
Proceedings of the 2021 Winter Simulation Conference
S. Kim, B. Feng, K. Smith, S. Masoud, Z. Zheng, C. Szabo, and M. Loper, eds.

ON SOLVING DISTRIBUTIONALLY ROBUST OPTIMIZATION FORMULATIONS
EFFICIENTLY

Soumyadip Ghosh
Mark S. Squillante

Mathematical Sciences, IBM Research
Thomas J. Watson Research Center

1101 Kitchawan Road
Yorktown Heights, NY 10198, USA

Ebisa D. Wollega

Department of Engineering
Colorado State University-Pueblo

2200 Bonforte Boulevard
Pueblo, CO 81001, USA

ABSTRACT

In this paper we propose and investigate a new stochastic gradient descent (SGD) algorithm to efficiently
solve distributionally robust optimization (DRO) formulations that arise across a wide range of applications.
Our approach for the min-max formulations of DRO applies SGD to the outer minimization problem.
Towards this end, the gradient of the inner maximization is estimated by a sample average approximation
using a subset of the data in each iteration, where the subset size is progressively increased over iterations
to ensure convergence. We rigorously establish convergence of our method for a broad class of models.
For strongly convex models, we also determine the optimal support-size growth sequence that balances a
fundamental tradeoff between stochastic error and computational effort. Empirical results demonstrate the
significant benefits of our approach over previous work in solving these DRO formulations efficiently.

1 INTRODUCTION

We consider general formulations of the distributionally robust optimization (DRO) problem as follows.
Let X denote a sample space, P a probability distribution on X, and Θ⊆ Rd a parameter space. Define
LP(θ) := EP [l(θ ,ξ )] to be the expectation with respect to (w.r.t.) P of an objective function l : Θ×X→R
that will also be called a loss function since we seek to minimize it over parameters θ ∈ Θ given
samples (data) ξ ∈ X. Define the worst-case expected loss R(θ) := EP∗(θ)[l(θ ,ξ )] = supP∈P{LP(θ)},
which maximizes the loss LP over a well-defined set of measures P . This set typically takes the form
P = {P |D(P,Pb)≤ ρ,

∫
dP(ξ ) = 1,P(ξ )≥ 0}, where D(·, ·) is a measure of distance on a set or space of

probability distributions on X and where the constraints limit the feasible candidates to be within a distance
ρ of a base Pb. We then seek parameters θ ∗rob ∈Θ that, for a given P , solve the DRO problem formulated as

θ
∗
rob = argmin

θ∈Θ

{
R(θ)

}
= argmin

θ∈Θ

{
sup
P∈P
{LP(θ)}

}
. (1)

Nonparametric input model uncertainty is an important concern in simulation-based optimization. This
uncertainty arises when only a finite set of observations N = {ξn,n = 1, . . . ,N} are available to characterize
the inputs of the simulation model that estimates the loss function l. A confidence interval (CI) constructed
for the expected loss using as an input model the equal-weight empirical distribution UN = {1/N} can
provide poor coverage of the true value. A rich literature exists on constructing CIs using boot-strapping
methods to incorporate the impact of input model uncertainty (Barton et al. 2014). Lam (2019) shows how
φ -divergence balls centered at Pb =UN with appropriately chosen radius ρ can construct robust loss R(θ)
as in (1) to obtain an asymptotically valid CI for LP0(θ) (for a fixed θ ), where P0 is the true unknown
distribution generating the input samples N . In terms of simulation optimization, the equal-weight empirical
distribution UN over N is the nonparametric maximum likelihood estimator (Owen 2001) of the (unknown)
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distribution underlying the datasets, which motivates the standard practice of minimizing the empirical
loss LUN (·) over Θ. The DRO philosophy seeks to extend the input model uncertainty analysis to model
optimization by instead picking θ ∗rob as the best parameter. In practice, estimating with DRO formulations (1)
amounts to dynamically re-weighing the data using the solution P∗(θ) to the inner maximization at each
parameter θ ∈ Θ. Unlike the equal emphasis placed by LUN (θ) on all observed data, the R(θ) in DRO
formulations sets these weights to emphasize data that experience high loss at θ . Hence, this approach
explicitly treats the ambiguity in the identity of P0, since in general UN 6= P0.

This problem is studied also in the statistical learning setting where the best model parameters θ of a
statistical model is sought given only a finite training dataset N and this model is then used for inference
over other test datasets, all of which are typically assumed to be identically distributed. In real-world settings,
the training dataset and any dataset to which the trained model is applied are finite sets sampled from the
same underlying distribution P0. While popular model selection techniques, such as cross-validation (CV)
(see, e.g., Stone (1974)), seek to improve the estimation error between training and testing datasets, they
are often computationally prohibitive and lack rigorous guarantees. The DRO formulation (1) with the
empirical distribution UN over the finite training dataset as the base distribution Pb has been proposed as
an alternative approach by Namkoong and Duchi (2016), Blanchet et al. (2019). Blanchet et al. (2019)
show for Wasserstein distance metrics that, with an appropriately chosen value of constraint parameter ρ ,
P0 ∈P with high probability; and Namkoong and Duchi (2017) establish similar results for φ -divergence
measures. The DRO approach therefore holds great promise.

Our primary focus is on efficiently obtaining solutions of (1), motivated to realize DRO as a viable
statistical learning approach. The key obstacle is the min-max form, and specifically the inner maximization
over probability sets P . In some cases, its solution is explicitly available; e.g., P constrained by certain
instances of Wasserstein distance, studied by Blanchet et al. (2019) and Sinha et al. (2018), admit an
explicit characterization of the robust objective EP∗(θ)[l(θ ,ξ )]. However, such reductions do not hold in
general, and they require solving a convex nonlinear program (Esfahani and Kuhn 2018). Namkoong and
Duchi (2017) show that the inner maximization with χ2-divergence constraints can be efficiently solved.
We therefore focus on the general φ -divergence distance function Dφ (P,Pb) = EPb [φ(

dP
dPb

)], where φ(s) is a
nonnegative convex function taking a value of 0 only at s = 1. The modified χ2 and Kullback-Leibler (KL)
divergences are given by φ(s) = (s−1)2 and φ(s) = s logs− s+1, respectively. Define the N-sized vector
P := (pn) and set the base Pb =UN . Then:

LP(θ) =
N

∑
n=1

pnl(θ ,ξn) and P =
{

P
∣∣Dφ (P,UN) =

1
N

N

∑
n=1

φ(N pn)≤ ρ,
N

∑
n=1

pn = 1, pn ≥ 0,∀n
}
.

For convex loss functions l(·,ξn), the DRO formulation (1) is convex in θ . Ben-Tal et al. (2013)
describe the typical Lagrangian dual algorithm used for this convex-concave case (see, e.g., (3)), and apply
classical stochastic gradient descent (SGD) to solve this reformulation to a standard stochastic optimization
form. Such an approach fails when l is non-convex since the required strong duality does not hold; and the
characteristics of certain dual variables can cause instability in the SGD (Namkoong and Duchi 2016).
To address this, Namkoong and Duchi (2017) determine for the modified χ2 case the optimal P∗(θ) that
defines R(θ) exactly by solving (1) as a large deterministic problem that is well-defined for finite N. This
full-gradient approach is feasible for specific choices of φ -divergences by reduction to two one-dimensional
root-finding problems that can be solved via bisection search. This nevertheless requires an O(N logN)
effort (Proposition 2) at each iteration, and hence the method can be expensive. Levy et al. (2020) and
Ghosh and Squillante (2020) independently develop an algorithm based on multi-level Monte Carlo (Giles
2008; Blanchet and Glynn 2015) to alleviate the computational burden of the gradient estimation. While the
algorithm holds great promise especially for large-scale datasets, our experiments reveal that it inherently
induces an increase in the variance of the gradient estimator due to the added randomization, which can in
turn adversely affect the computational requirements and solution quality of the overall approach.
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In this paper our primary contributions include a new SGD algorithm to efficiently solve large-scale
DRO problems (Section 2), namely Alg. 1 which subsamples the support of the variable P from a (finite)
observed dataset and estimates the robust loss (and its gradient) via a sample average approximation (SAA).
While subsampling (mini-batching) typically works well with SGD because the gradient estimates are
unbiased, our theoretical results (Theorem 3) show that subsampling in the DRO context induces a bias in
the estimation of the robust loss gradient. This is due to a fixed mini-batch size resulting in a high chance
that critical data which suffer high loss will be missed, leading to an optimistic estimation of the robust
loss. Namkoong and Duchi (2017) sidestep this issue by assembling the full-data gradient, while the Giles
estimator of Levy et al. (2020), Ghosh and Squillante (2020) randomizes the choice of the mini-batch size
over the entire dataset. Alg. 1 reduces this bias by progressively growing the subsample size. We establish
theoretical results (Theorem 5) showing that convergence is assured even for non-convex losses l as long as
the subsamples grow at a certain minimal rate. For strongly convex losses l (Theorem 7), we further show
how to optimally set the parameters of our algorithm so that the required computational effort is balanced
with the desired level of accuracy, thus providing the fastest rate of convergence.

Our primary contributions also include empirical results (Section 3) that consider convex DRO
formulations of binary classification problems, comparing the performance of our Alg. 1 against the methods
referenced above and a regularized ERM formulation tuned via k-fold CV. Our results show that our
algorithm can attain the same or better performance as k-fold CV and all other DRO methods, while
also providing significant computational speedup over the other DRO methods and orders of magnitude
reductions in the computation time required by k-fold CV. The key parameters of our algorithm do not
require fine tuning and are set based on our theoretical results, whereas the key parameters of the other
DRO approaches impact both the solution quality and the computation time and require fine tuning.

2 ALGORITHM AND ANALYSIS

Alg. 1 presents our progressively sampled subgradient descent algorithm comprising SGD-like iterations

θt+1 = θt − γ∇θ R̂t(θt) = θt − γGt , (2)

for the outer minimization in (1), where γ is the (fixed) step size, R̂t(·) is an SAA of the robust loss R(·) from
the inner maximization over Dφ -constrained P , and Gt := ∇θ R̂t(θt). This view of (1) allows us to depart
from the convex-concave formulations of Ben-Tal et al. (2013) and consider non-convex losses l, as long as
the subgradient ∇θ R̂t(·) approximates the gradient ∇θ R(·) sufficiently well. Recall that R(θ) is the optimal
value of the inner maximization problem. Define the set Θ∅ := {θ : l(θ ,ξn1) = l(θ ,ξn2), ∀n1,n2}, and for a
small ς > 0 let the set Θ∅,ς := ∪θo∈Θ∅{θ : ‖θ −θo‖2 < ς} define the ς -neighborhood of Θ∅. Proposition 1
assumes that the formulation (1) precludes Θ∅,ς in order to avoid a degenerate inner maximization objective
function that does not depend on the decision variables pn, in which case the entire feasible set is optimal.
Proposition 1 Let the feasible region Θ be compact and assume Θ⊆Θc

∅,ς , for a small ς > 0. Further suppose φ

in the Dφ -constraint has strictly convex level sets. Then: (i) the optimal solution P∗ of R(θ) = supP∈P{LP(θ)}
is unique if ρ <

(
1− 1

N

)
φ
( N

N−1

)
+ 1

N φ(0), and the gradient is given by ∇θ R(θ) := ∑n∈N p∗n(θ)∇θ l(θ ,ξn);
and (ii) for all ρ , the ∇θ R(θ) is a sub-gradient of R(θ).
Proof Sketch: For part (i), the detailed exposition in Ghosh et al. (2020) shows that the assumption on the
constraint parameter ρ only admits feasible probability mass functions (pmfs) that assign nonzero mass to
all support points. For strictly convex functions φ(·), this then ensures that the problem (4) has a unique
optimal solution P∗ when combined with the assumption that the objective coefficients l(θ ,ξn) 6= ` for all n
and some `. Moreover, Dφ (P∗,UN) = ρ . For the form of the gradient, we can write the Lagrangian dual
form (Luenberger 1969) of the inner maximization as

R(θ ∗rob) = min
θ∈Θ

max
pn≥0

min
α≥0,λ

{
L (θ ,α,λ ,P) := LP(θ)+α(ρ−Dφ (P,UN))+λ

(
1−

N

∑
n=1

pn

)}
, (3)
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1: procedure PROGRESSIVESSD(γ,{Mt}, θ0, ρ)
2:

3: for t = 1,2, . . . ,T do
4: Mt ←∅
5: . Sample subset Mt

6: for m = 1, . . . ,Mt do
7: ξm ∼ Uniform (N \Mt)
8: Mt ←Mt ∪{ξm}
9:

10: Assemble Zt ←{l(θt ,ξm), ∀m ∈Mt}

11: ρt ← ρ + c
(

1
Mt
− 1

N

)(1−δ )/2

12: P∗t ← InnerMax(Zt ,Mt ,ρt)
13: Set Gt ← ∑m∈Mt p∗t,m∇θ l(θt ,ξm)
14: Set θt+1← θt − γ Gt

15: return θT

16: end procedure
17:

(a) Outer Minimization, where input parameters
include step size γ , sample size sequence {Mt}Tt=1
with MT = N, initial iterate θ0, Dφ constraint ρ .

1: procedure INNERMAX(Z ,M ,ρ)
2: M← |M |, base Pb =

{ 1
M ,∀m ∈M

}
3: z̄←maxm{zm | zm ∈Z }
4: M ′←{m∈M : zm = z̄} and M′←|M ′|
5: P′←

{ 1
M′ I{m ∈M ′}, ∀m ∈M

}
6: If Dφ (P∗,Pb)≤ ρ then
7: P∗← P′ and return P∗

8: for α ∈ [0, ᾱ] do
9: for λ ∈ [λ , λ̄ ] do

10: M ′←{m |λ ≤ zm−αφ ′(0)}
11: P′←

{
1
M (φ ′)−1( zm−λ

α
),m ∈M ′

}
12: If ∑m p′m = 0, then
13: P∗(α)← P′, and break
14: If Dφ (P∗(α),Pb) = ρ , then
15: P∗← P∗(α) and break
16: return P∗

17: end procedure

(b) Inner Maximization, where input parameters
include loss values Z , subsampled support M , Dφ

constraint ρ .

Alg. 1: Progressively Sampled Subgradient Descent Algorithm

where L (θ ,α,λ ,P) is the Lagrangian objective. By Lagrangian duality principles (Lemma 2.1 in Shapiro
(1985)), a corresponding unique pair (α∗,λ ∗) exists. Let us collectively call the primal and dual
variables v∗(θ) = (α∗(θ),λ ∗(θ),P∗(θ)), and hence R(θ) = L (θ ,v∗(θ)) where the first term LP∗(θ) =
∑n p∗n(θ)l(θ ,ξn). Differentiating using the chain rule, we obtain ∇θ R(θ) = ∇θ LP∗(θ)(θ) + ∇θ v∗(θ)
∇vL (θ ,v∗(θ)) = ∑n∈N p∗n(θ)∇θ l(θ ,ξn), where the second term in the first summation vanishes because
∇vL (θ ,v∗(θ)) = 0 by the first order optimality conditions of v∗. Part (ii) obtains the same result in the
more general setting that allows for multiple solutions to the maximization problem; see Theorem 7.21,
p. 352 Shapiro et al. (2009). 2

We next construct the estimate R̂t(θ) in (2) from the inner maximization problem restricted only to
a relatively small subset Mt of size |Mt | = Mt of the full dataset N of size N. Alg. 1a in lines 6-8
shows that this subset is sampled uniformly without replacement from the full dataset N ; the discussion
following Theorem 3 (below) motivates this method of generation. Defining P = (pm) of dimension Mt and
the objective coefficients zm = l(θ ,ξm), we have

R̂t(θ) = max
P=(pm)

∑
m∈Mt

pmzm s.t. ∑
m∈Mt

φ(Mt pm)≤Mtρt , ∑
m∈Mt

pm = 1, pm ≥ 0, (4)

where the uncertainty radius ρt = ρ +ηt now changes with the subsample size Mt in iteration t, motivated
by Theorem 3 discussed below, where ηt = c(1/Mt−1/N)(1−δ )/2 for small positive constants c,δ . Suppose
P∗t (θ) = (p∗t,m(θ)) is an optimal solution to (4). Then a valid subgradient for R̂t(θt) is obtained as an
expression analogous to that in Proposition 1(i) under appropriate substitutions w.r.t. θt , P∗t and Mt . Alg. 1a
uses a progressively increasing subsample support size Mt as t↗T . At iteration T the algorithm reaches
the full support size MT = N, and the user may then optionally choose to switch to a deterministic
optimization algorithm, such as the one due to Namkoong and Duchi (2017).

Alg. 1b presents the steps needed to obtain an exact solution to the inner maximization problem (4), by
solving the Lagrangian dual form analogous to (3) of the subsampled problem (4) to obtain the optimal
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primal and dual variables for various φ functions. Note that the ’for’ loops over dual variables α (line 8)
and λ (line 9) can be implemented efficiently as bisection searches that seek the zeros of the gradient
of L (θ ,α,λ ,P) w.r.t. these variables, which reduces to seeking values where the equality constraints
Dφ (P,Pb) = ρ and ∑m∈Mt pm = 1 are respectively satisfied. This observation leads to the next result which
provides a worst-case bound on the computational effort required to obtain an ε-optimal solution to (4).
Proposition 2 For any φ -divergence, Alg. 1b finds a feasible primal-dual solution (α̃∗, λ̃ ∗, P̃∗t ) to (4) with
an objective value R̃∗t such that |R̂∗t (θ)− R̃∗t |< ε and with a worst-case computational effort bounded by
O(Mt logMt +(log 1

ε
)2), where ε is a small precision parameter.

A complete proof, including the monotonicity of the left hand expressions in lines 12 and 14 and the
existence of a root within the chosen bounds for α and λ in lines 8 and 9, are available in Ghosh et al.
(2020). The machine-precision ε does not relate to any other parameter of the formulation or algorithm
(e.g., Mt ,N,ρ), and it is required because of the two one-dimension bisection searches in sequence to obtain
α∗ and λ ∗, respectively. In the sequel we assume that ε is a fixed small value and Alg. 1b returns an exact
solution (α∗,λ ∗,P∗t ) to problem (4), and that the computational effort is bounded by O(Mt logMt).

2.1 Bias in ∇θ R̂(θ) as Approximation of ∇θ R(θ)

We shall now assume, to simplify the exposition, that the conditions of Proposition 1 hold in order to
assume that the inner maximization has a unique solution. Let the mass vector P∗ = (p∗1, . . . , p∗N) be the
optimal solution to the full-data version of (4), i.e., with Mt = N, and let the mass vector P∗t = (p∗1, . . . , p∗Mt

)
be the optimal solution of (4) restricted to any subset Mt . The classical literature on SAAs (Shapiro 2003)
of stochastic optimization formulations indicates that the robust loss approximation R̂(θt) assembled from
P∗t suffers a bias w.r.t. the true robust loss R(θ). In our setting, this bias arises because the approximate
problem might miss support points ξn where loss is high when subsampling the dataset, and this leads to
optimistic estimation of the robust loss R(θ). We provide in Theorem 3 a bound on the squared bias when
using the sub-gradient expression in Proposition 1(i) to approximate ∇θ R(θt) as a function of the sample
size Mt . We start with an assumption on the growth of the φ -function underlying the Dφ divergence.
Assumption 1 The φ -divergence satisfies uniformly for all s and ζ < ζ0 the continuity condition (for
constants ζ0,κ1,κ2 > 0): |φ(s(1+ζ ))−φ(s)| ≤ κ1ζ φ(s)+κ2ζ .

This condition (Shapiro et al. 2009) only allows for (local) linear growth in φ , and it can be verified for
many common φ -divergences of interest including the modified χ2-divergence metric and the KL-divergence
metric. Let Et and Pt respectively denote expectation and probability w.r.t. the random set Mt .
Theorem 3 Suppose Assumption 1 and the assumptions of Proposition 1 hold, and further assume that the
loss functions l(·,ξ ) are Lipschitz continuous in θ for all ξ ∈N . Define ηt = c( 1

Mt
− 1

N )
(1−δ )/2 for small

constants c,δ > 0, and set the Dφ -target in (4) to be ρt = ρ +ηt . Then, there exists a small positive M′ of
order o(N) such that, for all Mt ≥M′, the subgradient ∇θ R̂t(θ) and full-gradient ∇θ R(θ) satisfy for any
C < ∞ and 1− τ̄t = O(η

2δ/(1−δ )
t ): Pt(η

−2
t ‖∇θ R̂t(θ)−∇θ R(θ)‖2

2 ≤C)≥ τ̄t .

The proof of this result (sketched below) makes apparent that the squared bias in Theorem 3 actually drops,
via ηt , as a function of the number |Mt | of unique support points in the mini-batch. If Mt support points are
sampled with replacement, the set Mt will have an expected number E|Mt |= 1+1/2+1/3+ . . .=O(logMt)
of unique values, obtained by adding the frequency of additional samples needed to see a new support
sample. Thus, sampling with replacement results in a slow reduction in bias, which motivates the choice
in Alg. 1a of assembling the subset Mt by sampling uniformly without replacement Mt values from the
complete observed dataset.

Sampling without replacement differs from the standard with-replacement approach in the stochastic
optimization literature, even though it is preferred by practitioners in statistical learning. A short comment
on the probability measures Pt generated by sampling finite sets without replacement is in order. Let
{x1, . . . ,xN} be a set of N values with mean µ = 1

N ∑n xn and variance σ2 = 1
N−1 ∑n(xn−µ)2. Suppose we
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sample M < N of these points uniformly without replacement to construct the set M = {X1, . . . ,XM}. The
probability of choosing any particular set of M subsamples is given by

((N−M)!
N!

)
. Let X̄ = 1

M ∑
M
m=1 Xm and

S̄2 = 1
M−1 ∑

M
m=1(Xm− X̄)2 represent the sample mean and sample variance, respectively. The expectation of

the sample mean E[X̄ ] = µ and of the sample variance EM [S̄2] = σ2 are both unbiased; refer to Wilks
(1962). Moreover, the variance of the sample mean is EM [(X̄ − µ)2] =

( 1
M −

1
N

)
σ2, which reduces to

zero as M→ N. Note that this expression relates to the form of ηt in Theorem 3. The complete proof
of Theorem 3, including exact expressions for the corresponding constants such as M′ and τ̄t and their
dependence on the constant C and on the magnitude of ∇θ R(θ), are made explicit in Ghosh et al. (2020).
Proof Sketch of Theorem 3: The proof starts by constructing P̃∗, a restriction of the (unique) optimal
solution P∗ of the full-data version of the inner maximization (4) onto the (random) subset Mt in the restricted
problem (4), where p̃∗m ∝ p∗m, ∀m∈Mt . The assumed minimum number of unique support points M′ ensures
with probability at least τ̄t that p̃∗m 6= 0 and that P̃∗ is also a feasible solution to (4) when ρt is inflated as
assumed. Next, we establish that its objective value is within ηt of the optimum with high probability,
showing that Pt

(
ηt
−1|R̂t(θ)−R(θ)| ≤ c1

)
≥ τ̄t . Proposition 1 provides that ∇θ R(θ) = ∑n∈N ∇θ l(θ ,ξn)p∗n

and our approximation ∇θ R̂t(θ) = ∑m∈Mt ∇θ l(θ ,ξm)p̂m. The mean-value theorem of calculus yields
(∇θ l(θ ,ξn))u =

∂ l(θ ,ξn)
∂θu

= 1
hu,n

(l(θ +hu,neu,ξn)− l(θ ,ξn)), where hu,n is a small positive value that depends on
the component θu and on the sample ξn, with eu the unit-vector in the u-th coordinate. Letting h=minu,n hu,n, we

then have
∣∣(∇θ R̂t(θ)−∇θ R(θ))u

∣∣≤ 1
h

∣∣∣∣[∑n l(θ +hu,neu,ξn)
T (p∗n− p̂n)

]∣∣∣∣+ 1
h

∣∣∣∣[l(θ ,ξn)
T (p∗n− p̂n)

]∣∣∣∣. Using

the Lipschitz assumption on l(·,ξ ) reduces the first term to a term similar to the second. Then, applying
the same arguments as those used in deriving the high-probability bound on Pt

(
ηt
−1|R̂t(θ)−R(θ)| ≤ c1

)
,

when squared and combined over all u, renders the desired final result. 2

In the sequel, we use a corollary of Theorem 3 that follows from Theorem 17.4 in Jacod and Protter (2004).
Corollary 4 If the conditions for Theorem 3 are satisfied, then ‖Et [∇θ R̂t(θ)]−∇θ R(θ)‖2

2 = O(η2
t ).

Thus, the bias in the estimator of the robust loss gradient vanishes only as Mt ↗ N as t→ ∞. Since
fixed bias violates a basic requirement for standard SGD (see Section 4.3 in Bottou et al. (2018)) that
the gradient estimator is bounded above and below as E[∇θ R̂t(θ)] = Θ(∇θ R(θ)), then the convergence of
(2) cannot be guaranteed when Mt = M for all t, where M < N. Namkoong and Duchi (2017) circumvent
this bias issue by only working with the full-data gradient ∇θ R(θ). Levy et al. (2020) and Ghosh and
Squillante (2020) randomize the subset size Mt such that all data have a (small) positive probability of
being included in Mt , doing so in a manner that eliminates this bias at the expense of added variance. In
contrast, Alg. 1 chooses to grow the mini-batch size Mt progressively with t to eliminate such bias. Since
this also provides a decrease in noise as a consequence, it is no longer necessary to diminish the step
size as iterations t grow; indeed, doing so negates the benefits of the extra work in computing gradients
using a larger Mt . Alg. 1 therefore takes fixed-length steps γ . Fixed step-lengths and increasing sample (or
mini-batch) sizes have also been proposed in the context of unbiased gradient estimators to temper the
variance observed in the iterations of standard SGD; see Section 5.1 in Bottou et al. (2018).

2.2 Convergence of Alg. 1

We next analyze the convergence of (2) under the following additional assumptions.
Assumption 2 (i) A lower bound Rinf exists for the robust loss function R(θ)≥ Rinf, ∀θ ∈Θ.
(ii) The variance of ∇R̂t(θ) with subsample size M obeys E[‖∇R̂(θ)−E[∇R̂(θ)]‖2

2]≤C( 1
M −

1
N ).

(iii) The robust loss objective R(θ) has L-Lipschitz gradients ∇θ R(θ).
(iv) The loss functions l(θ ,ξn) are c-strongly convex.

Assumption 2(ii) ensures that the variance of ∇R̂t(θ) follows as expected for sampling without
replacement from any finite set (Wilks 1962). Combining this with the bias (see Corollary 4) will allow us
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to progressively decrease the mean squared error. Since N is finite, any Mt strictly increasing as t grows
will eventually end at an iterate T < ∞ where MT = N. Seen in this light, Alg. 1 is not guaranteed to
converge by the T -th iteration. We can nevertheless provide a guarantee on the performance of the method
over any loss function that satisfies Assumptions 2(i)-(iii).
Theorem 5 Suppose the loss functions satisfy Assumption 2(i)-(iii), and the conditions of Theorem 3 hold.
Further, let the constant step size satisfy γ ≤ 1

2L . Then, at termination, we have

T

∑
t=1
‖∇θ R(θt)‖2

2 ≤
R(θ0)−Rinf

γ

2(2−Lγ)
+ C

Lγ +1
2−Lγ

T

∑
t=1

η
2
t . (5)

Proof Sketch: For any θ and a set Mt sampled to have Mt support points, Theorem 3 and Assumption 2(ii) show
that the mean squared error Et

[
‖∇θ R̂t(θ)−∇θ R(θ)‖2

2
]
= O(η2

t ) since the slower rate of decrease in the bias
prevails. Elementary algebraic manipulations yield the following two implications: Et [‖∇θ R̂t(θ)‖2

2]≤Cη2
t +

‖∇θ R(θ)‖2
2 and −Et [(∇θ R̂t(θ))

T ∇θ R(θ)] ≤ Cη2
t −‖∇θ R(θ)‖2

2−Et [‖∇θ R̂t(θ)‖2
2]. We can therefore

bound the expected robust loss at step (t +1) using (see Ghosh et al. (2020))

Rinf ≤ Et [R(θt+1)]≤ Et [R(θt)]− γEt [∇θ R(θt)
T

∇θ R̂t(θt)]+
Lγ2

2
Et

[
‖∇θ R̂(θt)‖2

2

]
≤ Et [R(θt)]+

Cγη2
t

2
(Lγ +1)− γ

2
(2−Lγ)‖∇θ R(θt)‖2

2. (6)

The desired final result is obtained by rearranging (6) and telescoping back to the initial iterate θ0. 2

Theorem 5 establishes that the sum of the gradients of R(θt) at iterates visited by the algorithm is
bounded above, in particular by ∑

T
t=1(

1
Mt
− 1

N )
(1−δ ). If this summation remains finite as T → ∞, then the

upper bound of (5) remains finite, and hence the gradients ‖∇θ R(θt)‖2
2 at the iterates converge to 0; in other

words, the algorithm converges to a local optimal solution. The summation can converge for Mt increasing
moderately, such as at a polynomial rate. Thus, our algorithm comes substantially close to a local minimizer
in T iterations when the sample set sizes Mt are chosen to satisfy a minimum-growth condition.

Theorem 5 assumes that the robust loss gradient ∇θ R(θ) is Lipschitz continuous (Assumption 2(iii)).
Gradients of such extreme value functions are in general not Lipschitz even if the objective function l(θ ,ξ )
is Lipschitz. For example, a linear objective l(θ ,ξn) = θ tξi leads to R(θ) = maxp ∑i piθ

tξi and when
maximized over a polyhedral constraint set it will not preserve the 0-Lipschitzness of the objective functions,
because the optimal solutions P∗ are picked from the discrete set of vertices of the polyhedron and hence
∇θ R(θ) is piecewise discontinuous. Our Proposition 1 assumptions yield an inner maximization with a
nonzero linear objective over a strictly convex feasible set. The desired smoothness can then be obtained
with some additional conditions on the loss functions l(θ ,ξi). Proposition 6 provides one such condition
where the Lipschitzness of ∇θ R(θ) follows from bounds on the Hessian of the individual losses l(θ ,ξ ).
Proposition 6 Assume the conditions in Proposition 1 hold. Further suppose that the Hessians ∇2

θ
l(θ ,ξn)

exist, ∀θ and each ξn, and are bounded in Frobenius norm ‖∇2
θ

l(θ ,ξn)‖F ≤ L, ∀θ ,n. Then, the robust loss
also follows ‖∇2

θ
R(θ)‖F ≤M for some positive M < ∞.

The proof follows by differentiating the expression for the gradient ∇θ R(θ) in the proof sketch
of Proposition 1, and analyzing each resultant term; refer to Ghosh et al. (2020) for details. Our convergence
analysis can thus hold for l(θ ,ξ ) that are Lipschitz continuous (required by Theorem 3) and possess Lipschitz
gradients, but may otherwise be non-convex. This is often satisfied by common statistical learning losses,
e.g., log-logistic and squared losses of linear models over compact spaces, thus allowing our algorithm to
be used in important cases when l(·,ξn) are non-convex, such as training deep learning models.

A key consideration, given termination at t = T , is then to obtain θT as close as possible to the
minimizer θrob that attains Rinf. The tradeoff in (5) suggests that increasing Mt aggressively will lead to
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smaller gradients at termination, but this will also increase the per-iteration computational cost. We therefore
seek good values for the step-length γ and the sample growth sequence {Mt} that obtain an optimal balance
between the added computational burden of each iteration and the expected reduction in the optimality gap
(as represented by the norm of the gradient of R(θT )). Such analysis requires establishing the rate at which
the deterministic error inherent in the (full-data) optimization problem drops, which is well characterized
for the case of strong-convex loss functions l(θ ,ξ ). This motivates our study of the corresponding tradeoff
in Theorem 7 under Assumption 2(iv), which we will show yields the strong convexity of R(θ). Extending
these results to the convex and non-convex cases are subjects of our ongoing research.

Our notion of efficiency will be developed w.r.t. the total computational effort Wt that is expended
up until iterate t, which is the sum of the amount of individual work ws in each iterate s≤ t. From the
discussion following Proposition 2, we have wt = O(Mt logMt). Define νt := Mt+1/Mt as the growth factor
of the sequence {Mt}, and in this notation T = inf{t : N = M0 ∏

t
s=1 νs}. Our final result below characterizes

the rate at which the expected optimality gap Et+1 := Et [R(θt+1)]−R(θrob) decreases as Mt ↗ N.
Theorem 7 Suppose all the conditions of Theorem 5 are satisfied and Assumption 2(iv) holds. Then the
function R(θ) is c-strongly convex. Further suppose that γ ≤min{ 1

4L ,4c} and let r = 1− γ

4c . We also have:
(i) If Mt = M0ν t with parameter 1 < ν < r−1/(1−δ ), then WtEt+1 ≤ K1tν tδ for t ≤T and a constant K1;
(ii) If Mt = M0ν t with parameter ν ≥ r−1/(1−δ ), then WtEt+1 ≤ K2t(rν)t for t ≤T and a constant K2; and
(iii) If Mt = M0 (∏s νs) where νs↘ 1 as s ↑, then Et+1 = o(W−1

t ).
Recall that δ defines the parameter ηt in Theorem 3. The proof of Theorem 7 in Ghosh et al. (2020)

includes exact expressions for the constants such as K1,K2. It starts by establishing under the stated
assumptions that if the full batch-gradient method is applied in each iteration (Mt = N), then a strongly-convex
objective R would enjoy a linear (i.e., constant factor) reduction of size r in the error R(θt)−R(θrob) for
a step-size γ chosen to satisfy the conditions of Theorem 7. The average optimality gap can be written,
like (5), as a sum of this deterministic error and an additional term representing the stochastic error induced
by the subsampling of the support, all expressed in terms of γ , νs and the other parameters of the algorithm.

Theorem 7 considers two important cases of subsample support size growth. The first two parts consider
constant-factor growth with νt = ν > 1, ∀t, namely geometric or exponential growth of the sample size,
with T = log(N/M0)/ logν total iterations. They show that constant factor sequences can attain a good
trade off between the rate of reduction in stochastic error and the drop in deterministic error. Specifically,
parameter values ν ∈ (1,r−1/(1−δ )) in Theorem 7(i) produce the best balance between the optimality gap
Et+1 and the computational effort Wt , with the upper bound on their product growing at the slowest of
the three cases at a near-linear rate w.r.t. the iteration count t (recall δ is arbitrarily small). In contrast, if
ν ≥ r−1/(1−δ ) in Theorem 7(ii), the deterministic error now drops slower than the stochastic error, and such
that the product Et+1Wt escapes to infinity at a geometric rate w.r.t. t which increases with ν . Thus, a small
growth-factor geometrically increasing sample size sequence may yield the best performance. However,
since the parameter r depends on c and L, the growth-factor bound is difficult to identify in practice.

Theorem 7(iii) studies slowly growing sequences where the growth factors νt are diminishing with
νt ↘ 1 as t ↑, e.g., the polynomial growth of νt = 1+ 1

t , leading to a much larger number T of iterations.
The result establishes that any diminishing-factor growth of Mt will lead to the stochastic error decreasing
to zero much slower than the geometric drop in the deterministic error. Consequently, the optimality gap
Et+1 reduces suboptimally w.r.t. the total computational effort Wt .

3 EXPERIMENTAL RESULTS

Numerous experiments were conducted to empirically evaluate our progressively sampled subgradient
descent (Progressive) Algorithm 1 in solving the DRO formulation (1) against the full-support gradient
(Full-grad.) algorithm of Namkoong and Duchi (2017) and the multi-level Monte Carlo (Giles) algorithm
of Levy et al. (2020) and Ghosh and Squillante (2020). We also consider in Fig. 1(center) the standard SGD
(fixed minibatch Mt = M) method to gauge the impact of the bias shown in Theorem 3. To summarize, these
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experiments support our theoretical results and show that Progressive produces equal or better performance
than all the methods considered herein with significantly less computational effort, orders of magnitude less
effort in many cases, without the burdensome fine tuning of parameters required by these other methods.
Binary Classification Formulation. We compare the algorithms over statistically training binary classification
models that seek to correctly determine the class y = ±1 of any input data point x with d features.
Following Namkoong and Duchi (2017), all examples use a logistic binary classification loss l(θ ,(x,y)) =
log(1+ exp(−yθ tx)), where the training samples ξ consists of (x,y) pairs. Our experimental results are
based on 8 publicly available binary classification datasets (listed in Table 1) that were obtained from
UCI∗ (Dua, D. and C. Graff 2017), OpenML† (Feurer et al. 2019), and SKLearn‡ (Lewis et al. 2004) with
sizes ranging from O(102) to O(106). For instance, the HIV-1 Protease Cleavage dataset (hiv1) predicts
whether the HIV-1 protease will cleave a protein sequence in its central position (y = 1) or not (y =−1). This
dataset has N = 5830 samples of d = 160 feature vectors, of which 991 are cleaved and 4839 non-cleaved.

Table 1: Comparison of the DRO methods and regularized ERM over 8 publicly available datasets.

Dataset √
d
N

Test Misclassified (%) CPU Time (secs)
Full-grad. Giles Progressive ERM Full-grad. Giles Progressive ERM

adult∗ 0.051 17.1±0.0 16.7±0.1 16.6±0.1 16.7±0.1 45 214 36 2542
gina prior† 0.475 13.7±0.4 14.3±1.0 12.7±0.3 14.6±0.7 34 38 31 1147
hiv1∗ 0.166 5.9±0.1 6.3±0.2 5.8±0.0 6.1±0.1 41 45 35 1012
IMDB.drama† 0.091 36.1±0.1 37.0±0.1 36.2±0.0 36.2±0.1 176 865 89 19436
la1s.wc† 2.029 9.3±0.0 8.3±0.3 8.2±0.1 9.0±0.1 17 47 12 2456
OVA Breast† 2.660 3.2±0.1 3.8±0.4 3.0±0.1 3.4±0.2 140 23 37 4310
rcv1‡ 0.242 5.7±0.0 5.3±0.0 5.1±0.0 6.3±0.0 2628 1271 543 701843
riccardo† 0.463 4.9±0.1 2.0±0.1 1.5±0.1 1.7±0.1 259 201 120 86575

The uncertainty radius ρ for the set of measures P forms a key paremeter in (1). Blanchet et al. (2019)
and Namkoong and Duchi (2017) provide as a broad guideline that ρ = O(

√
d/N) for binary classification

with logistic models. Table 1 includes the quantity
√

d/N for each dataset. The experiments are therefore
based on setting ρ to be the same order of magnitude as

√
d/N for all DRO methods.

In statistical learning, a practical heuristic to improve the classification performance of ERM-fitted
models on unseen data (namely, generalization) is regularization, where the ERM loss objective is augmented
with a penalty term λ‖θ‖2

2 and a fixed-batch SGD (size 10) is used to solve the formulation. An appropriate
value for the penalty coefficient λ may sufficiently regularize the chosen optimal model parameter to improve
generalization. However, no clear theory exists that guides the choice of a value for λ , and in practice
a heuristic called k-fold CV is used (Stone 1974). We therefore consider the 10-fold CV procedure that
partitions the full training dataset into 10 equal parts and trains a regularized model over each dataset formed
by holding out one part as the validation dataset. An enumeration over λ of the average misclassification
performance of each of the 10 models on the held-out validation data is used to determine the best λ .
Discussion of Results. Table 1 presents a comparison across the 8 datasets of the test misclassification
produced by the DRO and the regularized ERM algorithms at termination. (The parameter settings for
each algorithm are detailed below.) The 95% CIs are calculated over 10 permutations of the datasets into
training (80%) and testing (20%) sets, where every algorithm elicits a model over the training data for
each permutation, which is subsequently scored with the percentage of data misclassified by the model on
the testing set, presented in the middle columns of Table 1. For each dataset, the method that produces
generalization error (within the specified CIs) that is clearly better than the rest is highlighted in bold. The
rightmost columns in Table 1 provide the average CPU time in seconds over the 10 permutations.



Ghosh, Squillante, and Wollega

Among the DRO methods, Progressive takes the least time to solve the problem for all datasets (with
one exception) while providing the same or better quality of performance. As expected, Full-grad. takes
more time to solve the problem than Progressive for all datasets. Giles takes more time to solve the problem
than Progressive, by an order of magnitude in several cases, for all but the OVA Breast dataset. These longer
computation times are due in large part to the added variability experienced by the Giles method arising
from the Monte Carlo randomization. This added variability is also evident in the consistently wider CIs of
the misclassification errors for Giles, as well as in the wider range of CPU times with an isolated case
terminating the fastest (OVA breast) and several cases terminating the slowest among the DRO methods.

We also observe from the table that at least one DRO method – always including Progressive – produces
models of equal or better quality as the regularized ERM formulation for all datasets, with Progressive
providing a significant improvement over ERM in 6 of the 8 cases. Recall that the DRO methods provide
this level of performance by solving a single instance of the DRO formulation (1), hence avoiding the
burdensome 10-fold CV enumeration. The average time taken by the ERM 10-fold regularization in solving
its formulation multiple times to identify the best regularization parameter λ exceeds that taken on average
to solve the DRO formulation by 1 to 2 orders of magnitude. The DRO methods thus gain significant
computational savings by eliminating the expensive hyper-parameter tuning step.

Figure 1(left) presents comparisons of the empirical DRO runs over time, where the sample paths of
all 10 runs for each method are plotted along with their average shown in bold. The binary classification
formulation is being solved for riccardo with ρ = 0.1, as per the

√
d/N recommendation. The sample

paths for Progressive (green) exhibit relatively low variability overall with fast initial reductions in R̂(θ)
leading to quicker convergence. In strong contrast, Giles (purple) exhibit much higher variability across the
iterations, and are computationally more expensive due to the multiple inner maximizations solved in each
iteration. Although Full-grad. (red) also exhibits low variability, it is more expensive computationally.

Figure 1: (left) Comparison of Progressive (green), Full-grad. (red), Giles (purple) on robust loss estimate
R̂(θ) (log-scale y-axis) vs. cumulative CPU time (log-scale x-axis) over riccardo for ρ = 0.1; (center)
Comparison of Progressive (blue) and plain SGD (red) on percentage of misclassification vs. fixed minibatch
sizes Mt = M in testing over rcv1; (right) Comparison of Full-grad. (green) and Progressive on fraction of
misclassification vs. cumulative CPU time (log-scale x-axis) over rcv1 for ν = 1.001 and various γ .

Theorem 3 has important implications for DRO solvers, providing the relationship between the bias
suffered by a fixed batch size SGD (Mt = M) method in solving (1) and the batch size M. The important
impact of this bias is illustrated by Fig. 1(center), for the dataset rcv1. The test misclassification results for
the standard SGD method at termination exhibits for small mini-batch sizes significant bias in comparison
to Progressive, with the bias vanishing only as Mt → 100. Recall that this bias arises because a small
fixed subsample size in each iteration can easily miss those elements ξ of the training dataset that suffer
from high loss l(θt ,ξ ) at the current iterate θt , hence yielding an optimistic estimate of the robust loss
R(θt) and prematurely terminating the search for a robust solution to (1). Under a small growth factor of
ν = 1.001, Progressive iterations initially enjoy the benefits of fast objective value reduction similar to
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standard SGD, but then eventually eliminates the introduced bias. Progressive therefore avoids the expense
of the hyper-parameter tuning of the batch size of standard SGD for bias reduction.

Broadly, one expects the Progressive parameters of sample size growth factor ν and step length γ to
impact its performance. (Theorem 7 establishes a bound on them for the iterates to converge geometrically
with computational effort.) For the rcv1 dataset, Figure 1(right) contrasts the average test misclassification
performance over cumulative CPU time (secs) for Progressive while keeping ν = 1.001 fixed and varying
γ ; in addition, the figure provides the Full-grad. method (green). Although γ has some effect, these results
show that Progressive is relatively insensitive to the chosen step length beyond γ = 0.75. Analogous results
in Ghosh et al. (2020) show that Progressive is also insensitive to ν for values smaller than 1.001.
Algorithm Parameters. All of the algorithms sampled the initial θ0 uniformly from the hypercube [−1,1]d .
Each DRO algorithm solved the inner-maximization formulation to within ε-accuracy where ε = 10−7. The
methods assemble and monitor the (robust or ERM) loss objective estimate and stop if the loss does not
improve more than 1% in comparison with the average of the previous 10 such evaluations. All experiments
were implemented in Python 3.7 and run on a 16-core 2.6GHz Intel Xeon processor with 128GB memory.

The Progressive DRO Algorithm 1 uses a geometrically growing sample size sequence with initial
sample size M0 = 1 and constant-growth factor ν = 1.001, along with fixed step length γ = 0.75 in (2).
The γ is chosen as per the results of Fig. 1(right), and ν is fixed based on analogous results in Ghosh et al.
(2020). Although the parameter δ appears prominently in the inflation of ρ to individual ρt (Theorem 3), δ

only needs to be a small positive constant; since the results are not sensitive to δ , we set δ = 0.01. The
Full-grad. DRO algorithm determines step lengths of each iteration using the LBFGS-B algorithm with a
maximum of 0.5, which our experiments over many datasets show to be the best choice. The Giles DRO
algorithm uses the geometric Giles randomizer to determine mini-batch sizes with a minimum size of 5,
chosen after careful study over multiple datasets, and a stepsize sequence of γt = 0.5∗ (5000/(5000+ t))
(replacing γ in (2)) for all experiments. We refer to Ghosh et al. (2020) for additional plots and tables of
such experimental results, as well as complex interactions with the DRO parameter ρ .

The Regularized ERM algorithm finds the optimal λ by enumerating average misclassification performance
over the 10 held-out validation datasets on a grid of 20 points in the range [10−6,106], starting with 106 and
backtracking until the performance does not improve for 3 λ enumerations. Note that the computational
benefits of Progressive would be even larger if all λ values over all grid points were enumerated.
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