k,c)(p(π∗(c),c), p(k,c)),
which requires understanding the distributional behavior of µn(k,c). In particular, we will need to calculate
a certain limit of the log moment generating function (MGF): Λn(λ ;k,c) = logE[exp(λ µn(k,c))].

Let us focus on a fixed arm k for simplicity. Using the conjugacy property of GPs (under the assumption
of Gaussian observation noise with known variance) and updating the posterior using samples from one
context at a time, we can decompose µn(k,c) as

µn(k,c) = µ0(k,c)+
|C |

∑
i=1

(Σi−1(c,ci;k)]1×N(k,ci)(A
i)−1[Y i− [µ i−1(k,ci)]N(k,ci)×1),

where µ i−1(k,ci) is defined in the same way except with the summation being from 1 to i− 1 with
µ0(·, ·)= µ0(·, ·), [α]n×m denotes the n×m matrix where each element is α , Ai = [Σi−1(ci,ci;k)]N(k,ci)×N(k,ci)+

diagN(k,ci)(σ
2(k,ci)), with diagN(β ) denoting the diagonal matrix of size N×N with diagonals β , Y i denotes

the N(k,ci)×1 matrix of observations corresponding to ci, and

Σ
i(c,c′;k) = Σ

i−1(c,c′;k)− [Σi−1(c,ci;k)]1×N(k,ci)(A
i)−1[Σi−1(ci,c′;k)]N(k,ci)×1,

with Σ0(·, ·;k) = Σ0(·, ·;k). The inverse of Ai can be calculated in closed form using the Sherman-Morrison
formula (Meyer 2000). After some algebra, we can rewrite µn(k,c) as follows:

µn(k,c) = µ0(k,c)+
|C |

∑
i=1

N(k,ci)(Y i− [µ i−1(k,ci)]N(k,ci)×1)Σ
i−1(c,ci;k)

σ2(k,ci)+N(k,ci)Σi−1(ci,ci;k)
,

where Y i− [µ i−1(k,ci)]N(k,ci)×1 denotes the average of the vector. Similarly, we can rewrite Σi(c,c′;k) as:

Σ
i(c,c′;k) = Σ

i−1(c,c′;k)− N(k,ci)Σ
i−1(c,ci;k)Σi−1(ci,c′;k)

σ2(k,ci)+N(k,ci)Σi−1(ci,ci;k)
.
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For a Gaussian random variable N (µ̃, σ̃2), the log-MGF is given by µ̃λ + σ̃2λ 2/2. Since the true
distribution of samples is y(k,c)∼N (µc(k,c),σ2(k,c)) and the samples are independent of each other, we
can view µn(·, ·) as a linear combination of independent Gaussian random variables and write the log-MGF

Λn(λ ;k,c) = µ0(k,c)λ +
|C |

∑
i=1

[
(µc(k,ci)−µ

i−1(k,ci))C(k,c, i)λ +
σ2(k,ci)C(k,c, i)2λ 2

2N(k,ci)

]
,

where C(k,c, i) = N(k,ci)Σ
i−1(c,ci;k)

σ2(k,ci)+N(k,ci)Σi−1(ci,ci;k)
. Due to our use of µn(k,c) rather than the sample mean, part of the

analysis in Glynn and Juneja (2004), particularly Lemma 1, cannot be used as is and needs to be re-established.
For a given c and for k 6= π∗(c), let Λn(λπ∗(c),λk;c) denote the log-MGF of Zn = (µn(π

∗(c),c),µn(k,c)). In
order to use the Gartner-Ellis Theorem, we need to establish the limiting behavior of 1

n Λn(nλπ∗(c),nλk;c).

lim
n−→∞

1
n

Λn(nλπ∗(c),nλk;c) = ∑
κ∈(π∗(c),k)

µ
c(κ,c)λκ + lim

n−→∞

nVar(µn(κ,c))λ 2
κ

2
. (2)

The convergence of E[µn(k,c)]−→ µc(k,c), which we substituted above, should be evident from the analysis
of variance below. Here and in the remainder of this section, −→ denotes the limit as n−→∞. The next step
is to find the limiting behavior of Var(µn(π

∗(c),c)). To do so, note that Var(µn(k,c)) = ∑
|C |
i=1

σ2(k,ci)C(k,c,i)2

N(k,ci)
.

Due to conjugacy of GPs, we can choose to process the summation in any order, as long as we follow the
same order for updating Σi(·, ·;k). Let us analyze Var(µn(π

∗(c),c)), for a given c, with the summation and
the update processed starting from c, i.e., using c1 = c with an appropriate re-ordering of C . Note that

Σ
i(c′,c′′;k)−→ Σ

i−1(c′,c′′;k)− Σi−1(c′,ci;k)Σi−1(ci,c′′;k)
Σi−1(ci,ci;k)

,

which implies that Σi(·,c1;k) −→ 0, i ≥ 1, and C(k,c′, i) −→ Σ0(c′,ci;k)
Σ0(ci,ci;k)

if i = 1 and C(k,c′, i) −→ 0 otherwise.

Thus, we can ignore the rest of the terms in the summation and write Var(µn(k,c))
≈−→ σ2(k,c)

N(k,c) = σ2(k,c)
np(k,c) ,

where ≈−→ denotes equivalence in the limit. We are now ready to continue from (2). Let Λt(λk;k,c) denote
the log-MGF of the observation y(k,c)∼N (µc(k,c),σ2(k,c)).

lim
n−→∞

1
n

Λn(nλπ∗(c),nλk) = ∑
κ∈(π∗(c),k)

µ
c(κ,c)λκ +

σ2(κ,c)λ 2
κ

2p(κ,c)

= ∑
κ∈(π∗(c),k)

p(κ,c)
(

µc(κ,c)λκ

p(κ,c)
+

σ2(κ,c)λ 2
κ

2p(κ,c)2

)
= ∑

κ∈(π∗(c),k)
p(κ,c)Λt(λκ/p(κ,c);κ,c),

which is the exact term in Lemma 1 of Glynn and Juneja (2004). Following the steps therein, we find that
the rate function of Zn is given by I(xπ∗(c),xk) = p(π∗(c),c)It(xπ∗(c);π∗(c),c)+ p(k,c)It(xk;k,c), where

It(xk;k,c) = (xk−µc(k,c))2

2σ2(k,c) is the Fenchel-Legendre transform of Λt(λk/p(k,c);k,c). With the rate function
of Zn established, Glynn and Juneja (2004) show that

G(k,c)(p(π∗(c),c), p(k,c)) = inf
xπ∗(c)≥xk

[
p(π∗(c),c)It(xπ∗(c);π

∗(c),c)+ p(k,c)It(xk;k,c)
]
,

where the infimum can be calculated via differentiation (Gao et al. 2019), giving us

G(k,c)(p(π∗(c),c), p(k,c)) =
(µc(π∗(c),c)−µc(k,c))2

2(σ2(π∗(c),c)/p(π∗(c),c)+σ2(k,c)/p(k,c))
.

Putting it all together, we summarize the result in the following theorem.
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Theorem 1 Suppose that the observations are given as yn(k,c) = µc(k,c) + εn
k (c) where

εn
k (c) ∼ N (0,σ2(k,c)) and εn

k (c) are independent across n,k,c; and the best arm, π∗(c), is unique
for all c ∈ C . Using µn(k,c) to predict the rewards, the large deviations rate function for both PCSE and
PCSM is given by

lim
n→∞

1
n

logPFS∼ = min
c∈C

min
k 6=π∗(c)

(µc(π∗(c),c)−µc(k,c))2

2(σ2(π∗(c),c)/p(π∗(c),c)+σ2(k,c)/p(k,c))
. (3)

Remark 1 The large deviations rate function presented in Theorem 1 is identical to the rate function
derived in Gao et al. (2019), which is the same as the rate function originally derived in Glynn and Juneja
(2004) with an additional minimum over the contexts. The main contribution of our analysis is to show
that the same rate function is still applicable when the independent Gaussian model is replaced with a
Gaussian process. This enables efficient inference by learning the correlations, resulting in significantly
improved performance with small sampling budgets, while retaining similar asymptotical properties.

5 SAMPLING POLICY

In this section, we introduce the GP-C-OCBA policy, which aims to maximize the rate function presented
in Theorem 1, as well as the IKG policy from the literature as it applies to our problem setting, and present
a comparison of the computational cost of the two policies.

5.1 GP-C-OCBA

In classical R&S literature, optimal computing budget allocation (OCBA, Chen, Chick, Lee, and Pujowidianto
2015) is a popular approach for maximizing the PCS asymptotically. For the contextual R&S problem,
Gao et al. (2019) derive the Karush-Kuhn-Tucker (KKT) conditions for maximizing (3), and propose an
idealized sampling policy that iteratively realizes the KKT conditions.

The idealized policy derived by Gao et al. (2019) (see Section III.C of the paper for derivation) relies
on µc(k,c), σ2(k,c), and π∗(c), which are not known in practice, as well as p̂(k,c), which denotes the
fraction of total samples allocated to (k,c) so far, which is different than p(k,c) used in the derivation
to denote the idealized asymptotical allocation rate. For a practical algorithm, Gao et al. (2019) replace
µc(k,c) and σ2(k,c) with the sample mean and variance, respectively, and π∗(c) with the corresponding
estimate to define the C-OCBA policy.

Using the GP model, we take a similar approach and use the posterior mean µn(k,c) and the posterior
variance Σn(k,c), which are our estimates at time n, in place of µc(k,c) and σ2(k,c)/ p̂(k,c) in the idealized
policy. The resulting GP-C-OCBA policy is presented in Algorithm 1.

Our experiments (in Section 6) show that using the GP model with the GP-C-OCBA sampling strategy
leads to significantly higher contextual PCS using the same sampling budget, thanks to the improvements
in the posterior inference from using a statistical model that leverages the hidden correlation structure in the
reward function. An additional benefit of our approach over Gao et al. (2019) is in its applicability when
the initial sampling budget is too small to draw multiple samples from each arm. Using normal random
variables to model each arm-context pair requires a small number of samples from each pair for the initial
estimate of the variance, which may limit the applicability of the algorithm when the sampling budget is
limited. The GP prior, on the other hand, can be trained using very few samples for each arm, rather than
each arm-context pair, thus the modified algorithm can be used even with a limited sampling budget.

5.2 Integrated Knowledge Gradient

On a related note, another applicable method for the contextual R&S problem is the integrated knowledge
gradient (IKG) algorithm, which has been developed for the closely related problem of contextual Bayesian
optimization. In this section, we introduce the IKG algorithm as it applies to our setting, and compare it



Cakmak, Gao, and Zhou

with GP-C-OCBA. IKG offers a strong benchmark for our method, since it is based on the same GP model
and has demonstrated superior sampling efficiency in prior work.

Knowledge Gradient (KG) (Frazier et al. 2009) is a value-of-information type policy that was originally
proposed for the R&S problem and later expanded to global optimization of black-box functions. It is
well known for its superior sampling efficiency, which comes at a significant computational cost. For a
given context c′, we can write the KG factor, which measures the expected improvement in value of the
maximizer for context c′ from adding an additional sample at (k,c), as

KG(k,c;c′) = En[max
k′∈K

µn+1(k′,c′) | (kn+1,cn+1) = (k,c)]− max
k′∈K

µn(k′,c′).

In the classical R&S setting, where c and c′ are redundant (i.e., there is only a single context), the KG
policy operates by evaluating the arm k∗ = argmaxk KG(k,c;c). To extend this to the contextual Bayesian
optimization problem, Pearce and Branke (2018), Ding et al. (2020) and Pearce et al. (2020) each study an
integrated (or summed) version of KG, under slightly different problem settings, where either the context
space or both arm-context spaces are continuous. The main differences between these three works are in
how they approximate and optimize the acquisition function in their respective problem settings. For our
problem setting, these approaches are equivalent, and we refer to the sampling policy as IKG. We use IKG
as a benchmark to evaluate the sampling efficiency of our proposed algorithm.

The IKG factor is simply a weighted sum of KG factors corresponding to each context. It mea-
sures the weighted sum of the improvement in value of maximizers, and is written as IKG(k,c) =
∑c′∈C KG(k,c;c′)w(c′). At each iteration, the IKG policy samples the arm-context pair that maximizes the
IKG factor, (k̃∗, c̃∗) = argmaxk∈K ,c∈C IKG(k,c). The IKG policy is proven to be consistent and its superior
sampling efficiency has been demonstrated in numerical experiments.

The main difficulty with using the IKG policy is its computational cost. In the finite arm-context
setting that we are working with, the KG(k;c) can be computed exactly using Algorithm 1 from Pearce
and Branke (2018), which has a cost of O(K logK) for any pair (k,c), given µn(·, ·) and Σn(·, ·). This
translates to an O(|C |K logK) cost for calculating the IKG factor for a given (k,c). In total, to find the
next pair to sample using IKG costs O(|C |2K2 logK) for calculating the IKG factors, and an additional
O(∑k[n3

k + |C |2nk + |C |n2
k ]) to calculate posterior mean and covariance matrices, where nk denotes the total

number of samples allocated to arm k.

Algorithm 1 GP-C-OCBA for contextual R&S
1: Use a pre-determined rule to allocate initial samples to each arm.
2: for n = 1, . . . , B do
3: Update the GP model with the available observations, calculate µn(k,c) and Σn(k,c).
4: For all c ∈ C and k 6= πn(c), calculate

ζ (k,c) =
(µn(π

n(c),c)−µn(k,c))2

Σn(πn(c),c)+Σn(k,c)
;

and set

ψ
(1)(c) =

p̂(πn(c),c)
Σn(πn(c),c)

; ψ
(2)(c) = ∑

k 6=πn(c)

p̂(k,c)
Σn(k,c)

.

5: Solve for (k̃∗, c̃∗) = argmink 6=πn(c),c∈C ζ (k,c), and draw an additional sample from (πn(c̃∗), c̃∗), if
ψ(1)(c̃∗)< ψ(2)(c̃∗), and draw an additional sample from (k̃∗, c̃∗) otherwise.

6: end for
7: Return: πB(c) = argmaxk µB(k,c),c ∈ C as the set of predicted best arms.
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On the other hand, the cost of GP-C-OCBA is dominated by the cost of calculating the posterior mean
and variance for each arm-context pair, which has a total cost of O(∑k[n3

k + |C |n2
k ]). Note that we avoid the

|C |2nk term since our algorithm only requires the posterior variance, as well as the O(|C |2K2 logK) cost of
IKG calculations. This puts GP-C-OCBA at a significant advantage in terms of computational complexity.

6 NUMERICAL EXPERIMENTS

In this section, we demonstrate the performance of our algorithm on a set of synthetic benchmark problems.
We compare our algorithm with the algorithms by Li et al. (2020) (DSCO), Gao et al. (2019) (C-OCBA),
and with the IKG algorithm as described in Section 5.2. We chose these benchmarks since DSCO and
C-OCBA were both proposed for the contextual R&S with the finite arm-context setting that is studied in
this paper and has demonstrated superior performance in experiments; and IKG was chosen since KG type
algorithms, including variants of IKG, have consistently demonstrated superior sampling efficiency under
various problem settings.

We implemented the experiments in Python, and used the GP models from the BoTorch package (Balandat
et al. 2020) with the default priors. The GP hyper-parameters are re-trained every 10 iterations, and we
use the Matern 5/2 kernel. The code will be made available at https://github.com/saitcakmak/contextual rs
upon publication.

6.1 Test Functions

For the experiments, we generate the true rewards, µc(k,c), by evaluating common global optimization test
functions on randomly drawn points from the function domain. We use the first dimension of the function
input for the arms, i.e. each arm corresponds to a fixed value of x1, and spread the arms evenly across the
corresponding domain. The remaining input dimensions are used for the contexts, thus, contexts are d−1
dimensional vectors for a d dimensional test function. Put together, this corresponds to µc(k,c) = f (xk,xc)
where xk and xc are fixed realizations of 1 and d−1 dimensional uniform random variables, respectively.
The rewards are observed with additive Gaussian noise with standard deviation set as fmax− fmin

100/3 , where fmax

and fmin are estimated using 1000 samples drawn uniformly at random from the function domain. We use
the following functions in our experiments:

• The 2D Branin function, evaluated on [−5,10]× [0,10]:

f (x) =−(x2−bx2
1 + cx1− r)2−10(1− t)cos(x1)−10,

where b = 5.1/(4π2), c = 5/π , r = 6 and t = 1/(8π). We run two experiments using the Branin
function, both with 10 arms and 10 contexts. The first objective is the expected PCS with weights
set arbitrarily as [0.03,0.07,0.2,0.1,0.15,0.2,0.02,0.08,0.1,0.05], and the second objective is the
worst-case PCS. We draw 2 samples from each arm-context pair for the initialization phase.

• The 2D Griewank function, evaluated on [−10,10]2:

f (x) =−
d

∑
i=1

x2
i

4000
+

d

∏
i=1

cos
(

xi√
i

)
−1.

We run two experiments with the Greiwank function, using 10 arms and 20 contexts. We use the
expected PCS with uniform weights and the worst-case PCS, and initialize with 2 samples from
each arm-context pair.

• The 3D Hartmann function, evaluated on [0,1]3:

f (x) =
4

∑
i=1

αi exp

(
−

3

∑
j=1

Ai j(x j−Pi j)2

)
,

https://github.com/saitcakmak/contextual_rs
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where the constants α , A, and P are given in Surjanovic and Bingham (2013). We run a single
experiment with 20 arms and 20 contexts, using the expected PCS with uniform weights. Since the
number of arm-context pairs is quite large in this experiment, we select only 6 contexts for each
arm, uniformly at random, and draw a single sample from these contexts for the initial stage. Due
to insufficient initial sampling budget, DSCO and C-OCBA are not applicable here, and we only
run the GP based algorithms for this experiment.

• The 8D Cosine8 function, evaluated on [−1,1]8:

f (x) = 0.1
8

∑
i=1

cos(5πxi)−
8

∑
i=1

x2
i .

We run a single experiment with the mean PCS objective with uniform weights. We use 20 arms
and 40 contexts. For the initial stage, we randomly select 16 contexts for each arm, and draw a
single sample from these contexts, which is again due to the large number of arm-context pairs in
this experiment. Similar to the previous experiment, DSCO and C-OCBA are not applicable here,
we only run the GP based algorithms for this experiment.

6.2 Results

The experiment results are plotted in Figure 1. We ran each experiment for 2000 iterations, except for IKG
in Hartmann and Cosine8 functions, which were run for 1000 iterations due to their excessive cost. The
plots show the empirical contextual PCS, estimated using 100 replications. The first 4 plots compare all
algorithms, however, the last 2 only compare GP-C-OCBA and IKG, due to small initial budget preventing
drawing of multiple samples from each arm-context pair, which is necessary to form an initial estimate of
sample mean and variance that is used by DSCO and C-OCBA. In all 4 of the experiments comparing all
algorithms, we see that the two algorithms using the GP models achieve significantly higher contextual
PCS compared to the algorithms using independent normal random variables to model rewards, which
clearly demonstrates the benefit of using a statistical model that leverages the hidden correlation structure
in the reward function. In particular, with the Griewank function, we see that the DSCO and C-OCBA have
worst-case PCS very close to 0, which is explained by a total of 2400 samples being far from sufficient to
form reliable estimates for 200 arm-context pairs using an independent statistical model.

Although it is slightly trailing behind in some experiments, we see that GP-C-OCBA is highly competitive
against IKG, while having significantly smaller computational complexity. The wall-clock times for the
experiments are reported in Table 1. We see that even in the smallest experiments, the IKG algorithm takes
about 5 times as long to run, with the ratio increasing significantly to about 75 times as we move to larger
experiments. The reported run times are for 1000 iterations of a full experiment, and include the cost of
fitting the GP model, which is identical for both algorithms. It is worth noting that cost of evaluating the
test functions is negligible. As the cost of function evaluation increases, the results would look nicer for
IKG, though it would still remain the more expensive alternative.

Table 1: Comparison of computational cost of IKG and GP-C-OCBA. We report the average wall-clock
time, in seconds, for running 1000 iterations of the given experiment. The experiments were run on a
shared cluster using 4 cores of the allocated CPU. To save on space, we report the average run-time of the
two objectives for Branin and Griewank.

Algorithm Branin PCSE / PCSM Griewank PCSE / PCSM Hartmann Cosine8
IKG 1218 4135 11096 43224

GP-C-OCBA 249 296 441 544
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Figure 1: Experiments using Branin function with PCSE and PCSM, Griewank function with PCSE and
PCSM, Hartmann function with PCSE , and Cosine8 with PCSE . The plots show the empirical contextual
PCS on the y-axis, and the number of iterations/samples (post-initialization) on the x-axis.

Overall, the experiments show that GP-C-OCBA is highly competitive in terms of sampling efficiency,
while being significantly cheaper than other high performing benchmarks. We believe that this makes
GP-C-OCBA an attractive option for any practitioner that is faced with a contextual R&S problem.

7 CONCLUSION

We studied the contextual R&S problem under finite arm-context setting, using a separate GP to model the
reward for each arm. We derived the large deviations rate functions for the contextual PCS, and proposed
the GP-C-OCBA algorithm that aims to maximize the rate function using the information available in the
GP posterior. GP-C-OCBA is shown to achieve significant sampling efficiency, while having a significantly
smaller computational overhead compared to other competitive alternatives.
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