
Proceedings of the 2021 Winter Simulation Conference
S. Kim, B. Feng, K. Smith, S. Masoud, Z. Zheng, C. Szabo, and M. Loper, eds.

INEXACT-PROXIMAL ACCELERATED GRADIENT METHOD FOR STOCHASTIC
NONCONVEX CONSTRAINED OPTIMIZATION PROBLEMS

Morteza Boroun
Afrooz Jalilzadeh

Systems and Industrial Engineering
University of Arizona

Tucson, AZ 85721, USA

ABSTRACT

Stochastic nonconvex optimization problems with nonlinear constraints have a broad range of applications
in intelligent transportation, cyber-security, and smart grids. In this paper, first, we propose an inexact-
proximal accelerated gradient method to solve a nonconvex stochastic composite optimization problem
where the objective is the sum of smooth and nonsmooth functions, the constraint functions are assumed
to be deterministic and the solution to the proximal map of the nonsmooth part is calculated inexactly at
each iteration. We demonstrate an asymptotic sublinear rate of convergence for stochastic settings using
increasing sample-size considering the error in the proximal operator diminishes at an appropriate rate. Then
we customize the proposed method for solving stochastic nonconvex optimization problems with nonlinear
constraints and demonstrate a convergence rate guarantee. Numerical results show the effectiveness of the
proposed algorithm.

1 INTRODUCTION

There is a rapid growth in the global urban population and the concept of smart cities is proposed to
manage the impact of this surge in urbanization. Intelligent transportation, cyber-security, and smart grids
are playing vital roles in smart city projects which are highly influenced by big data analytic and effective
use of machine learning techniques (Ullah et al. 2020). As data gets more complex and applications of
machine learning algorithms for decision-making broaden and diversify, recent research has been shifted
to constrained optimization problems with nonconvex objectives (Ma et al. 2017) to improve efficiency
and scalability in smart city projects.

Consider the following constrained optimization problem with a stochastic and nonconvex objective:

min
x∈X

f (x), E[F(x,ζ (ω))]

s.t. φi(x)≤ 0, i = 1, . . . ,m, (1)

where ζ : Ω→Ro, F : Rn×Ro→R, and (Ω,F ,P) denotes the associated probability space. We consider
function f (x) : Rn→ R is smooth and possibly nonconvex, φi(x) : Rn→ R are deterministic, convex, and
smooth for all i, and set X is convex and compact. To solve this problem, first we propose an algorithm
for solving the following composite optimization problem

min
x∈Rn

g(x), f (x)+h(x), (2)

where h(x) : Rn→ R is a convex function and possibly nonsmooth. Using the indicator function IΘ(·),
where IΘ(x) = 0 if x ∈Θ and IΘ(x) = +∞ if x /∈Θ, one can write problem (1) in the form of problem (2)
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by choosing h(x) = IΘ(x) and Θ = {x | x ∈ X , φi(x)≤ 0, ∀i = 1, . . . ,m}. Moreover, we show that how to
customize the proposed method to solve problem (1). Indeed, proximal-gradient methods are an appealing
approach for solving (2) due to their computational efficiency and fast theoretical convergence guarantee.
In deterministic and convex regime, subgradient methods have been shown to have a convergence rate of
O(1/

√
T ), however, proximal-gradient methods can achieve a faster rate of O(1/T ), where T is the total

number of iterations. Each iteration of a proximal-gradient method requires solving the following:

proxγ,h(y) = argmin
u∈Rn

{h(u)+ 1
2γ
‖u− y‖2}. (3)

In many scenarios, computing the exact solution of the proximal operator may be expensive or may
not have an analytic solution. In this work, we propose a gradient-based scheme to solve the nonconvex
optimization problem (2) by computing the proximal operator inexactly at each iteration.

Next, we introduce important notations that we use throughout the paper and then briefly summarize
the related research.

1.1 Notations

We denote the optimal objective value (or solution) of (2) by g∗ (or x∗) and the set of the optimal solutions
by X∗, which is assumed to be nonempty. For any a ∈ R, we define [a]+ = max{0,a}. E[•] denotes the
expectation with respect to the probability measure P and B(s) = {x ∈ Rn | ‖x‖ ≤ s}. ΠΘ(·) denotes the
projection onto convex set Θ and relint(X) denotes the relative interior of the set X . Throughout the paper,
Õ is used to suppress all the logarithmic terms.

1.2 Related Works

There has been a lot of studies on first-order methods for convex optimization with convex constraints,
see Tran-Dinh and Cevher (2014), Xu (2021) for deterministic constraints and Basu and Nandy (2019),
Lan and Zhou (2016) for stochastic constraints. Nonconvex optimization problems without constraints
or with easy-to-compute projection on the constraint set have been studied by Ghadimi and Lan (2013),
Zhang and He (2018), Lan and Yang (2019). When the function f in problem (2) is convex and h is a
nonsmooth function, Schmidt et al. (2011) showed that even with errors in the computation of the gradient
and the proximal operator, the inexact proximal-gradient method achieves the same convergence rates as the
exact counterpart, if the magnitude of the errors is controlled in an appropriate rate. In nonconvex setting,
assuming the proximal operator has an exact solution, Ghadimi and Lan (2016) obtained a convergence rate
of O(1/T ), using accelerated gradient scheme for deterministic problems and in stochastic regime using
increasing sample-size they obtained the same convergence rate. Inspired by these two works, we present
accelerated inexact proximal-gradient framework that can solve problems (1) and (2). In deterministic
regime, Kong et al. (2019) analyzed the iteration-complexity of a quadratic penalty accelerated inexact
proximal point method for solving linearly constrained nonconvex composite programs with iteration
complexity of Õ(ε−3). Inexact proximal-point penalty method introduced by Lin et al. (2019) and Li
et al. (2021) can solve nonlinear constraints with complexity of Õ(ε−2.5) and Õ(ε−3) for affine equality
constraints and nonconvex constraints, respectively. Recently, Li and Xu (2020) showed complexity result
of Õ(ε−2.5) for deterministic problems with nonconvex objective and convex constraints with nonlinear
functions to achieve ε-KKT point. In stochastic regime, Boob et al. (2019) has studied functional constrained
optimization problems and obtained a non-asymptotic convergence rate of O(ε−2) for stochastic problems
with convex constraints to achieve ε2-KKT point. In this paper, we obtain the same convergence rate under
weaker assumptions. In particular, in contrast to Boob et al. (2019), our analysis does not require the
objective function to be Lipschitz and we prove an asymptotic convergence rate result. Next, we outline
the contributions of our paper.
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1.3 Contributions

In this paper, we consider a stochastic nonconvex optimization problem with convex nonlinear constraints.
We propose an inexact proximal accelerated gradient (IPAG) method where at each iteration the projection
onto the nonlinear constraints is solved inexactly. By improving the accuracy of the approximate solution
of the proximal subproblem (projection step) at an appropriate rate and ensuring feasibility at each iteration
combined with a variance reduction technique, we demonstrate a convergence rate of O(1/T ), where T
is the total number of iterations, and the oracle complexity (number of sample gradients) of O(1/ε2) to
achieve an ε-first-order optimality of problem (1). To accomplish this task, first we analyze the proposed
method for the composite optimization problem (2) which can be specialized to (1) using an indicator
function. Moreover, our proposed method requires weaker assumptions compare to Boob et al. (2019).

Next, we state the main definitions and assumptions that we need for the convergence analysis. In
Section 2, we introduce the IPAG algorithm to solve the composite optimization problem and then in
Section 2.1 we show that IPAG method can be customized to solve a nonconvex stochastic optimization
problem with nonlinear constraints (1). Finally, in section 3 we present some empirical experiments to
show the benefit of our proposed scheme in comparison with a competitive scheme.

1.4 Assumptions and Definitions

Let ρ be the error in the calculation of the proximal objective function achieved by x̃, i.e.,

1
2γ
‖x̃− y‖2 +h(x̃)≤ ρ + min

x∈Rn

{
1
2γ
‖x− y‖2 +h(x)

}
, (4)

and we call x̃ a ρ-approximate solution to the proximal problem. Next, we define ρ-subdifferential and
then we state a lemma to characterize the elements of the ρ-subdifferential of h at x.
Definition 1 (ρ-subdifferential) Given a convex function h(x) : Rn → R and a positive scalar ρ , the
ρ-approximate subdifferential of h(x) at a point x ∈ Rn, denoted as ∂ρh(x), is

∂ρh(x) = {d ∈ Rn : h(y)≥ h(x)+ 〈d,y− x〉−ρ}.

Therefore, when d ∈ ∂ρh(x), we say that d is a ρ-subgradient of h(x) at point x.
Lemma 1 If x̃ is a ρ-approximate solution to the proximal problem (3) in the sense of (4), then there
exists v such that ‖v‖ ≤

√
2γρ and

1
γ
(y− x̃− v) ∈ ∂ρh(x̃).

Proof of Lemma 1 can be found in (Schmidt et al. 2011). Throughout the paper, we exploit the
following basic lemma.
Lemma 2 Given a symmetric positive definite matrix Q, we have the following for any ν1,ν2,ν3:

(ν2−ν1)
T Q(ν3−ν1) =

1
2
(‖ν2−ν1‖2

Q +‖ν3−ν1‖2
Q−‖ν2−ν3‖2

Q), where ‖ν‖Q ,
√

νT Qν .

In our analysis we use the following lemma (Ghadimi and Lan 2016).
Lemma 3 Given a positive sequence αk, define Γk = 1 for k = 1 and Γk = (1−αk)Γk−1 for k > 1. Suppose
a sequence {χk}k satisfies χk ≤ (1−αk)χk−1 + λk, where λk > 0. Then for any k ≥ 1, we have that
χk ≤ Γk ∑

k
j=1 γ j/Γ j.

The following assumptions are made throughout the paper.
Assumption 1 The following statements hold:

(i) A slater point of problem (1) is available, i.e., there exists x◦ ∈ Rn such that φi(x◦) < 0 for all
i = 1, . . . ,m and x◦ ∈ relint(X).
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(ii) Function f is smooth and weakly-convex with Lipschitz continuous gradient, i.e. there exists
L, `≥ 0 such that − `

2‖y− x‖2 ≤ f (x)− f (y)−〈∇ f (x),y− x〉 ≤ L
2‖y− x‖2.

(iii) There exists C > 0 such that ‖proxγ,h(y)‖ ≤C for any γ > 0 and y ∈ Rn.
(iv)E[ξk |Fk] = 0 holds a.s., where ξk ,∇ f (zk)−∇F(zk,ωk). Also, there exists τ > 0 such thatE[‖ξ̄k‖2 |

Fk]≤ τ2

Nk
holds a.s. for all k and Fk , σ

(
{z0, ξ̄0,z1, ξ̄1 . . . ,zk−1, ξ̄k−1}

)
, where ξ̄k ,

∑
Nk
j=1 ∇ f (zk)−∇F(zk,ω j,k)

Nk
.

Note that Assumption 1 is a common assumption in nonconvex and stochastic optimization problems
and it holds for many real-world problems such as problem of non-negative principal component analysis
and classification problem with nonconvex loss functions (Pham et al. 2020).

2 CONVERGENCE ANALYSIS

In this section, we propose an inexact-proximal accelerated gradient scheme for solving problem (2) assuming
that an inexact solution to the proximal subproblem exists through an inner algorithm M . Later in section
2.1, we show that how the inexact solution can be calculated at each iteration for problem (1). Since problem
(2) is nonconvex, we demonstrate the rate result in terms of ‖z−proxλh(z−λ∇ f (z))‖ which is a standard
termination criterion for solving constrained or composite nonconvex problems (Nemirovski and Yudin
1983; Ghadimi et al. 2016; Ghadimi and Lan 2016). For problem (1), the first-order optimality condition
is equivalent to find z∗ such that z∗ = ΠΘ(z∗−λ∇ f (z∗)) for some λ > 0. Hence, we show the convergence
result in terms of ε-first-order optimality condition for a vector z, i.e., ‖z−ΠΘ(z−λ∇ f (z))‖2 ≤ ε .

Algorithm 1 Inexact-proximal Accelerated Gradient Algorithm (IPAG)
input: x0,y0 ∈ Rn, positive sequences {αk,γk,λk}k and Algorithm M satisfying Assumption 2;
for k = 1 . . .T do
(1) zk = (1−αk)yk−1 +αkxk−1;
(2) xk ≈ proxγkh

(
xk−1− γk(∇ f (zk)+ ξ̄k)

)
(solved inexactly by algorithm M with qk iterations);

(3) yk ≈ proxλkh
(
zk−λk(∇ f (zk)+ ξ̄k)

)
(solved inexactly by algorithm M with pk iterations);

end for
Output: zN where N is randomly selected from {T/2, . . . ,T} with Prob{N = k}= 1

∑
T
k=bT/2c

1−Lλk
16λkΓk

(
1−Lλk
16λkΓk

)
.

Assumption 2 For a given c ∈Rn and γ > 0, consider the problem ũ , proxγh (c). An algorithm M with
an initial point u0, output u and convergence rate of O(1/t2) within t steps exists, such that ‖u− ũ‖2 ≤
(a1‖u0− ũ‖2 +a2)/t2 for some a1,a2 > 0.

Suppose the solutions of proximal operators x̃k , proxγkh
(
xk−1− γk(∇ f (zk)+ ξ̄k)

)
and ỹk , proxλkh(zk

−λk(∇ f (zk)+ ξ̄k)) are not available exactly, instead an ek-subdifferential solution xk and ρk-subdifferential
solution yk are available, respectively. In particular, given ξ̄k for the proximal subproblem in step (2) and (3) of
Algorithm 1 at iteration k, Assumption 2 immediately implies that after qk and pk steps of Algorithm M with
initial point xk−1 and yk−1, we have ek = γk(c1‖xk−1− x̃k‖2 +c2)/q2

k and ρk = λk(b1‖yk−1− ỹk‖2 +b2)/p2
k ,

for some c1,c2,b1,b2 > 0 where γk,λk represents strong convexity of the subproblems, respectively. Later,
in Section 2.1, we show the existence of Algorithm M such that it satisfies Assumption 2.
Remark 1 Note that from Assumption 1(iii) and 2, we can show the following for all k > 0:

‖xk− x̃k‖2 ≤ 1
q2

k

[
2c1(‖xk−1− x̃k−1‖2 +‖x̃k−1− x̃k‖2)+ c2

]
≤ ‖xk−1− x̃k−1‖2 + 8C2+c2

q2
k

=⇒ ‖xk− x̃k‖2 ≤ ‖x0− x̃0‖2 +
k

∑
j=1

8C2+c2
q2

j
=⇒ ‖xk‖ ≤C+

√
‖x0− x̃0‖2 +C̃ , B1, (5)

where C̃ , ∑
k
j=1

8C2+c2
q2

j
and we used the fact that ‖x̃k‖ ≤C.



Boroun and Jalilzadeh

Similarly for step (3) of Algorithm 1, there exist B2,B3 > 0 such that the followings hold for all k > 0,

‖yk‖ ≤ B2, ‖zk‖ ≤ B3. (6)

Next, we state our main lemma that provides a bridge towards driving rate statements.
Lemma 4 Consider Algorithm 1 and suppose Assumption 1 and 2 hold and choose stepsizes αk, γk and λk
such that αkγk ≤ λk. Let ŷk ≈ proxλkh (zk−λk∇ f (zk)) in the sense of (4) and ŷr

k , proxλkh (zk−λk∇ f (zk))
for any k ≥ 1, then the following holds for all T > 0.

E[‖ŷN− zN‖2 +‖ŷr
N− zN‖2]

≤

(
T

∑
k=bT/2c

1−Lλk
16λkΓk

)−1 [
α1

2γ1Γ1
‖x0− x∗‖2 + `

2

T

∑
k=1

αk
Γk

[
2B2

3 +C2 +αk(1−αk)(2B2
2 +B2

1)
]

+
T

∑
k=1

(
λkτ2

ΓkNk(1−Lλk)
+ 2ek

Γk
+

B2
1+C2

γkΓk
+ ρk(1+k)

Γk
+

B2
1+B2

2
kλkΓk

+ 5λkτ2(1−Lλk)
8ΓkNk

+ ρk(1−Lλk)

λ 2
k Γk

)]
. (7)

Proof. First of all from the fact that ∇ f (x) is Lipschitz, for any k ≥ 1, the following holds:

f (yk)≤ f (zk)+ 〈∇ f (zk),yk− zk〉+ L
2‖yk− zk‖2. (8)

Using Assumption 1(ii), for any αk ∈ (0,1) one can obtain the following:

f (zk)− [(1−αk) f (yk−1)+αk f (x)]

= αk[ f (zk)− f (x)]+(1−αk)[ f (zk)− f (yk−1)]

≤ αk[〈∇ f (zk),zk− x〉+ `
2‖zk− x‖2]+ (1−αk)[〈∇ f (zk),zk− yk−1〉+ `

2‖xu− yk−1‖2]

= 〈∇ f (zk),zk−αkx− (1−αk)yk−1〉+ `αk
2 ‖zk− x‖2 + `(1−αk)

2 ‖zk− yk−1‖2

≤ 〈∇ f (zk),zk−αkx− (1−αk)yk−1〉+ `αk
2 ‖zk− x‖2 +

`α2
k (1−αk)

2 ‖yk−1− xk−1‖2, (9)

where in the last inequality we used the fact that zk− yk−1 = αk(xk−1− yk−1). From Lemma 1, if ek be
the error in the proximal map of update xk in Algorithm 1 there exists vk such that ‖vk‖ ≤

√
2γkek and

1
γk

(
xk−1− xk− γk(∇ f (zk)+ ξ̄k)− vk

)
∈ ∂ek h(xk). Therefore, from Definition 1, the following holds:

h(x)≥ h(xk)+ 〈 1
γk
(xk−1− xk)−∇ f (zk)− ξ̄k− 1

γk
vk,x− xk〉− ek

=⇒ 〈∇ f (zk)+ ξ̄k,xk− x〉+h(xk)≤ h(x)− 1
γk
〈vk,xk− x〉+ ek +

1
γk
〈xk−1− xk,xk− x〉.

From Lemma 2, we have that 1
γk
〈xk−1−xk,xk−x〉= 1

2γk
[‖xk−1−x‖2−‖xk−xk−1‖2−‖xk−x‖2], therefore,

〈∇ f (zk)+ ξ̄k,xk− x〉+h(xk)

≤ h(x)− 1
γk
〈vk,xk− x〉+ ek +

1
2γk

[‖xk−1− x‖2−‖xk− xk−1‖2−‖xk− x‖2]. (10)

Similarly if ρk be the error of computing the proximal map of update yk in Algorithm 1, then there
exists wk such that ‖wk‖ ≤

√
2λkρk and one can obtain the following:

〈∇ f (zk)+ ξ̄k,yk− x〉+h(yk)

≤ h(x)− 1
λk
〈wk,yk− x〉+ρk +

1
2λk

[‖zk− x‖2−‖yk− zk‖2−‖yk− x‖2]. (11)
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Letting x = αkxk +(1−αk)yk−1 in (11) for any αk ≥ 0, the following holds:

〈∇ f (zk)+ ξ̄k,yk−αkxk− (1−αk)yk−1〉+h(yk)

≤ h(αkxk +(1−αk)yk−1)− 1
λk
〈wk,yk−αkxk− (1−αk)yk−1〉+ρk

+ 1
2λk

[‖zk−αkxk− (1−αk)yk−1‖2−‖yk− zk‖2].

From convexity of h and step (1) of algorithm 1 we obtain:

〈∇ f (zk)+ ξ̄k,yk−αkxk− (1−αk)yk−1〉+h(yk)

≤ αkh(xk)+(1−αk)h(yk−1)− 1
λk
〈wk,yk−αkxk− (1−αk)yk−1〉+ρk

+ 1
2λk

[α2
k ‖xk− xk−1‖2−‖yk− zk‖2. (12)

Multiplying (10) by αk and then sum it up with (12) gives us the following

〈∇ f (zk)+ ξ̄k,yk−αkx− (1−αk)yk−1〉+h(yk)

≤ (1−αk)h(yk−1)+αkh(x)− αk
2γk

[‖xk−1− x‖2−‖xk− x‖2]− 1
γk
〈vk,xk− x〉

+ ek +
αk(γkαk−λk)

2γkλk︸ ︷︷ ︸
term (a)

‖xk− xk−1‖2− 1
2λk
‖yk− zk‖2− 1

λk
〈wk,yk−αkxk− (1−αk)yk−1〉+ρk. (13)

By choosing γk such that αkγk ≤ λk, one can easily confirm that term (a)≤ 0. Now combining (8), (9)
and (13) and using the facts that g(x) = f (x)+h(x) and zk = yk−1 +αk(xk−1−yk−1), we get the following:

g(yk)≤ (1−αk)g(yk−1)+αkg(x)− 1
2(

1
λk
−L)‖yk− zk‖2 +

term (b)︷ ︸︸ ︷
〈ξ̄k,αk(x− xk−1)+ zk− yk〉

+ αk
2γk

[‖xk−1− x‖2−‖xk− x‖2]+ `αk
2 ‖xmd− x‖2 +

`α2
k (1−αk)

2 ‖yk−1− xk−1‖2

− 1
γk
〈vk,xk− x〉+ ek− 1

λk
〈wk,yk−αkxk− (1−αk)yk−1〉+ρk. (14)

Moreover one can bound term (b) as follows using the Young’s inequality.

〈ξ̄k,αk(x− xk−1)+ zk− yk〉= 〈ξ̄k,αk(x− xk−1)〉+ 〈ξ̄k,zk− yk〉

≤ 〈ξ̄k,αk(x− xk−1)〉+ λk
1−Lλk

‖zk− yk‖2 + 1−Lλk
4λk
‖ξ̄k‖2. (15)

Using (15) in (14), we get the following.

g(yk)≤ (1−αk)g(yk−1)+αkg(x)− 1
4(

1
λk
−L)‖yk− zk‖2 + 〈ξ̄k,αk(x− xk−1)〉+ λk

1−Lλk
‖ξ̄k‖2

+ αk
2γk

[‖xk−1− x‖2−‖xk− x‖2]+ `αk
2 ‖xmd− x‖2 +

`α2
k (1−αk)

2 ‖yk−1− xk−1‖2

− 1
γk
〈vk,xk− x〉+ ek− 1

λk
〈wk,yk−αkxk− (1−αk)yk−1〉+ρk.

Subtract g(x) from both sides, using lemma 3, assuming αk
λkΓk

is a non-decreasing sequence and summing
over k from k = 1 to T, the following can be obtained.

g(xT )−g(x)
ΓT

+
T

∑
k=1

1−Lλk
4λkΓk

‖yk− zk‖2

≤ α1
2γ1Γ1
‖x0− x‖2− αT+1

2γT+1ΓT+1
‖xT − x‖2 + `

2

T

∑
k=1

αk
Γk

[
‖zk− x‖2 +αk(1−αk)‖yk−1− xk−1‖2]

+
T

∑
k=1

αk
Γk
〈ξ̄k,x− xk−1〉+

T

∑
k=1

λk
Γk(1−Lλk)

‖ξ̄k‖2
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−
T

∑
k=1

[ 1
γkΓk
〈vk,xk− x〉+ ek

Γk
− 1

λkΓk
〈wk,yk−αkxk− (1−αk)yk−1〉+ ρk

Γk

]
.

Letting x = x∗ and using Assumption 1(iii), inequalities (5) and (6) and the fact that ‖vk‖ ≤
√

2γkek

and ‖wk‖ ≤
√

2λkρk, we can simplify the above inequality as follows:

g(xT )−g(x∗)
ΓT

+
T

∑
k=1

1−Lλk
4λkΓk

‖yk− zk‖2 ≤ α1
2γ1Γ1
‖x0− x∗‖2 + `

2

T

∑
k=1

αk
Γk

[
2B2

3 +C2 +αk(1−αk)(2B2
2 +B2

1)
]

+
T

∑
k=1

αk
Γk
〈ξ̄k,x∗− xk−1〉+

T

∑
k=1

λk
Γk(1−Lλk)

‖ξ̄k‖2

+
T

∑
k=1

(2ek
Γk

+
B2

1+C2

γkΓk
+ ρk(1+k)

Γk
+

B2
1+B2

2
kλkΓk

)
.

Using the fact that g(xT )− g(x∗) ≥ 0, taking conditional expectation from both sides and applying
Assumption 1(iv) on the conditional first and second moments, we get the following.

T

∑
k=1

1−Lλk
4λkΓk

E[‖yk− zk‖2 |Fk]≤ α1
2γ1Γ1
‖x0− x∗‖2 + `

2

T

∑
k=1

αk
Γk

[
2B2

3 +C2 +αk(1−αk)(2B2
2 +B2

1)
]
+

T

∑
k=1

λkτ2

ΓkNk(1−Lλk)

+
T

∑
k=1

(2ek
Γk

+
B2

1+C2

γkΓk
+ ρk(1+k)

Γk
+

B2
1+B2

2
kλkΓk

)
. (16)

To bound the left-hand side we use the following inequality by defining yr
k , proxλkh

(
zk−λk(∇ f (zk)+ ξ̄k)

)
and ŷr

k , proxλkh (zk−λk∇ f (zk)).

‖yk− zk‖2 =
1
2
‖yk− zk‖2 +

1
2
‖yk− zk‖2

≥ 1
4
‖ŷk− zk‖2− 1

2
‖ŷk− yk‖2 +

1
4
‖ŷr

k− zk‖2− 1
2
‖ŷr

k− yk‖2

≥ 1
4
‖ŷk− zk‖2 +

1
4
‖ŷr

k− zk‖2− 3
2
‖ŷk− ŷr

k‖2− 5
2
‖ŷr

k− yr
k‖2− 5

2
‖yr

k− yk‖2,

where we used the fact that for any a,b ∈ R, we have that (a− b)2 ≥ 1
2 a2− b2 and for any ai ∈ R,

(∑m
i=1 ai)

2 ≤ m∑
m
i=1 a2

i . From Assumption 1(iv), we know that ‖ŷr
k− yr

k‖2 ≤ λ 2
k τ2/Nk, also we know that

‖ŷk − ŷr
k‖2 ≤ ρk/λk and similarly ‖yk − yr

k‖2 ≤ ρk/λk. Therefore, one can conclude that ‖yk − zk‖2 ≥
1
4‖ŷk− zk‖2 + 1

4‖ŷ
r
k− zk‖2− 5

2 λ 2
k τ2/Nk−4ρk/λk. Hence, by taking another expectation from (16) and then

using this bound, the following can be obtained.

T

∑
k=1

1−Lλk
16λkΓk

E[‖ŷk− zk‖2 +‖ŷr
k− zk‖2]

≤ α1
2γ1Γ1
‖x0− x∗‖2 + `

2

T

∑
k=1

αk
Γk

[
2B2

3 +C2 +αk(1−αk)(2B2
2 +B2

1)
]

+
T

∑
k=1

(
λkτ2

ΓkNk(1−Lλk)
+ 2ek

Γk
+

B2
1+C2

γkΓk
+ ρk(1+k)

Γk
+

B2
1+B2

2
kλkΓk

+ 5λkτ2(1−Lλk)
8ΓkNk

+ ρk(1−Lλk)

λ 2
k Γk

)
.

Using the fact that ∑
T
k=bT/2cAt ≤ ∑

T
k=1 At where At =

1−Lλk
16λkΓk

E[‖ŷk− zk‖2 + ‖ŷr
k− zk‖2], dividing both

side by ∑
T
k=bT/2c

1−Lλk
16λkΓk

and using definition of N in Algorithm 1, the desired result can be obtained.
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We are now ready to prove our main rate results.
Theorem 1 Let {yk,xk,zk} generated by Algorithm 1 such that at each iteration k ≥ 1, ek-approximate
solution of step (2) and ρk-approximate solution of step (3) are available through an inner algorithm M .
Suppose Assumption 1 and 2 hold and we select the parameters in Algorithm 1 as αk =

2
k+1 , γk =

k
4L ,

λk =
1

2L , Γk =
2

k(k+1) and Nk = k+1. Then for B = B2
1 +B2

2 +B2
3 +C2, the following holds for all T > 0.

E[‖ŷN− zN‖2 +‖ŷr
N− zN‖2]≤ 128

LT 3

[
2BT (T +1)

(
`
4 +

13τ2

64LB +4L
)
+

T

∑
k=1

(
2ek
Γk

+ ρk(1+k)
Γk

+ 4L2ρk
Γk

)]
, (17)

where ŷk ≈ proxλkh (zk−λk∇ f (zk)) in the sense of (4), and ŷr
k = proxλkh (zk−λk∇ f (zk)) for any k ≥ 1.

Proof. Using the definition of λk and Γk, we get the following.

T

∑
k=bT/2c

1−Lλk
16λkΓk

=
T

∑
k=bT/2c

Lk(k+1)
32 = L

32

[
7T 3

24 +T 2 + 5T
6

]
≥ LT 3

128 . (18)

Next, using the definition of parameters specified in the statement of the theorem we have that

T

∑
k=1

αk
Γk

=
T

∑
k=1

k = T (T+1)
2 ,

T

∑
k=1

τ2

ΓkNk
=

T

∑
k=1

τ2k
2 = τ2T (1+T )

4 ,

T

∑
k=1

1
γkΓk

=
T

∑
k=1

2L(k+1) = 2LT (T +3),
T

∑
k=1

1
kλkΓk

=
T

∑
k=1

L(k+1) = LT (T +3). (19)

Using (18) and (19) in (7) and the fact that αk(1−αk)≤ 1, T+3
T+1 ≤ 2 and defining B = B2

1+B2
2+B2

3+C2

we get the desired result.

Corollary 2 Let {yk,xk,zk} be generated by Algorithm 1 such that at each iteration k≥ 1, ek-approximate
solution of step (2) and ρk-approximate solution of step (3) are calculated by an inner algorithm M where
ek = γk(c1‖xk−1− x̃k‖2 +c2)/q2

k and ρk = λk(b1‖yk−1− ỹk‖2 +b2)/p2
k . Suppose Assumptions 1 and 2 hold

and pk = k+1 and qk = k. If we choose the stepsize parameters as in Theorem 1, then the following holds
for all T ≥ 1.

E[‖ŷN− zN‖2 +‖ŷr
N− zN‖2]≤ D1

T + D2
T 2 , (20)

D1 , 128
L

[
4B
(

`
4 +

13τ2

64LB +4L
)
+
(

c1(2B2
1+C2)+c2

L

)
+
(

b1(2B2
2+C2)+b2
4L

)]
, D2 , 128

(
b1(2B2

2 +C2)+b2
)
,

where ŷk ≈ proxλkh (zk−λk∇ f (zk)) in the sense of (4) and ŷr
k = proxλkh (zk−λk∇ f (zk)) for any k≥ 1. The

oracle complexity (number of gradient samples) to achieve E[‖ŷN− zN‖2 +‖ŷr
N− zN‖2]≤ ε is O(1/ε2).

Proof. Using the definition of the stepsizes, pk, ek, and ρk one can obtain the following:

T

∑
k=1

2ek
Γk
≤ c1(2B2

1+C2)+c2
4L

T

∑
k=1

(k+1) =
(

c1(2B2
1+C2)+c2
4L

)
T (T +3).

T

∑
k=1

ρk(1+k)
Γk
≤ b1(2B2

2+C2)+b2
4L

T

∑
k=1

k =
(

b1(2B2
2+C2)+b2
8L

)
T (T +1).

T

∑
k=1

ρk
Γk

=
(

b1(2B2
2+C2)+b2
4L

) T

∑
k=1

k(k+1)
(k+1)2 ≤

(
b1(2B2

2+C2)+b2
4L

) T

∑
k=1

1 =
(

b1(2B2
2+C2)+b2
4L

)
T.
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Using the above inequalities in (17), we get the desired convergence result. Additionally, the total number
of sample gradients of the objective is ∑

T
k=1 Nk = ∑

T
k=1(k+1) = T (T +3) and the total number of gradients

of the constraint is ∑
T
k=1 pk + qk = ∑

T
k=1 2k+ 1 = T (T + 2). From (20), we have that E[‖ỹN − zN‖2] ≤

O(1/T ) = ε , hence, ∑
T
k=1 Nk = O(1/ε2) and similarly ∑

T
k=1 pk +qk = O(1/ε2).

In the next corollary, we justify our choice of measure. We show that if E[‖ŷr
N− zN‖2]≤ ε , then the

first order optimality condition for problem (2) holds within a ball with radius
√

ε .
Corollary 3 Under the premises of Corollary 2, after running Algorithm 1 for T ≥D/ε iterations, where
D , D1 +D2, the following holds.

0 ∈ E[∇ f (ŷr
N)]+E[∂h(ŷr

N)]+B
(
3L
√

ε
)
.

Proof. Suppose ŷr
N is a solution of proxλNh (zN−λN∇ f (zN)). Then 0∈ ∂h(ŷr

N)+∇ f (zN)+(ŷr
N−zN)/λ .

Adding and subtracting ∇ f (ŷr
N) form the right-hand side of the above inequality, gives the following:

0 ∈ ∂h(ŷr
N)+∇ f (zN)+1/λ (ŷr

N− zN)±∇ f (ŷr
N). (21)

Moreover, using the fact that T ≥D/ε and E[‖ŷr
N− zN‖2]≤ D

T = ε one can show the following result.

E [‖∇ f (zN)−∇ f (ŷr
N)+1/λ (ŷr

N− zN)‖]≤ E [L‖ŷr
N− zN‖+1/λ‖ŷr

N− zN‖]≤ 3L
√

ε,

where we use the fact that λ = 1/(2L). Using the above inequality and taking expectation from (21) the
desired result can be obtained.

In the next section, we show how Algorithm 1 can be customized to solve problem (1).

2.1 Constrained Optimization

Recall that problem (1) can be written in a composite form using an indicator function, i.e. problem (1) is
equivalent to minx g(x) = f (x)+h(x), where h(x) = IΘ(x) and Θ = {x | x ∈ X , φi(x)≤ 0, ∀i = 1, . . . ,m}.
In step (2) and (3) of Algorithm 1, one needs to compute the proximal operators inexactly which are of
the following form:

min
u∈X

1
2γ
‖u− y‖2 s.t. φi(u)≤ 0, i = 1, . . . ,m, (22)

for some y ∈ Rn. Problem (22) has a strongly convex objective function with convex constraints, and
there has been variety of methods developed to solve such problems. One of the efficient methods for
solving large-scale convex constrained optimization problem with strongly convex objective that satisfies
Assumption 2 is first-order primal-dual scheme that guarantees a convergence rate of O(1/

√
ε) in terms

of suboptimality and infeasibility, e.g., He et al. (2015), Hamedani and Aybat (2021). Next, we discuss
some details of implementing such schemes as an inner algorithm for solving the subproblems in step (2)
and (3) of Algorithm 1.

Based on Corollary 2, to obtain a convergence rate of O(1/T ), one needs to find an ek- and εk-
approximated solution in the sense of (4). Note that since the nonsmooth part of the objective function,
h(x), in the proximal subproblem is an indicator function, (4) implies that the approximate solution of
the subproblem has to be feasible, otherwise the indicator function on the left-hand side of (4) goes to
infinity. However, the first-order primal-dual methods mentioned above find an approximate solution which
might be infeasible. To remedy this issue, let x◦ be a slater feasible point of (22) (i.e., φi(x◦)< 0 for all
i = 1, . . . ,m) and let x̂ be the output of the inner algorithm M such that it is ε-suboptimal and ε-infeasible,
then x̃ = κx◦+(1−κ)x̂ is a feasible point of (22) for κ , maxi

[φi(x̂)]+
[φi(x̂)]+−φi(x◦)

which is O(ε)-suboptimal,
see the next lemma for the proof.
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Algorithm 2 IPAG for constrained optimization
input: x◦,x0,y0 ∈ Rn and positive sequences {αk,γk,λk}k, and Algorithm M satisfying Assumption 2;
for k = 1 . . .T do
(1) zk = (1−αk)yk−1 +αkxk−1;
(2) x≈ΠΘ

(
xk−1− γk(∇ f (zk)+ ξ̄k)

)
(solved inexactly by algorithm M with qk iterations);

(3) y≈ΠΘ

(
zk−λk(∇ f (zk)+ ξ̄k)

)
(solved inexactly by algorithm M with pk iterations);

(4) κ = maxi
[φi(x)]+

[φi(x)]+−φi(x◦)
and κ̃ = maxi

[φi(y)]+
[φi(y)]+−φi(x◦)

;
(5) xk = κx◦+(1−κ)x;
(6) yk = κ̃x◦+(1− κ̃)y;
end for
Output: zN where N is randomly selected from {T/2, . . . ,T} with Prob{N = k}= 1

∑
T
k=bT/2c

1−Lλk
16λkΓk

(
1−Lλk
16λkΓk

)
.

Lemma 5 Let x◦ be a strictly feasible point of (22) and x̂ be the output of an inner algorithm M such
that it is ε-suboptimal and ε-infeasible solution of (22). Then x̃ = κx◦+(1−κ)x̂ is a feasible point of (22)
and an O(ε)-approximate solution in the sense of (4) where κ = maxi

[φi(x̂)]+
[φi(x̂)]+−φi(x◦)

.

Proof. Let x∗ be the optimal solution of (22). Since x̂ is ε-suboptimal and ε-infeasible solution, x̂ ∈ X
and the following holds:∣∣ 1

2γ
‖x̂− y‖2− 1

2γ
‖x∗− y‖

∣∣≤ ε, and [φi(x̂)]+ ≤ ε, ∀i ∈ {1, . . . ,m}.

Since X is a convex set and x◦, x̂ ∈ X , then clearly κx◦+(1−κ)x̂ ∈ X for any κ ∈ [0,1]. Moreover,
φi(x◦)< 0 for all i, hence κ = maxi

[φi(x̂)]+
[φi(x̂)]+−φi(x◦)

∈ [0,1] and κ ≤ ε

mini{−φi(x◦)} . From convexity of φi(·), one
can show the following for all i = 1, . . . ,m.

φi(x̃)≤ κφi(x◦)+(1−κ)φi(x̂)≤ 0,

where we used the definition of κ . Hence, x̃ is a feasible point of (22). Next, we verify x̃ satisfies (4).

1
2γ
‖x̃− y‖2 + IΘ(x̃)− 1

2γ
‖x∗− y‖2− IΘ(x∗)

= 1
2γ
‖x̃− y± x◦‖2− 1

2γ
‖x∗− y‖2

≤ κ2

2γ
‖x◦− y‖2 + (1−κ)2

2γ
‖x̂− y‖2 + κ(1−κ)

γ
‖x◦− y‖2‖x̂− y‖2− 1

2γ
‖x∗− y‖2

= κ2

2γ
‖x◦− y‖2 + κ(1−κ)

γ
‖x◦− y‖2‖x̂− y‖2 +(1−κ

2)
[

1
2γ
‖x̂− y‖− 1

2γ
‖x∗− y‖

]
− 1−(1−κ2)

2γ
‖x∗− y‖2

≤ κ2

2γ
‖x◦− y‖2 + κ(1−κ)

γ
‖x◦− y‖2‖x̂− y‖2 + ε ≤O(ε),

where we used the fact that x̂,x∗ are feasible, x̂ is ε-suboptimal and κ ≤ ε

mini{−φi(x◦)} .

In the following corollary, we show that the output of Algorithm 2 is feasible to problem (1) and
satisfies ε-first-order optimality condition.
Corollary 4 Consider problem (1). Suppose Assumption 1 and 2 hold and let {yk,xk,zk} be generated
by Algorithm 2 such that the stepsizes and parameters are chosen as in Corollary 2. Then the iterates are
feasible and E

[
‖zN−ΠΘ (zN−λN∇ f (zN))‖2

]
≤O(ε) holds with an oracle complexity O(1/ε2).

Proof. From Lemma 5 we know that the iterates are feasible and from Corollary 2, we conclude that
E[‖̂yr

N − zN‖2] ≤ ε with an oracle complexity O(1/ε2). Considering problem (1), definition of ŷr
N is

equivalent to ŷr
N = ΠΘ (zN−λN∇ f (zN)) which implies the desired result.
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3 NUMERICAL EXPERIMENTS

The goal of this section is to present some computational results to compare the performance of the IPAG
method with another competitive scheme. For Algorithm 2, we consider accelerated primal-dual algorithm
with backtracking (APDB) method introduced by Hamedani and Aybat (2021) as the inner algorithm
M . In particular, APDB is a primal-dual scheme with a convergence guarantee of O(1/T 2) in terms
of suboptimality and infeasibility when implemented for solving (22) which satisfies the requirements of
Corollary 4, i.e., produces approximate solutions for the proximal subproblems.

Example. The IPAG method is benchmarked against the inexact constrained proximal point algorithm
(ICPP) introduced by Boob et al. (2019). Consider the following stochastic quadratic programming problem:

min
−10≤x≤10

f (x),− ε

2‖DBx‖2 + τ

2E[‖Ax−b(ξ )‖2] s.t. 1
2 xT Qix+dT

i x− ci ≤ 0, ∀i = 1 . . .m,

where A ∈ Rp×n, p = n/2, B ∈ Rn×n,D ∈ Rn×n is a diagonal matrix, b(ξ ) = b+ω ∈ Rp×1, where the
elements of ω have an i.i.d. standard normal distribution. The entries of matrices A, B, and vector b
are generated by sampling from the uniform distribution U[0,1] and the diagonal entries of matrix D
are generated by sampling from the discrete uniform distribution U{1,1000}. Moreover, (δ ,τ) ∈ R2

++ ,
Qi ∈Rn×n, di ∈Rn×1 and ci ∈R for all i ∈ {1, . . . ,m}. We chose scalers δ and τ such that λmin(∇

2 f )< 0,
i.e., minimum eigenvalue of the Hessian is negative. Note that Assumption 1(i) holds for x◦ = 0, where 0
is the vector of zeros. In Table 1, we compared the objective value, CPU time, and infeasibility (Infeas.) of
our proposed method with ICPP. To have a fair comparison, we fixed the oracle complexity (i.e. the number
of computed gradients is equal for both methods). As it can be seen in the table, for different choices of
m and n, IPAG scheme outperforms ICPP. For instance, when we have 25 constraints and n = 100, the
objective value for our scheme reaches f (xT ) =−6.78e+5 which is significantly smaller than −4.85e+4
for ICPP method. Note that our scheme, in contrast to ICPP, obtains a feasible solution at each iteration.

Table 1: Comparing IPAG and ICPP for different choices of m and n.

IPAG ICPP
n m f (xT ) Infeas. CPU(s) f (xT ) Infeas. CPU(s)

100 25 -6.78e+5 0 12.10 -4.85e+4 3.56e-1 32.99
100 50 -8.53e+5 0 31.76 -2.42e+4 3.23e-1 65.79
100 75 -4.18e+5 0 52.43 -2.16e+4 3.75e-1 110.53
200 25 -3.22e+6 0 65.56 -1.81e+5 2.56e-1 132.18
200 50 -1.85e+6 0 90.49 -8.45e+4 4.54e-1 208.84
200 75 -1.33e+6 0 138.75 -7.78e+4 3.93e-1 287.20

In Table 2, we compared the methods for different choices of standard deviation (std.) of ω and IPAG
scheme outperforms ICPP, similar to Table 1.

Table 2: Comparing IPAG and ICPP for different choices of standard deviation.

IPAG ICPP
n m std. f (xT ) f (xT )

100 25 1 -6.7866e+5 -4.8563e+4
100 25 5 -6.5288e+5 -4.8596e+4
100 25 10 -6.2336e+5 -4.8528e+4
200 50 1 -1.8552e+6 -8.4550e+4
200 50 5 -1.8452e+6 -8.5264e+4
200 50 10 -1.8383e+6 -8.6096e+4



Boroun and Jalilzadeh

REFERENCES
Basu, K., and P. Nandy. 2019. “Optimal convergence for stochastic optimization with multiple expectation constraints”. arXiv

preprint arXiv:1906.03401.
Boob, D., Q. Deng, and G. Lan. 2019. “Stochastic first-order methods for convex and nonconvex functional constrained

optimization”. arXiv preprint arXiv:1908.02734.
Ghadimi, S., and G. Lan. 2013. “Stochastic first-and zeroth-order methods for nonconvex stochastic programming”. SIAM

Journal on Optimization 23(4):2341–2368.
Ghadimi, S., and G. Lan. 2016. “Accelerated gradient methods for nonconvex nonlinear and stochastic programming”.

Mathematical Programming 156(1-2):59–99.
Ghadimi, S., G. Lan, and H. Zhang. 2016. “Mini-batch stochastic approximation methods for nonconvex stochastic composite

optimization”. Mathematical Programming 155(1-2):267–305.
Hamedani, E. Y., and N. S. Aybat. 2021. “A Primal-Dual Algorithm with Line Search for General Convex-Concave Saddle

Point Problems”. SIAM Journal on Optimization 31(2):1299–1329.
He, N., A. Juditsky, and A. Nemirovski. 2015. “Mirror prox algorithm for multi-term composite minimization and semi-separable

problems”. Computational Optimization and Applications 61(2):275–319.
Kong, W., J. G. Melo, and R. D. Monteiro. 2019. “Complexity of a quadratic penalty accelerated inexact proximal point method

for solving linearly constrained nonconvex composite programs”. SIAM Journal on Optimization 29(4):2566–2593.
Lan, G., and Y. Yang. 2019. “Accelerated stochastic algorithms for nonconvex finite-sum and multiblock optimization”. SIAM

Journal on Optimization 29(4):2753–2784.
Lan, G., and Z. Zhou. 2016. “Algorithms for stochastic optimization with expectation constraints”. arXiv preprint arXiv:1604.03887.
Li, Z., P.-Y. Chen, S. Liu, S. Lu, and Y. Xu. 2021. “Rate-improved inexact augmented Lagrangian method for constrained

nonconvex optimization”. In International Conference on Artificial Intelligence and Statistics, 2170–2178. PMLR.
Li, Z., and Y. Xu. 2020. “Augmented lagrangian based first-order methods for convex and nonconvex programs: nonergodic

convergence and iteration complexity”. arXiv preprint arXiv:2003.08880.
Lin, Q., R. Ma, and Y. Xu. 2019. “Inexact proximal-point penalty methods for constrained non-convex optimization”. arXiv

preprint arXiv:1908.11518.
Ma, K., Y. Bai, J. Yang, Y. Yu, and Q. Yang. 2017. “Demand-side energy management based on nonconvex optimization in

smart grid”. Energies 10(10):1538.
Nemirovski, A. S., and D. B. Yudin. 1983. Problem complexity and method efficiency in optimization. New York: John Wiley

& Sons.
Pham, N. H., L. M. Nguyen, D. T. Phan, and Q. Tran-Dinh. 2020. “ProxSARAH: An efficient algorithmic framework for

stochastic composite nonconvex optimization”. Journal of Machine Learning Research 21(110):1–48.
Schmidt, M., N. L. Roux, and F. Bach. 2011. “Convergence rates of inexact proximal-gradient methods for convex optimization”.

In Proceedings of the 24th International Conference on Neural Information Processing Systems, 1458–1466.
Tran-Dinh, Q., and V. Cevher. 2014. “A primal-dual algorithmic framework for constrained convex minimization”. arXiv preprint

arXiv:1406.5403.
Ullah, Z., F. Al-Turjman, L. Mostarda, and R. Gagliardi. 2020. “Applications of artificial intelligence and machine learning in

smart cities”. Computer Communications 154:313–323.
Xu, Y. 2021. “Iteration complexity of inexact augmented lagrangian methods for constrained convex programming”. Mathematical

Programming 185(1):199–244.
Zhang, S., and N. He. 2018. “On the convergence rate of stochastic mirror descent for nonsmooth nonconvex optimization”.

arXiv preprint arXiv:1806.04781.

AUTHOR BIOGRAPHIES
MORTEZA BOROUN is a Ph.D. student in Systems and Industrial Engineering at the University of Arizona. He received his
master’s degree in Industrial Engineering from the University of Texas at Arlington. His research interests include stochastic
optimization, convex optimization, and data analytics. His email address is morteza@email.arizona.edu.

AFROOZ JALILZADEH is an assistant professor in Systems and Industrial Engineering at the University of Arizona. She
holds a Ph.D. in Industrial Engineering and Operations Research from Pennsylvania State University. Her research interests
include stochastic optimization, variational inequality problems, and large-scale convex optimization. Her e-mail address is
afrooz@email.arizona.edu. Her website is https://profiles.arizona.edu/person/afrooz.

mailto://morteza@email.arizona.edu
mailto://afrooz@email.arizona.edu
https://profiles.arizona.edu/person/afrooz

	INTRODUCTION
	Notations
	Related Works
	Contributions
	Assumptions and Definitions

	CONVERGENCE ANALYSIS
	Constrained Optimization

	NUMERICAL EXPERIMENTS

