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ABSTRACT

Using Monte Carlo simulation, this paper proposes a new estimator for the gradient of the first moment of
project completion time. Combining the new stochastic gradient estimator with a Taylor series approximation,
a functional estimation procedure for activity criticality and expected project completion time is proposed
and applied to optimization problems involving time-cost tradeoffs.

1 INTRODUCTION

Stochastic activity networks have been widely used in project management and digital circuit design (Kim
et al. 2007). A stochastic activity network (SAN) is a directed acyclic graph with arcs representing activities
and the direction of arcs representing the precedence relationships between different activities. For example,
all arcs whose tail node is i have to be completed in order for the directed arc with head node i to start.
The lengths of arcs represent the length of the time for completing the activities and are assumed to be
independent random variables with known cumulative distribution function Fi(x) and distribution parameter
θi. In a SAN, a path is a route starting from the source node and ending at the sink node. The length of a
path is the sum of the lengths of all arcs on the path. The path with the longest length is called the critical
path. The length of the critical path represents the project completion time, which is of interest to project
managers and is to be minimized.

Much of existing research focuses on estimating the distribution and expectation of the total project
completion time (Sigal et al. 1979) and their stochastic gradient estimators (Bowman 1994; Fu 2006),
the criticality index of paths (Sigal et al. 1979; Bowman 1994), the criticality index of arcs (Bowman
1995) and their stochastic gradients (Wan and Fu 2020). Cho and Yum (2004) proposed applying logistic
regression to have a functional fit of the arc criticality curve and showed that their approach underestimates
the change of expected project completion time compared with direct Monte Carlo simulation. Bowman
(1994) proposed a time-cost tradeoff optimization problem in PERT networks and provided a heuristic
algorithm based on a stochastic gradient of the expectation of project completion time.

In this paper, we present a new Taylor series approximation approach to fit the arc criticality curve
and illustrate using simulation experiments how our approach improves upon Cho and Yum (2004) and
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direct Monte Carlo simulation. Also, we will provide a new heuristic algorithm for the time-cost tradeoff
optimization problem using the functional criticality curve estimation.

In section 2, we present the notation and problem setting. In section 3, the Threshold Arc Criticality
(TAC) estimator and its higher order gradient estimators are presented. In section 4, the IPA gradient
estimators for expected project completion time are presented. In section 5, applications of the gradient
estimators to the time-cost tradeoff optimization problem are presented. Section 6 describes the simulation
experiments and results. Section 7 contains conclusions and future research.

2 PROBLEM SETTING AND NOTATION

Assume the stochastic network has m arcs and n nodes. In the stochastic activity network, the completion
times of different tasks are assumed to be independent with known distributions. We also assume throughout
that the critical path denotes the path with the longest length. We define:

Xi = length of arc i (with realizations xi);{Xi}m
i=1 are assumed independent,

P∗ = set of arcs on the critical path,

T = T (X1, ...,Xm) = ∑
j∈P∗

X j,

∆iE[T ](δ ) = E[T ]
∣∣∣
µi=µ

−E[T ]
∣∣∣
µi=µ−δ

,

Fi(x) = Pr(Xi ≤ x) = probability distribution function for the length of arc i,

θi = parameter in Fi; in this paper, only consider θi = µi = E[Xi] throughout,

F̄i(x) = 1−Fi(x),

fi(x) = probability density function for arc i,

Ca(i) = Pr{arc i is on the critical path} = criticality of arc i,

Ca(i|·) = Pr{arc i is on the critical path|·},
Ci(x) =Ca(i)|µi=x,

P = set of all paths,Pi = {P ∈P|i ∈ P} = set of paths containing arc i,

Pi− = {P ∈P|i /∈ P} = set of paths not containing arc i,

‖ · ‖ is an operator that calculates the length of the longest path for a given set of paths,

‖ · ‖i is an operator that calculates the length of the longest path for a given set of paths

under the condition that arc i has length 0,

|P|= number of elements in set P,

Ri = |Pi|/|P|= fraction of all paths containing arc i,

|P|= length of path P,

P∗ = argmax |P|
P∈P

= set of arcs on the longest path corresponding to path set P,

To illustrate the notation, the example in Figure 1 depicts a stochastic network with 4 nodes and 5 arcs,
where each node represents an activity in a project and each arc represents the length of the time required
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Figure 1: A small stochastic network.

to complete an activity. Then,

P = {(1,3,5),(2,5),(1,4)}
R2 = 1/3

3 STOCHASTIC GRADIENTS OF ARC CRITICALITIES

3.1 Threshold Arc Criticalities

Wan and Fu (2020) proposed a new arc criticality estimator called the Threshold Arc Criticality (TAC)
estimator, by conditioning on all arc lengths except for the arc of interest.

The TAC estimator is derived by conditioning:

Ca(i) = E[E[I{arc i is on critical path}|X j, j 6= i]]

=
∫
· · ·
∫

Rm−1

Ca(i|X j = x j,1≤ j ≤ m, j 6= i)×
m

∏
j=1
j 6=i

f j(x j)dx j

=
∫
· · ·
∫

Rm−1

Pr(Xi ≥ mi)×
m

∏
j=1
j 6=i

f j(x j)dx j (1)

where mi is given by:
mi = max(‖Pi−‖−‖Pi‖i,0)

and the TAC estimator is given by:
Pr(Xi ≥ mi).

3.2 Stochastic Gradient of TAC

Assuming the distribution function of the length of activity i is n-times differentiable and the regularity
conditions to exchange derivative with integration are satisfied, then we have:

∂ nCa(i)
∂θ n

i
=
∫
· · ·
∫

Rm−1

dn Pr(Xi ≥ mi)

dθ n
i

×
m

∏
j=1
j 6=i

f j(x j)dx j,

and the IPA stochastic gradient estimator for ∂ nCa(i)
∂θ n

i
is given by:

dn Pr(Xi ≥ mi)

dθ n
i

. (2)
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4 STOCHASTIC GRADIENTS OF PROJECT COMPLETION TIMES

4.1 Stochastic Gradient of First Moment of Project Completion Time

In this section, our goal is to estimate ∂E[T ]
∂θi

. Bowman (1994) proposed a conditional IPA stochastic gradient

estimator for ∂E[T ]
∂θi

, conditioning on node release times. Here, we present a new IPA estimator conditioned
on all arc lengths except for arc i (Fu 2006):

∂E[T ]
∂θi

= E
[
I(i ∈ P∗)

∂Xi(θi)

∂θi

]
= E

[
E
[
I(i ∈ P∗)

∂Xi(θi)

∂θi

∣∣∣X j, j 6= i
]]
.

From Fu (2006) we have for θ being a location parameter ∂Xi(θi)
∂θi

= 1 and for θ being a scale parameter
∂Xi(θi)

∂θi
= Xi

θi
. Thus we have the conditional IPA estimator for ∂E[T ]

∂ µi
given by,

E
[
I{i ∈ P∗}∂Xi

∂θi

∣∣∣X j, j 6= i
]
=

{
Pr(Xi ≥ mi),θi is a location parameter
1
θi

∫ +∞

mi
x fi(x)dx,θi is a scale parameter

For most commonly used distributions, we can derive an analytical form of 1
θi

∫ +∞

mi
x fi(x)dx. For

example, if arc i’s length is exponentially distributed with mean duration µi, then we have:

1
µi

∫ +∞

mi

x fi(x)dx =
1
µi
(1+mi)e

−mi
µ ,

which is the conditional IPA estimator for ∂E[T ]
∂ µi

.
Similarly, assuming Fi(x) ∈ Cn (n-times continuously differentiable), we have the conditional IPA

estimator for ∂ nE[T ]
∂ µn

i
given by, 

dn−1 Pr(Xi≥mi)

dθ
n−1
i

,θi is a location parameter

1
θi

dn−1 ∫+∞

mi
x fi(x)dx

dθ
n−1
i

,θi is a scale parameter

5 APPLICATIONS

5.1 Estimating the Change of Expected Project Completion Time

Cho and Yum (2004) claimed that ∂E(T )
∂ µi

cannot serve as an accurate estimate for change in E(T ) due to
a discrete change in the mean duration of activity i, µi. For example, in Figure 1, if the original value of
activity 2’s mean duration µ2 is 25, then using ∂E(T )

∂ µ2
to estimate the amount of change of E(T ) when µ2

is decreased by 5, keeping all the other activity mean durations unchanged, is not accurate.
The goal is to estimate:

∆iE[T ](δ ) = E[T ]
∣∣∣
µi=µ

−E[T ]
∣∣∣
µi=µ−δ

, for δ ≥ 0.

Cho and Yum (2004) consider:

∆iE[T ](δ ) =
∫

µ

µ−δ

Ci(x)dx. (3)
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where Ci(x) is a function with input of arc i’s mean duration and output of criticality index of arc i. In
Cho and Yum (2004), it is assumed that all activities are normally distributed and the parameter of interest
is the mean duration of activity i. An explanation of equation (3) is given by:

∆iE[T ](δ ) = E[T ]
∣∣∣
µi=µ

−E[T ]
∣∣∣
µi=µ−δ

=
∫

µ

µ−δ

∂E[T ]
∂ µi

dx =
∫

µ

µ−δ

Ci(x)dx. (4)

Equation (4) follows from the mean duration µi being a location parameter for normal distributions, and
Bowman (1994) proved that for location parameters, ∂E[T ]

∂ µi
=Ci(x). Then, to find a functional approximation

of Ci(x), Cho and Yum (2004) proposed using logistic regression to fit Ci(x), because Ci(x) is a S shaped
curve. Numerical experiments indicated that their logit fitting approach underestimates ∆iE[T ](δ ) when
σi/µi is large, where µi and σi are the mean and standard deviation of normally distributed Xi.

We propose using a Taylor series approximation to fit Ci(x) locally, assuming Fi(x) is N-times contin-
uously differentiable,

Ci(x)≈
N

∑
k=0

1
k!

C(k)
i (µ)(x−µ)k. (5)

where C(k)
i (µ) is the kth order derivative of function Ci(x) at activity i’s original mean duration µ , which

can be estimated using the IPA estimator in Equation (2). As for the case θi is a scale parameter rather
than a location parameter, we have the expectation version of Equation (5) given by:

∂E[T ]
∂θi

≈
N

∑
k=0

1
k!

∂ kE[T ]
∂θ k

i
(θ)(x−θ)k. (6)

In Cho and Yum (2004), they also claimed that using direct Monte Carlo simulation (MCS) to fit a
logistic regression requires several thousands of runs to estimate Ci(x) at different x values. Hence, they
proposed using Taguchi Orthogonal Array experiment to reduce the number of simulation replications.
Using the TAC estimator, we can solve this issue with an easy and efficient approach. Since mi in Equation
(1) does not depend on Xi, and therefore not on µi, no new simulation replications are needed for estimating
Ci(x) at a new x value.

5.2 Estimating the Criticality Curve

As mentioned in section 5.1, in order to fit a logistic regression model for Ci(x), we need to estimate
the Ca(i) value when the mean duration of activity i takes different discrete values while the parameters
of other arc length remain unchanged. For estimating arc criticality using the TAC estimator, calculating
the threshold mi is important. The following algorithm presents an efficient way of calculating the TAC
threshold for one activity of interest.

1. Initialization : Specify the arc index i of interest, distribution parameters of all arc lengths {θi}.
2. Simulate all arc lengths.
3. Select the activity j that has the largest simulated arc length x j and D←mx j, (m is the number of

arcs in the network).
4. µi←−D.
5. Calculate the project completion time T .
6. T 0← T .
7. µi← D.
8. Calculate the project completion time T .
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9. T 1← T .
10. Calculate the threshold Mi, Mi←max(T 0− (T 1−D),0).

The above algorithm efficiently estimates the criticality index of a fixed arc. If we are interested in
estimating the criticality index of all arcs in the network at the same time, the above algorithm is not
computationally efficient. Instead, we need to calculate the lengths of all paths at each simulation replication.
In the case of estimating the criticality curve using TAC, the above algorithm is helpful. Suppose we are
interested in estimating the criticality curve at 10 different values. The following algorithm explains the
advantage of the TAC estimator:

1. Simulate all arc lengths.
2. Calculate threshold mi.
3. Calculate estimator for Ci(x), EST ← F̄i(mi).

When estimating Ci(x) at different x values, steps 1 and 2 only need to be run once, and for different
x values, redo step 3 with the distribution parameter of Fi(x) changed. This property is called Sample
Performance Invariance (SPI), because estimating the gradient at different parameter values does not depend
on simulated samples. This property is advantageous for all measure-based gradient estimation methods,
such as the Likelihood Ratio (LR) method and the weak derivatives method. Sample path-based gradient
estimation methods such as IPA do not generally possess this property, but for the TAC estimator, the IPA
estimator also possesses the SPI property, so we can estimate the function of Ci(x) more efficiently.

5.3 Optimization of Time-Cost Tradeoffs

Bowman (1994) formulated a nonlinear programming problem called the time-cost tradeoff optimization
problem, where the objective function is the expected completion time of a stochastic activity network.
The cost of reducing one unit of mean duration of activity i is ai, and the total budget is B. The upper
and lower bounds of the mean duration of activity i are given by ui and li, i.e., li ≤ µi ≤ ui. Assume
∑i ai(ui− li)> B and there are m arcs in the activity network. Then we have an optimization problem with
nonlinear objective function and linear constraints given by:

min E(T )

s.t.
m

∑
i=1

aiYi ≤ B

Yi ≤ ui− li, ∀i ∈ {1, ...,m}
−Yi ≤ 0, ∀i ∈ {1, ...,m}

where Yi is the amount of decreasing of µi and T is the project total completion time. In Bowman (1994),
they derived a heuristic algorithm for finding the local optimum solution satisfying the local KKT condition
(Boyd and Vandenberghe 2004). The heuristic algorithm proposed in Bowman (1994) has two stages: in
stage 1, at each step, the algorithm decreases the mean duration time of the activity that has the largest
∂E(T )

∂ µi
/ai by βB/ai, where β is the fraction of budget to be used, e.g., β = 0.01; in stage 2, the algorithm

redistributes the budget so that the solution is close to the KKT condition solution. Bowman (1994) also
claimed that the necessary and sufficient condition for a solution to be local optimal is that for all activities
such that li < µi < ui,

∂E(T )
∂ µi

/ai are all equal.
Using the proposed Taylor series approximation method in section 5.1, we propose a new heuristic

algorithm called the Knapsack Ratio (KR) algorithm for solving the time-cost tradeoff optimization problem.
In the following algorithm, µ0

i stands for the original mean duration of activity i. The KR algorithm is
given below:
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1. Input: N, α , t.
2. Evaluate the criticality index of all activities based on N simulation replications. Find the set of

activities G such that all arcs in G have estimated criticality index Ca(i)≥ t.
3. Set δi = α ∗(µ0

i − li), evaluate the value ∆iE(T )(δi)
δi

/ai for all activities in set G based on N additional
simulation replications.

4. Select the activity i that maximizes ∆iE(T )(δi)
δi

/ai.
5. θi← θi−min(aiδi,B)/ai.
6. B← B−min(aiδi,B).
7. If B > 0, go to step 3. Else, stop.

Our algorithm assumes that at each step, a chosen activity’s mean duration will be decreased by a fixed
amount. The optimal solution of the optimization problem is approximated by the optimal solution of a
knapsack integer programming problem when α is small enough, e.g., α = 0.01. ∆iE(T )(δi) is estimated
using the Taylor series approximation method proposed in section 5.1, and direct Monte Carlo simulation
with common random numbers (DMCCR) is applied for the estimation in step 3.

6 SIMULATION EXPERIMENTS

In this section, stochastic activity networks with fixed numbers of nodes and arcs are randomly generated
using the algorithm presented in Demeulemeester et al. (1993). All arc lengths in the randomly generated
network are either normally distributed or exponentially distributed. For normally distributed activities, their
mean durations are generated uniformly between 0.5 and 50, and their standard deviations are generated
uniformly between 0.1 and 1 times their mean durations. For exponentially distributed activities, their
mean durations are generated uniformly between 0.5 and 50.

For following experiments, we will use direct Monte Carlo simulation with common random numbers
(DMCCR). Suppose we use Monte Carlo simulation with N simulation replications to estimate E(T ) or
Ca(i) when a stochastic network and all activities’ distribution parameters are given. Then one of the
activity’s distribution parameter θi is changed and we need to re-estimate performance functions like E(T )
and Ca(i). Instead of simulating all activities’ lengths again, DMCCR only re-simulates activity i’s length N
times and replaces the old simulated Xi values while keeping all other simulated X j, j 6= i, values unchanged.
DMCCR can save computational time and reduce variance when only a small set of activities’ parameters
are changed.

6.1 Estimation of Criticality Curves

With the number of arcs and number of nodes fixed, a random network with all arcs independently distributed
is generated. The criticality index of a given activity i is mainly affected by two factors: the number of
paths that includes activity i and the mean duration of activity i. In extreme cases, if activity i is on all
paths, then Ci(x) = 1,∀x, and if the mean duration of activity i is sufficiently large, then Ca(i) is very close
to 1. For activities with very small criticality index values, we are less interested in fitting their criticality
curves, because decreasing their mean duration has negligible effect on the expected project completion
time. For activities that are on most of the paths, we are also less interested in fitting their criticality curves,
because changes in their mean duration has negligible effect on their criticality indexes. Therefore, for
each SAN, we randomly choose an activity i such that Ca(i)> 0.5 and Ri < 0.6.

After the network structure and distribution parameters are randomly generated, and the arc of interest
is chosen, for a chosen arc i with original mean duration µ , 30 mean duration values ranging from 0.1µ

to 1.5µ with stepsize 1.4µ/30 are considered. For each mean duration value x, N = 1000 simulation
replications are run for estimating Ci(x) and its corresponding sample standard deviation is computed. The
mean of the sample standard deviations across the 30 different x values is also calculated, called the Mean
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Standard Deviation (MSD). To compare the TAC and CAC estimators (Bowman 1995), ratios of their MSD
and computation time are computed.

The algorithms in section 5.2 are used for the TAC estimator, and DMCCR is applied for estimating
the CAC estimator. From Table 1, we can see that the variance performance of the TAC estimator and the
CAC estimator in estimating the criticality curve for both normally distributed and exponentially distributed
activity times are close to each other. From Table 2, we can see that the computational time for the CAC
estimator is about 100 times that of using the TAC estimator. Thus, considering variance performance and
computing speed, the TAC estimator is preferred over the CAC estimator in estimating the criticality curve.

Table 1: Criticality Curve Estimation MSD Ratio of CAC/TAC

Network Size

30 Nodes 50 Nodes 100 Nodes

Arc Distributions 60 Arcs 90 Arcs 100 Arcs 150 Arcs 200 Arcs 300 Arcs

Normal 1.4 1.15 0.89 1.39 1.16 1.42
Exponential 0.93 0.85 0.87 0.86 0.9 1.02

Table 2: Criticality Curve Estimation Time Ratio of CAC/TAC

Network Size

30 Nodes 50 Nodes 100 Nodes

Arc Distributions 60 Arcs 90 Arcs 100 Arcs 150 Arcs 200 Arcs 300 Arcs

Normal 73.8 93.1 95.9 123.7 108.0 126.7
Exponential 88.2 102.6 85.9 96.9 86.2 90.1

Figure 2 depicts a representative criticality curve plot of a chosen activity i in a randomly generated
SAN with normally distributed activities of size 20 nodes and 50 arcs, where 30 different criticality values
are obtained using the same method as in the experiments in Tables 1 - 2. For logit curve fitting, we first
do a logistic regression on 30 sample points estimated by the TAC estimator and have the estimation for
coefficients of the Logit function, then plot the curve of the Logit function. For TAC and CAC, we first
estimate 30 different criticality values, then join the 30 points with a smooth curve. Figure 2 indicates that
the Logit curve fit of the criticality curve deviates from the other two, especially for lower values of µi.

Figure 2: Criticality Curve of Normally Distributed SAN with 20 Nodes and 50 Arcs.
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6.2 Estimation of Change of Mean Completion Time

We consider three approaches for estimating ∆iE[T ](δ ): direct Monte Carlo simulation with common
random numbers (DMCCR); Logit model approximation (LGT); Taylor series approximation (TSA). The
experiment first generates a random network with given numbers of arcs and nodes, and then chooses an
activity as in section 6.1, i.e., an activity i such that Ca(i)> 0.5 and Ri < 0.6. In the following experiments,
δ = αµ , where µ is the original mean duration of the activity of interest and α takes two values: α = 10%
and α = 20%. For the TSA method, N = 3 in Equation (5). For each method, N = 1000 simulation
replications are run for estimating ∆iE[T ](δ ) once. For each methods and network, ∆iE[T ](δ ) is estimated
100 times to compute the sample mean and sample standard error.

In Tables 3 - 6, the first three rows are the 95% confidence intervals (C.I.) of the three methods on
the 100 macro replications. And the last three rows are the total computation time of the three methods.
For each column, an activity network with given number of nodes, number of arcs, and arc distributions is
first generated. From Tables 3 - 6 we can conclude that both TSA and LGT method have better variance
performance than the DMCCR method. The variance performance of TSA and LGT are indistinguishable.
In Tables 3 - 4, all three methods have close estimated mean values. But in Tables 5 - 6, LGT underestimates
∆iE(T )(δ ), as is mentioned in Cho and Yum (2004). As for computing speed, TSA and DMCCR are
faster than LGT, and TSA and DMCCR have similar computing speed. In conclusion, in terms of variance
performance and computing speed, the TSA method is the best among all three different methods.

Table 3: Normal Distribution Mean Completion Time with 10% Change (95% C.I. based on 100 Macro
Replications)

Network Size

30 Nodes 50 Nodes 100 Nodes

60 Arcs 90 Arcs 100 Arcs 150 Arcs 200 Arcs 300 Arcs

TSA C.I. 2.22 ± 0.006 3.85 ± 0.006 4.15 ± 0.004 3.39 ± 0.004 4.77 ± 0.004 3.52 ± 0.006
LGT C.I. 2.22 ± 0.006 3.86 ± 0.006 4.15 ± 0.004 3.4 ± 0.004 4.78 ± 0.004 3.52 ± 0.006
DMCCR C.I. 2.19 ± 0.19 3.91 ± 0.22 4.25 ± 0.18 3.35 ± 0.27 4.82 ± 0.16 3.68 ± 0.24
TSA Time 132 133 287 287 921 930
LGT Time 320 320 469 471 1087 1097
DMCCR Time 121 122 276 274 906 909

Table 4: Normal Distribution Mean Completion Time with 20% Change (95% C.I. based on 100 Macro
Replications)

Network Size

30 Nodes 50 Nodes 100 Nodes

60 Arcs 90 Arcs 100 Arcs 150 Arcs 200 Arcs 300 Arcs

TSA C.I. 4.25 ± 0.01 7.6 ± 0.014 8.27 ± 0.01 6.74 ± 0.006 9.5 ± 0.008 6.98 ± 0.01
LGT C.I. 4.24 ± 0.01 7.63 ± 0.014 8.28 ± 0.01 6.75 ± 0.006 9.52 ± 0.008 6.99 ± 0.01
DMCCR C.I. 4.36 ± 0.19 7.78 ± 0.24 8.31 ± 0.18 6.77 ± 0.31 9.5 ± 0.16 7.11 ± 0.19
TSA Time 127 125 276 280 900 904
LGT Time 304 302 451 461 1068 1073
DMCCR Time 115 115 266 268 889 893

6.3 Optimization of Time-Cost Tradeoffs

In this section, the DMCCR is not applied, i.e., whenever µi is changed, all arc lengths are re-simulated.
The DMCCR is not applied here for two reasons: (1) the number of simulation replications N = 1000 is
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Table 5: Exponential Distribution Mean Completion Time with 10% Change (95% C.I. based on 100
Macro Replications)

Network Size

30 Nodes 50 Nodes 100 Nodes

60 Arcs 90 Arcs 100 Arcs 150 Arcs 200 Arcs 300 Arcs

TSA C.I. 2.42 ± 0.008 3.73 ± 0.008 4.05 ± 0.006 2.88 ± 0.008 4.63 ± 0.006 3.0 ± 0.004
LGT C.I. 1.28 ± 0.008 3.19 ± 0.01 3.81 ± 0.008 2.41 ± 0.008 4.3 ± 0.008 2.46 ± 0.01
DMCCR C.I. 2.6 ± 0.26 3.66 ± 0.34 3.95 ± 0.36 2.96 ± 0.29 4.34 ± 0.34 3.09 ± 0.27
TSA Time 119 121 273 276 908 915
LGT Time 126 127 280 283 914 918
DMCCR Time 117 119 271 273 905 916

Table 6: Exponential Distribution Mean Completion Time with 20% Change (95% C.I. based on 100
Macro Replications)

Network Size

30 Nodes 50 Nodes 100 Nodes

60 Arcs 90 Arcs 100 Arcs 150 Arcs 200 Arcs 300 Arcs

TSA C.I. 4.68 ± 0.018 7.4 ± 0.018 8.07 ± 0.012 5.71 ± 0.014 9.21 ± 0.012 5.91 ± 0.016
LGT C.I. 2.42 ± 0.018 6.33 ± 0.024 7.6 ± 0.018 4.79 ± 0.018 8.58 ± 0.016 4.85 ± 0.02
DMCCR C.I. 4.75 ± 0.23 7.31 ± 0.31 8.24 ± 0.35 5.58 ± 0.25 9.15 ± 0.38 5.78 ± 0.27
TSA Time 116 116 264 268 887 887
LGT Time 123 123 270 275 895 895
DMCCR Time 114 115 263 266 885 887

too small to get an accurate estimate using DMCCR for the case when several µis are changed one by
one; (2) for large enough N, e.g., N = 10000, the time complexity of evaluating the ratio is relatively large
compared to that of extra simulation runs without using the DMCCR. For each randomly generated SAN,
the KR algorithm and Bowman’s algorithm (Bowman 1994) are compared for finding the optimal solution
of time-cost tradeoff problems described in 5.3. The parameter settings are: µ0

i is the original mean duration
of activity i, costs ai are uniformly generated between 1 and 20, ui = µ0

i , li = 0.2 ∗ µ0
i , criticality lower

bound t = 0.001, budget B = 0.2∑ai(ui− li). The parameter settings for the KR algorithm are: number of
simulation replications N = 1000, decreasing step α = 0.2, and criticality lower bound t = 0.001, Taylor
series approach is used in step 4 of the KR algorithm with N = 2 in Equation (6). The parameter setting
for Bowman’s algorithm are: simulation replication for phase 1 and phase 2 are N1 = N2 = 1000, step of
decreasing for phase 1 and phase 2 are A1 = A2 = 0.1*Budget, upper limit of iteration times for phase 2 is
M = 20. After finding the solutions using the two different algorithms, 10,000 simulation replications are
run for estimating the mean and standard deviation of project completion time under the parameter settings
obtained through two algorithms. In Tables 7 - 8, the first two rows are the 95% confidence interval (C.I.)
of project completion time under the optimized parameters obtained by the KR algorithm and Bowman’s
algorithm. The third row is the 95% C.I. for the project completion time before decreasing any mean
duration. Rows 4 and 5 are the computation times for the optimization using the two methods.

From Tables 7 - 8, we can see that the KR algorithm is better than Bowman’s algorithm in terms of
computing speed, especially for large complex networks. However, in some cases, the KR algorithm’s
solution has a worse (larger) objective value compared with Bowman’s algorithm’s solution, although in
most cases the difference is relatively small compared to the original objective function value. By decreasing
α and t, it is believed that the KR algorithm will converge to the global optimal solution.
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Table 7: Normal Distribution Optimal Project Completion Time Estimation (95% C.I. based on 10,000
Independent Replications)

Network Size

30 Nodes 50 Nodes 100 Nodes

60 Arcs 90 Arcs 100 Arcs 150 Arcs 200 Arcs 300 Arcs

KR 181.7 ± 0.74 239 ± 0.78 211.1 ± 0.8 232.3 ± 0.71 237.8 ± 0.74 253.4 ± 0.74
Bowman 183.1 ± 0.74 239.5 ± 0.78 210.7 ± 0.82 233 ± 0.68 238.1 ± 0.76 257 ± 0.74
Original 301.7 ± 0.84 391.7 ± 0.92 409.3 ± 1.02 405.9 ± 0.91 427.2 ± 0.98 474.8 ± 0.84
KR Time 65 199 127 371 692 2806
Bowman Time 128 286 543 795 1949 3942

Table 8: Exponential Distribution Optimal Project Completion Time Estimation (95% C.I. based on 10,000
Independent Replications)

Network Size

30 Nodes 50 Nodes 100 Nodes

60 Arcs 90 Arcs 100 Arcs 150 Arcs 200 Arcs 300 Arcs

KR 209.8 ± 1.08 278.3 ± 1.32 235.9 ± 1.19 291.1 ± 1.25 287.8 ± 1.2 318.9 ± 1.08
Bowman 208.6 ± 1.07 275.8 ± 1.29 232.3 ± 1.13 291.4 ± 1.22 288.4 ± 1.18 320.1 ± 1.07
Original 347.3 ± 1.7 460.8 ± 2.03 458.8 ± 2.02 499.9 ± 2.09 500.6 ± 1.95 595.9 ± 1.7
KR Time 22 177 82 248 567 2760
Bowman Time 70 209 315 450 2549 5148

7 CONCLUSIONS AND FUTURE RESEARCH

When applied to higher-order gradient estimation, the TAC estimator for estimating criticality curves
and change of expected project completion time has faster computing speed and lower sample variance
compared to existing methods. Applying the change of expected project completion time estimator to
time-cost tradeoff optimization problems in PERT networks, a new heuristic algorithm is provided in this
paper, and simulation experiments show that our new algorithm is considerably faster for large complex
activity networks compared to Bowman’s gradient-based algorithm.

Our future research includes: improving the algorithm in section 5.3 by decreasing the mean duration
in batches (instead of decreasing the largest one, decreasing the top m mean values at the same time),
finding an algorithm for tuning the parameters for the KR algorithm and Bowman’s algorithm for specific
activity networks, deriving a new gradient estimator for the second moment of project completion time and
applying it to optimize both mean and variance of the project completion time under budget constraints,
and combining Monte Carlo simulation and PERT approaches to develop a new algorithm that finds the
optimal solution more efficiently when the network is very large and complex.
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