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ABSTRACT

Parcel sorting operations in logistics enterprises aim to achieve a high throughput of parcels through sorting
centers. These sorting centers are composed of large circular conveyor belts on which incoming parcels are
placed, with multiple arms known as chutes for sorting the parcels by destination, followed by packing into
roller cages and loading onto outbound trucks. Modern sorting systems need to complement their hardware
innovations with sophisticated algorithms and software to map destinations and workforce to specific chutes.
While state of the art systems operate with fixed mappings, we propose an optimization approach that
runs before every shift, and uses real-time forecast of destination demand and labor availability in order to
maximize throughput. We use simulation to improve the performance and robustness of the optimization
solution to stochasticity in the environment, through closed-loop tuning of the optimization parameters.

1 INTRODUCTION

A sorting center is a sophisticated cyber-physical system comprising of infeeds, conveyor belts, different
kinds of chutes, workforce, and outfeeds. For optimal operation, packages should move through the
conveyor belt and the chutes in as little time as possible, with the additional goal of avoiding rejected
parcels (ones that the automated system is unable to route, thus requiring human intervention).

1.1 Motivation for this work

The parcel delivery industry was worth 500 billion USD in 2019 (Research and Markets 2020), with further
growth due to the pandemic in 2020. The large growth in an already high-demand industry has led to
stress on existing infrastructure. Sorting centers are critical components of the parcel delivery logistics
industry (Boysen, Briskorn, Fedtke, and Schmickerath 2019), since they are the points in the network where
incoming parcels are aggregated and then segregated into onward destinations (see Section 2 for details).
The current practice in sorting terminal operations is largely manual and experience-driven. In order to
maximize the throughput of these centers while retaining the existing infrastructure, one can attempt to
optimize the sorting logic and workforce allocation to ensure a smooth flow of parcels. Such an algorithm
is described in Section 3. However, the stochasticity inherent in real-world operations cannot be completely
captured in a formal optimization approach. Therefore, we use a high-fidelity simulation of sorting center

978-1-6654-3311-2/21/$31.00 ©2021 IEEE



Ghosh, Pal, Kumar, Ojha, Paranjape, Barat, and Khadilkar

operations (see Section 3) to tune the constraints and parameters of the formulation, in order to ensure
robustness (in the control theoretic sense, (Sastry and Bodson 2011)) while maximising throughput.

1.2 Literature Review

Optimization of a sorting center can be considered as a highly coupled, multi-level optimization problem.
At the highest level, one can optimize the layout of the sorting center to maximize the efficiency (Werners
and Wülfing 2010). At the next level (with a given sorting center layout), the optimization problems of
interest typically involve (i) mapping chutes to destinations, (ii) mapping labor to chutes, and (iii) mapping
individual parcels to chutes. This sort plan is currently prepared in state-of-the-art applications once every
few weeks based on expected demand (Jarrah, Qi, and Bard 2016; Novoa, Jarrah, and Morton 2018).
However, to handle higher demand variability and with the benefit of earlier insight into demand through
advanced sensing and forecasting, one can produce better solutions with smaller planning horizons.

At a fundamental level, the sorting problem bears resemblance to well-known queueing problems
(Coffman Jr., Gilbert, Greenberg, Leighton, Robert, and Stolyar 1995). To the best of our knowledge,
theoretical tools used to study such ring networks have found little application in sorting, and this is very
likely because they do not prescribe any particular optimal algorithm. Instead, most of the literature on
sorting has focused on linear programming and its variants. For instance, a robust planning approach to
two-stage sorting operations is described in (Khir, Erera, and Toriello 2021). Their solution is robust to
demand stochasticity from known uncertainty sets, but excludes labor assignment and assumes a fixed upper
bound for the total number of parcels assigned to a chute. However, the real problem is dynamic because
parcels are often loaded onto roller cages and cleared from the chute, thus creating space for additional
parcels. It is worth noting that learning-based solutions have yet to be investigated in the literature for the
sorting problem. However, reinforcement learning has been used for related problems such as inbound and
outbound truck loading (Shahmardan and Sajadieh 2020). A recent study (Kim, Choi, Hwang, Kim, Hong,
and Han 2020) uses reinforcement learning for the sortation problem, though this is defined as the task
of routing parcels from ‘emitters’ to ‘removers’ through a grid. The definition is thus closer to a routing
problem than the one considered in this study.

In this paper, we consider the combined problem of destination, parcel, and workforce mapping to
individual chutes with the objective of maximising throughput with minimal disruptions (parcel rejections
and chute blockages). Workforce mapping is an aspect that is often overlooked in literature. The problem
involves assignment of ` near-identical laborers to k chutes for a fixed time interval. Such problems can be
solved in a static (as against sequential) setting using well-established techniques such as auctions (Vickrey
1961; Ausubel 2000) or linear programming. However, the combination with destination and parcel mapping
increases the complexity substantially. Given the high complexity and degree of coupling, we develop
a simulation scheme for driving the optimization formulation towards realistic, implementable solutions.
Among prior simulation studies, there are a few that use a software called FlexSim to simulation sorting
center operations (Li, Hong, Zheng, and Chen 2009; Zhang and Tian 2017). However, the flexibility
of this software is not sufficient for the present work. In particular, we need to establish an iterative
optimization-simulator loop for fine-tuning the solutions, as described in Section 3.

1.3 Contributions

In the present work, we focus on a single-stage automated sorting center similar to the description in (Fedtke
and Boysen 2017), which discusses a number of design alternatives. A schematic layout is shown in Figure
1, and a detailed problem description is provided in the next section. We solve the three individual sub-
problems listed above (destination-chute mapping, labor allocation and parcel-chute mapping) separately,
allowing us to handle multiple time scales inherent in the problem. Our contributions are:

1. Optimization algorithms for an offline destination→chute plan and online parcel→chute mapping;
2. Integrating labor force allocation into the sorting center optimization problem;
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Figure 1: Schematic plan of a sorting center, showing the main oval shaped conveyor belt and outgoing
chutes. Each chute is associated with a fixed number of roller cages, and each roller cage may be assigned
to at most one destination, though multiple roller cages can serve the same destination.

3. Using a simulation environment (digital twin) to (i) validate the optimization algorithms, and (ii)
to iteratively improve the solution performance and robustness to stochasticity.

2 PROBLEM DESCRIPTION

In this section, we describe the specific sorting center layout assumed for the present work, and also describe
the sorting problem in words. A mathematical treatment of the same is covered in the next section.

2.1 System Layout

A schematic of the layout is shown in Figure 1, adapted from (Fedtke and Boysen 2017). Parcels arrive
at the sorting terminal via inbound trucks, and are processed in waves. Each wave consists of a batch
of incoming parcels for which a sort plan is computed. A complete shift (8 hours) typically consists of
multiple waves (often around 10). The objective of the system is to sort the incoming parcels by destination,
and place them in roller-cages which are then loaded onto trucks for outbound transport.

The parcels to be processed in a wave are first processed by an OCR reader (not shown in the figure),
which captures the intended destinations and the dimensions of the parcels. After this, the parcels enter the
main conveyor. The system consists of multiple chutes, each connecting the conveyor (upper level) to a
loading area with roller cages (lower level). Each parcel is diverted from the conveyor into the chute after
allocation by an automated system for processing (placing into a roller-cage for onward transportation to
its destination). We consider two types of chutes in this paper:

• Spiral Chutes: These chutes consist of long metal tubes connecting the two levels. On the lower
level, typically a human sorter or a robot picks up the parcel when it arrives and places it in the
relevant roller cage according to destination. The number of destinations that this type of chute
can handle is limited only by the number of roller cages it can hold.

• Direct chutes: These chutes cater to exactly one location and are unsupervised. In these chutes,
the parcels are dropped from the upper level directly into roller-cages which are placed below (one
cage per chute). Once, the cage is filled, it is immediately replaced by a new one. Direct chutes
are usually reserved for destinations which have very high forecasted loads.

Each parcel on the main conveyor is either allocated a chute or is sent directly to the rejection chute (if no
feasible chute is found). In addition, if a parcel is not able to enter a chute at the first attempt (due to chute
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blockage or dimension incompatibility), it can make a fixed number of re-attempts before being diverted
to the rejection chute. The total number of parcels processed (packed into roller-cages and sent off for
transportation) represents the throughput of the sorting system and is measured in pph (parcels per hour).

2.2 The Sorting Problem

The objective of our current work is to maximize the throughput of the sorting system subject to physical
constraints on chute allocation, chute capacity, human resource allocation and capacity, and avoiding chute
blockages. We solve the optimal sorting problem in two stages, planning and execution:

• Planning: This stage takes the details of the projected load profile as input (total demand for
each destination) and produces a matching between destinations and chutes for the entire shift in
such a way that the total number of parcels processed is maximized. Note that the matching is
many-to-many: one chute can handle multiple destinations (equal to number of roller cages at
that chute), and one destination can be mapped to multiple chutes. Special cases with constraints
include (i) direct chutes, and (ii) layout constraints. Both are described in detail in the next section.
Clearly, the forecast is noisy and other unexpected events may occur after planning. Thus a second
online execution phase is necessary.

• Execution: Once the planning is done and the parcels start arriving, the execution stage starts. This
stage comprises of three parts: (i) scanning a parcel to get its dimensions and intended destination,
(ii) allocating the parcel to a specific chute, and (iii) final processing after parcel comes out of the
chute using roller-cages and trucks. The optimization algorithm performs the second part; i.e., it
allocates specific chutes to each parcel in the upcoming wave (typically composed of thousands
of parcels). This is in contrast to the planning stage, which only mapped destinations to a subset
of chutes. The input to the algorithm is the destination for each parcel and the designated chutes
for the destination as defined by the planning stage. Other constraints such as maximum parcel
holding capacity of each chute are also considered, and so is workforce allocation.

The importance of simulation in this process is emphasised by the multi-step nature of the planning and
execution phases. Since the planning phase is restricted to partial demand knowledge and labor availability
(forecasts), an open loop system could potentially result in sub-optimal operations. Furthermore, the
optimization constraints (defined later) are designed to handle worst-case scenarios in terms of chute
blockage and parcel rejection, and may result in overly conservative plans. In order to avoid both these
problems, we use the simulator in the planning phase to roll out multiple demand scenarios and to adjust
the constraint thresholds for the optimization problem. The next section covers this aspect in detail.

3 METHODOLOGY

We rely on optimization and its improvements via feedback from a simulation environment (called the
digital twin) to solve the optimal sorting problem as shown in Figure 2. We first present and implement
the optimization formulation OPTSORT (a mixed-integer linear program) for the two stages described in
Section 2. Following this we validate our results using digital twin (described later in this section). We
then investigate how some of the constraints in this formulation can be gradually relaxed with the goal of
improving the throughput without creating any chute blockages and violation of other physical constraints.

3.1 Optimization Algorithm OPTSORT

3.1.1 Planning

The objective of this stage is to produce a destination-chute matching based on the projected load so that a
maximum of such parcels are processed. Let the set C , {C1, . . . ,Ck} denote the k chutes available in the
sorting center and D , {D1, . . . ,Dn} denote the n destinations to which the parcels in the projected load
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Figure 2: An overview of our methodology. Dashed lines indicate information flow.

will be sent. Correspondingly, let Bi denote the number of parcels in the projected load that will be sent to
destination Di. We will denote the total shift length by T and the time taken to process one parcel at a chute
C j by t j. The quantity t j depends upon a variety of factors such as type of chute (Direct/Spiral); number of
human resources manning the chute; and efficiency of those resources. We will present a separate algorithm
of human resource allocation later in the paper. We need to define the following variables:

Xi j ∈ {0,1}=
{

1 if destination Di is allocated to chute C j,
0, otherwise,

Yi j ∈ Z≥0 = number of parcels of destination Di allocated to chute C j,

Without specific limits, a many-to-many matching between destinations and chutes will be created. To
avoid the situation where a destination is distributed to too many chutes and vice versa, we impose certain
limits: Mi (respectively, N j) will denote the maximum number of chutes (resp., destinations) the destination
Di (resp., chute C j) can be matched to, for i ∈ {1, . . . ,n} (resp., for j ∈ {1, . . . ,k}); Note that Mi and N j can
be adjusted based on designer preferences. The following MILP produces the destination-chute matching
with the goal of maximizing the number of processed parcels from projected load:

max
n

∑
i=1

k

∑
j=1

Xi j

subject to 1≤
k

∑
j=1

Xi j ≤Mi for all i (1)

n

∑
i=1

Xi j ≤ N j for all j (2)

k

∑
j=1

Yi j ≤ B j for all i (3)

n

∑
i=1

Yi j ≤
⌊

T
t j

⌋
for all j (4)

Xi j ≤ Yi j ≤M Xi j for all i, j, (5)
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where i ∈ {1, . . . ,n}, j ∈ {1, . . . ,k}, and M is a sufficiently large positive integer. Constraint (1) ensures
that every destination is matched to at least one chute; and that destination Di is not matched to more than
Mi chutes (for every i ∈ {1, . . . ,n}). A similar bound with respect to destinations per chute is imposed
in (2). Constraint (3) ensures that no more than Bi parcels can be processed for destination Di while (4)
guarantees that the number of parcels allocated to chute C j do not exceed the maximum number that can be
processed at C j. The final constraint (5) ensures that if destination Di is matched to chute C j, then at least
one parcel intended for destination Di is processed at C j. This MILP formulation is suitable for situations
where we have only Spiral chutes with no layout restrictions. Furthermore, we have two special cases:

• Direct chutes: We follow a simple rule for Direct chutes: allocate the destinations with highest
projected loads to Direct chutes. The remaining chutes and destinations can be matched according
to the above formulation.

• Restricted Layouts: These situations involve additional restrictions of destination-chute matching
wherein a destination can only be matched to a (strict) subset of C . Such a context arises for
e.g.; when the departure bays for the trucks departing to destinations are categorized by directions
or zones and we are trying to minimize the distance travelled by the roller-cages from chutes to
departing trucks. To impose this restriction, we introduce a new parameter Ai j ∈ {0,1} such that
Ai j = 1 if and only if, destination Di can be allocated to chute C j and add an additional constraint
Xi j ≤ Ai j for all i ∈ {1, . . . ,n} and j ∈ {1, . . . ,k} in the formulation.

3.1.2 Execution

After the shift planning is completed with the creation of a destination-chute matching; real-time processing
of parcels start. The parcels are processed in waves (mini-batches) which typically have to be processed
in about an hour. The inputs to OPTSORT in this phase are: (i) parcel-destination data for the wave
(i.e., which parcel goes to which destination); (ii) list of time-stamps at which the parcels enter the main
conveyor; and (iii) destination-chute matching from the planning phase. We now propose the MILP for
creating the parcel-to-chute allocation based on these inputs: Let the set P = {P1, . . . ,PN} denote the
N parcels arriving as input to the current wave. Let the intended destination for parcel Pm be Dim with
m ∈ {1, . . . ,N} and im ∈ {1, . . . ,n}. Using the destination-chute matching from the planning phase, we
then create parameters Qm j ∈ {0,1} with m ∈ {1, . . . ,N} and j ∈ {1, . . . ,k} where Qm j = 1 if and only if
Xim j = 1; i.e.; the intended destination for Pm is matched to chute C j and hence, parcel Pm can be allocated
to chute C j (the exact chute allocation is provided by OPTSORT).
Assumption 1 We make the following assumptions about the operation of the system: (i) the conveyor
moves at constant speed; i.e., the time taken by any parcel to reach the opening of a particular chute from
the OCR reader is fixed and known; (ii) the parcels in a wave arrive sequentially in increasing order of
their ids; and (iii) for each destination matched to a chute; at least one roller-cage is open all the time
which is immediately replaced after it is filled.

Let τm for m∈ {1, . . . ,N} be the time-stamp at which parcel Pm enters the sorting system; i.e., it crosses
the OCR reader. Also, let τ̄ j with j ∈ {1, . . . ,k} denotes the time taken for a (any) parcel to reach the
opening of chute C j from the OCR reader. Correspondingly, we can define τm j = τm+ τ̄ j as the time-stamp
at which parcel Pm is present at the opening of chute C j. Assumption 1 guarantees that τm1 ≤ τm2 and
consequently, τm1 j ≤ τm2 j whenever m1 < m2 for all m1,m2 ∈ {1, . . . ,N} and for all j ∈ {1, . . . ,k}. Let Tw
denote the total time within which a wave needs to be processed. For a chute C j, we define t j as the time
taken to process one parcel, L j as the bound on maximum number of parcels that can be processed within
one wave (if such a bound exists based on labor laws etc.), and C j as the carrying capacity of chute C j.
Essentially, C j denotes the total number of parcels that can stay inside chute C j without blocking it.

Note that the quantity t j depends upon the number of human resources allocated to a chute and their
efficiency. We present an algorithm for human resource allocation later in this section. Armed with these
constants, we now define the binary variable P̄m j such that P̄m j = 1 if and only if parcel Pm is allocated
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to chute C j for m ∈ {1, . . . ,N} and j ∈ {1, . . . ,k}. A parcel is considered processed if it is allocated to a
chute. The objective of OPTSORT is to maximize the total number of parcels processed; i.e., to

maximize
N

∑
m=1

k

∑
j=1

P̄m j. (6)

The following constraint ensures that parcel Pm is allocated to chute C j only if it can be allocated to C j:

P̄m j ≤ Qm j ∀m ∈ {1, . . . ,N} and ∀ j ∈ {1, . . . ,k}. (7)

Next we have the bound on total number of parcels that can be allocated to chute C j within a single wave:

N

∑
m=1

P̄m j ≤min
{⌊

Tw

t j

⌋
,L j

}
∀ j ∈ {1, . . . ,k} (8)

Following this, we have the constraint which ensures that one parcel is allocated to at most one chute:

k

∑
j=1

P̄m j ≤ 1 ∀k ∈ {1, . . . ,N} (9)

Finally, we formulate a constraint to ensure that the chutes are never blocked. This is done by guaranteeing
that a situation where a spate of parcels enter a chute before the earlier ones are processed never happens:

∑
m : τm j∈[r,r+C jt j]

P̄m j ≤ C̄ j ∀r ∈ {1, . . . ,T −C jt j}; ∀ j ∈ {1, . . . ,k}. (10)

The initial value of C̄ j is set equal to C j initially, which is refined based on feedback from the digital twin.
This optimization formulation allocates parcels to specific chutes. In situations where we may have extra
human resources available or we want to allocate more (or less) than one person per chute depending upon
actual load; a resource allocation algorithm needs to be implemented which is described next.

3.2 Allocation of Human Employees to Chutes

The problem of assigning humans to chutes is equivalent to mapping n almost identical objects (e.g.,
resources with figures of merit drawn from a normal distribution with a small covariance) to p identical
bins (e.g., tasks). We note one particular challenge in the context of sorting centers, namely that some
chutes (e.g., those that receive heavy or bulky packages) may require at least two humans for operation.

Let zi j ≥ 0 denote the penalty associated with Ci when it is assigned j− 1 workers which can be
interpreted as a function of the parcels that will be unprocessed if j−1 workers are assigned to Ci.
Remark 1 It is possible to use more complex functions of the number of unprocessed parcels; for instance,
the square of the unprocessed fraction (taken with respect to the capacity) can be used to relax the penalty
if the number of unprocessed parcels is relatively small. We assume the following for all i, j:

Non-increasing penalty: zi j ≥ zi, j+1

Non-increasing marginal penalty: zi j− zi, j+1 ≥ zi, j+1− zi, j+2 except if zi j = zi, j+1 > 0

Remark 2 The second condition helps satisfy a necessary condition for local optimality, namely that
neighboring allocations yield a higher penalty than the one obtained from the algorithm. We have that
zi j = zi j+1 > 0 when the addition of an exactly one extra individual to the ith chute does not help reduce
the penalty. This can happen for chutes wherein each package needs at least two handlers. Finally, we
define the matrix of penalties and and its columns as
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Z = [z1, . . . ,zn+5]
> = {zi j}, Z ∈R p×n+5 (11)

The reason for adding four extra columns is purely to support the notation employed in our algorithm (see
Algorithm 1). As such, all entries of those columns can be trivially set to 0. The assignment problem can
be cast formally as follows.
Problem 1 Suppose we are given a matrix Z ∈ Rp×n+1, where zi j ≥ zi, j+1 ≥ 0 for all i, j. We wish to
determine an assignment (i, σ(i)) to solve the following problem:

min
σ

p

∑
i=1

ziσ(i) s.t.
n

∑
i=1

σ(i) = p (12)

Algorithm 1 Assignment of workers to chutes
Initialize: σ(i) = 0 ∀ i; klast = /0 (previous assignment)
Initialize: C0 = z1 (current assignment); C1 = z2 (assign one individual to a chute); C2 = z3
Initialize a = ∑i σ(i)
Define P2 = {k ∈ [1, p] | C0(k) =C1(k)> 0}; !chutes with packages needing two handlers
while a < p AND maxk C0(k)> 0 do

k = argmaxk(C0(k)−C1(k))
δ1 =C0(k)−C1(k) !most profitable reduction of penalty
! Check if two people should be assigned to a single chute in P2
if a ∈ (1,n−2] AND P2 6= /0 then

δ0 =C0(klast)−C1(klast) ! last profitable allocation
δc = max j∈P2(C0( j)−C2( j)) ! reduction in penalty from allocating to a P2 chute
if δc > δ0 +δ1 then

k = argmax(δc) σ(k)← σ(k)+2, a← a+2
C0(k) =C2(k); C1(k) = zσ(k)+3(k); C2(k) = zσ(k)+4(k)

else
σ(k)← σ(k)+1, a← a+1
C1(k) =C2(k); C2(k) =C3(k); C3(k) = zσ(k)+3(k)

end if
end if
klast = k

end while
Output: σ(1 : p)

The assignment algorithm is listed in Algorithm 1. It assigns individuals sequentially, aiming to achieve
the largest possible reduction in penalties at each step. We now describe the simulation environment, an
enterprise digital twin of a sorting center terminal which will act as both a medium of validation and
provide feedback to OPTSORT for improvement.

3.3 Digital Twin

We adopt a pragmatic modelling & simulation methodology for evaluating optimization outcomes using a
close-to-real environment. Principally, we use a purposive hi-fidelity digital twin (DT) of a sorting terminal
that captures all relevant entities, behavioural aspects, inherent uncertainties and pragmatic considerations.
A schematic representation of a typical sorting terminal digital twin is shown using a class diagram in
Figure 3. It has three parts: a cyber-physical system, a planner (in this case it is the optimizer) and a set of
human resources. From a structural perspective, the conveyor belt has multiple slots (to hold and control
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Figure 3: A schematic representation of sorting digital twin.

parcel movements) and a set of sub-systems: infeeds, OCRs, and chutes (Direct/Spiral/Rejection). Once
the parcels are processed at Direct or Spiral chutes; they are put into roller cages which are finally loaded
onto different trucks for final dispatch. A three-step process to construct a faithful DT is described below:

Construction & contextualization: We constructed a configurable sorting terminal digital twin by
adopting a bottom-up actor-based (Agha, Mason, Smith, and Talcott 1997) modelling paradigm and an actor-
based specification language - ESL (Clark, Kulkarni, Barat, and Barn 2017). Behaviours and interaction
patterns of the entities shown in Figure 3 are captured as actors. For example, all parcels, conveyor belts,
slots, chutes, and resources are realised as actors. Entity behaviours, such as movement of conveyor-belts
and slots, tilting of slots at specific chute, and resource emptying parcels from Spiral chute to roller cages,
are realized as actor behaviours. All practical considerations and inherent uncertainties of the entities, such
as varying efficiency of resources and arrival time of parcels, are encoded as probabilistic actor behaviours.

Appropriate configuration parameters are introduced to represent a specific sorting terminal of a logistic
company that includes specific number of conveyor belts, slots for each conveyor belt, number and position
of in-feed, OCRs, and chutes, chute sizes, and resource efficiencies.

Validation: We use operational validity technique as suggested by (Sargent 2010) to establish the
faithfulness of a contextualized digital twin. Essentially, parcels’ arrival details and specific sorting logic
of a set of historical days are fed into contextualized digital twin and their simulation results are compared
with real outcome to establish faithfulness.

What-if simulation: A validated digital twin is used as an environment to evaluate the efficacy of
optimization under different practical considerations. In this step, a sequence of parcels and an optimized
sorting logic are fed into the digital twin and specific KPIs (i.e., key performance indicators), such as
throughput, chute blockage, number of rejections, etc. are observed through simulation as shown in
Figure 3. Simulation of the digital twin involves executing the probabilistic micro-behaviour of all entities
and observing the emergent macro-behaviour to understand the efficacy of a sorting logic under different
parcel loads. A sorting logic can be evaluated for different parcel loads by feeding different streams of
parcels to the digital twin. Similarly, different sorting laws for the same parcel load and a specific sorting
logic with different parcel loads under various practical considerations (e.g., limited personnel/hour, workers
with less productivity, mechanical failures) can be tested using our method shown in Figure 2.

4 RESULTS AND DISCUSSION

In this section, we present the results of our experiments. The key ideas of our experiments are:
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• Implement and validate the results produced by OPTSORT;
• If the chute blockage constraint (10) turns out to be conservative, can we gradually relax it to

improve throughput and KPIs (defined later) without adding chute blockages?; and
• Study the robustness of OPTSORT to variations in human efficiency.

We classify our experiments into three groups: i) no restrictions on destination-chute matching (unre-
stricted); ii) restrictions on which destination can be mapped to which chutes (restricted layouts); and iii)
Direct chutes combined with restricted layout situations. We assume the following parameters for experi-
ments: n= 300, k = 30 with Mi = 5, and N j = 15 for every i∈ {1, . . . ,n} and j ∈ {1, . . . ,k}. Every wave is to
be processed in 3000 seconds. For the planning stage, we assume a load that is distributed randomly for the
300 destinations to be processed within 30,000 seconds (10 waves). Moreover, for the constrained layout
scenario we assume the following matching restrictions: D1−D60 → C1−C6; D61−D120 → C7−C12;
D121−D180→C13−C18; D181−D240→C19−C24; and D241−D300→C25−C30. Furthermore, we assume
that there is one person manning one chute who is able to process 120 parcels/hour; i.e., time taken to
process a parcel at a chute is equal to t j = 30 seconds for every j ∈ {1, . . . ,k}. Thus, no more than 1,000
parcels can be processed at a chute in 30,000 seconds, and hence, the maximum possible load for the
operation for k = 30 chutes turns out to be 30,000. We assume a projected load of 29,335 parcels (close
to peak capacity). The planning algorithm is able to process all parcels in the case of unrestricted layouts;
and 29,148 parcels in the case of restricted layouts.

To compare the performance of our algorithm, we use a greedy heuristic (GREEDY) as a baseline.
This heuristic pushes a parcel Pm into the first free chute C j such that Qm j = 1; i.e., a parcel is pushed into
the first free chute if it can be allocated to that chute. We compare the performance of the two algorithms
based on the following key performance indicators: (i) Number of re-circulations Rc (Number of parcels
circulated more than once before entering a chute/rejection chute), (ii) Number of rejections R j (total
number of parcels entering the rejection chute in a wave), and (iii) Average Sorting time St (time elapsed
between the point at which a parcel crosses the OCR reader (enters the system) and the point when it enters
a chute/rejection chute, averaged over all parcels in a wave).

We ran several experiments with varying load capacities and profiles for waves e.g., loads with benign
capacity (≈ 50% capacity); waves with load-profiles (i.e., parcel-destination matching) similar to that of
the forecast, and random load-profiles. In the case of waves with benign load capacity, both GREEDY
and OPTSORT performed equally well with zero rejections and re-circulations (with slight variations in
average sorting times). On the other hand, once can observe a marked difference in KPIs once the load
capacity increases. To demonstrate this, we present the results of one set of such experiments here. Two
waves were sent in comprising of N = 2,523 parcels (≈ 85% of max. capacity) each, with random τm for
m ∈ {1, . . . ,2523}. Figure 4 shows the KPIs for GREEDY with no layout restrictions. Other figures are
not presented due to space constraints.

The KPIs for GREEDY with no layout restrictions are Rc = R j = 162 and St = 0.6 min; while the
same for OPTSORT with C̄ j = 50, they are Rc = 0, R j = 190, and St = 0.499 min. Thus, OPTSORT
results in no re-circulation with a much lower average sorting time. However, the number of rejections for
OPTSORT is higher than GREEDY. This is due to the fact that C̄ j = 50 turns out to be too conservative.
Increasing C̄ j to 55, removes the rejections while maintaining zero re-circulations and smaller average
sorting time. The KPIs for unrestricted and restricted layout scenarios are captured in Table 1. The results
for the Direct-chute+restricted layout scenario are almost similar and are omitted due to space constraints.

Experiments with varying human efficiency/productivity (randomly between 0.8 and 1.2) were also
simulated using the digital twin. Variations in human efficiency lead to variations in processing time per
parcel and consequently, the overall throughput of the system may change. Our objective was to study the
robustness of OPTSORT against such variations and its iterative improvement via feedback from digital twin.
For instance, for the unrestricted layout scenario, with C̄ j = 60, no parcels were rejected or re-circulated
with varying human efficiency (as opposed to C̄ j = 55 with nominal human efficiencies). However, there
is one caveat to this study. OPTSORT assumes that the efficiency of person manning a chute is known a
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Figure 4: KPIs for GREEDY in unrestricted layout, captured in simulator interface.

Table 1: Key Performance Indicators for various test situations.

Algorithm+Situation Rc Rj St(min)
Unrestricted GREEDY 162 162 0.606

Unrestricted OPTSORT (C̄ j = C j = 50) 0 190 0.499
Unrestricted OPTSORT (C̄ j = 55) 0 0 0.495

Restricted GREEDY 55 55 0.557
Restricted OPTSORT (C̄ j = C j = 50) 0 341 0.507

Restricted OPTSORT (C̄ j = 65) 0 0 0.491

priori; i.e., it can be different from nominal (100%); but it needs to be known. Such an assumption may
not be feasible in a real-world scenario; and work is in progress to reconcile this difference.

5 CONCLUSIONS

We studied how a combination of optimization and high-fidelity simulatable digital twin can be used to
improve the operations of a sorting center terminal. We developed a two-stage optimization procedure
OPTSORT intended to maximize throughput of a sorting terminal, validated and refined using feedback from
a simulatable digital twin of the sorting terminal. We showed that the digital twin is a critical component,
helping to balance performance with robustness. Future work in this regard is threefold: first, to model
more real-world constraints and scenarios such as uncertain human efficiency and time delays in processing;
second, use efficient heuristics instead of MILP for faster processing; and finally, integrate various logistics
operations such as vehicle routing with sorting logic to solve large-scale enterprise problems.
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