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ABSTRACT

We present an enhanced stochastic trust-region optimization with adaptive sampling (ASTRO-DF) in which
optimizing an iteratively constructed local model on estimates of objective values with stochastic sample
size guides the search. The noticeable feature is that the underdetermined quadratic model with a diagonal
Hessian requires fewer function evaluations, which is particularly useful at high dimensions. This paper
describes the enhanced algorithm in detail. It gives several theoretical results, including iteration complexity,
and renders almost sure convergence guarantees. We report in our numerical experience the finite-time
superiority of the enhanced ASTRO-DF over state-of-the-art using the SimOpt library.

1 INTRODUCTION

This work considers unconstrained stochastic optimization (SO) problems of the form

min
x∈Rd

{
f(x) := E[F (x, ξ)] =

∫
Ω
F (x, ξ)dP (ξ)

}
, (1)

where f : Rd → R is smooth and bounded from below, andF : Rd×Ω → R is defined on a probability space
(Ω,F , P ). We denote the optimal value by f∗ := infx∈Rd f(x) > −∞. Since f(x) is only observable by
a Monte Carlo simulation, we can generate the random variable F (x). Hence, the estimator of f(x) can
be obtained by f(x, n) = n−1

∑n
i=1 F (x, ξi), and let σ̂2

F (x, n) = (n− 1)−1
∑n

j=1(F (x, ξi)− f(x, n))2

be its estimated variance. Furthermore, the consider zeroth-order stochastic oracles, where the derivative
information is not directly available from the Monte Carlo Simulation.

Trust region optimization (TRO) is a popular solver for nonlinear and nonconvex problems, especially in
noisy settings. Recently, developing stochastic trust-region methods has gained a lot of attention. STRONG
(Chang et al. 2013) obtains first-order convergence almost surely under certain conditions for the problem
and the estimators for first-order oracles. STORM (Chen et al. 2018) is another stochastic TRO algorithm
that uses random models of specified accuracy.

SO on zeroth-order oracles, also known as derivative-free (DF) optimization, is particularly difficult
for its rapidly growing cost with dimension. A key component of DF algorithms is their implicit or
explicit estimation of the underlying function’s gradient and Hessian at each iteration. We can approximate
the derivative information through several methods: finite-difference approximations, response surface
methodology via interpolation models, and Gaussian smoothing. We focus on interpolation and how it
can be made more efficient for higher-dimensional problems. TRO-DF via interpolation requires function
evaluations at several points in a neighborhood of the incumbent solution. In particular, to construct a
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quadratic model with interpolation, the function needs to be estimated at (d + 1)(d + 2)/2 number of
points. However, Monte Carlo oracle calls often have a high computational burden. This requirement
quickly becomes an impediment for efficiency, not only because, especially in stochastic settings, estimation
error at each point adds to the source of error, but also because picking the best set of points in a higher
dimension quickly becomes cumbersome. ASTRO-DF (Shashaani et al. 2018) devises an algorithm that
addresses efficiency by selecting the sample size, i.e., the number of times the oracle is invoked at each
point adaptively. The main idea of adaptive sampling is to limit the effort commensurate with inferred
optimality gap: far solutions need fewer samples while closer solutions need more. Despite promising
theoretical and empirical results, ASTRO-DF still suffers from the curse of dimensionality.

Our paper combines two main ideals to design a new derivative-free optimization solver for (1). The
first idea is the ASDTRO-DF scheme with an improved sample size lower bound. The second one is a
derivative estimation via interpolation using the coordinate basis by Coope and Tappenden (2020) that
requires only O(d) number of points. Utilizing these ideas, we propose a new variant of ASTRO-DF
that has convergence rate guarantees which its original version lacks. The improvements are shown
theoretically in Theorem 3 and empirically in Section 4. Our theoretical results are the first to prove almost
sure iteration complexity; the existing optimization algorithms for stochastic simulations only guarantee
iteration complexity in expectation (Blanchet et al. 2019).

1.1 ASTRO-DF Algorithm

ASTRO-DF follows the same logic as its deterministic counterpart (DTRO-DF) algorithms (Shashaani
et al. 2018). At each iteration k, the objective function is improved by optimizing a second-order model
constructed only via function value estimates at the incumbent solution Xk and d(d+ 3)/2 design points
with a poised spread around Xk. At each point, the number of Monte Carlo oracle calls is adaptive by
balancing the standard error with the optimality error measured by the size of the trust-region ∆k to the
fourth power. Furthermore, special care ensures that the quadratic model’s gradient remains in lock-step
with ∆k. After the model construction, minimizing the local model (inexactly) within the trust region
obtains the next candidate incumbent X̃k+1 for iteration k + 1. X̃k+1 is accepted, and the trust-region
expanded if the success ratio, which reflects how well the model has predicted the underlying function,
is large enough. Otherwise, a new candidate incumbent solution is attempted in the next iteration from
the same place but with points selected from a contracted trust region. ASTRO-DF globally converges
to a first-order critical point almost surely. Global convergence here means that irrespective of where the
starting solution is, the algorithm is guaranteed to converge almost surely.

1.2 Notations and Definitions

We use bold font for vectors; hence x = (x1, x2, · · · , xd) ∈ IRd denotes a d-dimensional vector of real
numbers. Let ei ∈ IRd for i = 1, . . . , d denote the standard unit basis vectors in IRd, and B(y0; δ) = {y ∈
IRd : ∥y− y0∥2 ≤ δ} be the closed ball of radius δ > 0 centered at y0. Y = {y0,y1, . . . ,yp} ⊂ B(y0; δ)
denotes the sample set which is used to fit a local model that can help approximate the gradient and Hessian.
Let tϵ := min{k ∈ N : ∥▽f(xk)∥ ≤ ϵ} be the first-order ϵ-stationary stopping time.

Next, we introduce several definitions which will be invoked during the rest of the paper.
Definition 1 (polynomial interpolation models). Given y ∈ Rd and δ > 0, let f : Rd → R be a real-valued
function and Φ(z) = (ϕ0(z), ϕ1(z), . . . , ϕq(z)) be a polynomial basis on Rd. With p = q and Y , suppose
that we can find α = (α0, α1, . . . , αp)

⊺ such that M(Φ,Y)α = f(Y), where

M(Φ,Y) =


ϕ0(y

0) ϕ1(y
0) · · · ϕq(y

0)
ϕ0(y

1) ϕ1(y
1) · · · ϕq(y

1)
...

...
...

...
ϕ0(y

p) ϕ1(y
p) · · · ϕq(y

p)

 , α =


α0

α1
...
αp

 , f(Y) =


f(y0)
f(y1)

...
f(yp)

 .
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Then, the function m(z) : B(y0; δ) → R, as m(z) =
∑p

j=0 αjϕj(z) is a polynomial interpolation
model of f on B(y0; δ). Let g(y0) =

[
α1 α2 · · · αd

]⊺ be the subvector of α and H(y0) be a symmetric
matrix of order d. The elements of H(y0) are uniquely defined by

[
αd+1 αd+2 · · · αp

]⊺. Then, we
can define a quadratic interpolating polynomial model m : B(y0; δ) ⊂ Rd → R, as

m(y) = m(y0) + (y − y0)⊺g(y0) +
1

2
(y − y0)⊺H(y0)(y − y0), (2)

where y0 ∈ Rd and δ > 0.
Definition 2 (diagonal quadratic interpolation models with coordinate bases) A special case of (2) is when
the Hessian has only diagonal values, which we denote by D(y0) and define as

D(y0) =

h1 . . .
hd

 ∈ Rd×d.

In the quadratic interpolation model with diagonal Hessian p = 2d and the model defined in (2) contains
2d + 1 unknowns. Hence, 2d + 1 interpolation points and function evaluations are needed to uniquely
determine the g(y0) and D(y0). We set

Ycb = {y0,y0 + e1δ, . . . ,y
0 + edδ,y

0 − e1δ, . . . ,y
0 − edδ}

contained in the ball B(y0; δ). Since the coordinate basis is used to generate the interpolation points, α is
guaranteed to exist. Hence, hi ≤ ∞ for all i = 1, 2, . . . , d. In this case,

Φ̄(z) := (1, z1, z2, . . . , zd, z
2
1 , z

2
2 , . . . , z

2
d),

and m(z) is said to be a diagonal quadratic interpolation model.
Definition 3 (fully linear models) Given y ∈ Rd and δ > 0, a model function m(y) : B(y0; δ) → R is the
fully linear model of f if ▽m(y) is Lipschitz continuous with constant νm1 , and there exist two positive
constants κeg and κef such that

∥▽f(y)− ▽m(y)∥ ≤ κegδ,

∥f(y)−m(y)∥ ≤ κefδ
2.

Definition 4 (Cauchy reduction) Given m(·) on B(x; δ), sc is the Cauchy step if

m(x)−m(x+ sc) ≥ 1

2
∥▽m(x)∥min

{
∥▽m(x)∥
∥▽2m(x)∥

, δ

}
.

We assume that ∥▽m(x)∥/∥▽2m(x)∥ = +∞ when ∥▽2m(x)∥ = 0. The Cauchy step is obtained by
minimizing the model m(·) along the steepest descent direction within B(x; δ).

The standing assumptions for the remainder of the paper are:
Assumption 1 We assume that the function f is twice continuously differentiable in an open domain Ω
containing B(y0; δ), ▽f is Lipschitz continuous in Ω with Lipschitz constant κLg > 0.
Assumption 2 There exists a constant κfcd ∈ (0, 1] such that for all iterations k we have

mk(xk)−mk(xk + sk) ≥ κfcd[mk(xk)−mk(xk + sck)],

where sck is the Cauchy step.
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2 EFFECTS OF UNDER-DETERMINED LOCAL MODEL ON DETERMINISTIC TRO-DF

Before analyzing the complexity of the improved ASTRO-DF, we first provide the iteration complexity
and the oracle complexity for DTRO-DF with diagonal Hessian. On iteration k, DTRO-DF with diagonal
Hessian follows the same steps of Algorithm 1 in (Shashaani et al. 2016), except that the interpolation
set for the local model construction is selected based on the coordinate basis, that is, in a deterministic
manner as described in Definition 2. Consequently, the quadratic model is under-determined.

2.1 Consistency

DTRO-DF converges to a first-order critical point globally as long as the local model is fully linear (see
Definition 3). We show that this consistency result is not lost by proving that the local model with diagonal
Hessian is fully linear model. The general underdetermined interpolating model can easily be shown to
follow the full-linearity guarantee in Theorem 5.4 (Conn et al. 2009b). More specifically we can trivially
show the following result and choose not to include the proof due to space limits.
Theorem 1 Let Assumption 1 hold, and the interpolation model m(z) be constructed via points selected
following a coordinated basis, i.e., Ycb. Given that the model gradient ▽m(y) = (y−y0)⊺D(y0)+ g(y0)
for all points y in B(y0; δ), let 0 < κD be the uniform upper bound on the model Hessian norm ∥D(y0)∥.
Then, we can uniformly bound the model gradient error by

∥▽m(y)− ▽f(y)∥ ≤ κegδ,

where κeg = 5
√
2d
2 (κLg + κD).

From Theorem 1, the next result which is the same as Theorem 10.12 (Conn et al. 2009b) holds true.
Theorem 2 Suppose {xk} is a sequence generated by the DTRO-DF Algorithm. Let Assumption 1 and 2
hold and κD > 0 be the uniform upper bound on the model Hessian norm ∥Dk(xk)∥ for all k. Moreover,
suppose that the model mk(·) is fully linear on B(xk; δ̌k) with model gradient error constant κeg. Then,

lim inf
k→+∞

∥▽f(xk)∥ = 0.

We notice that limk→+∞ ∥▽f(xk)∥ = 0 is also satisfied from Theorem 2 by the continuity of f . Due
to space limit we refer the interested reader to (Shashaani et al. 2018) for more details.

2.2 Iteration and Oracle Complexity of the DTRO-DF Algorithm

We know that the DTRO-DF Algorithm converges to the first-order critical point. The first-order ϵ-stationary
stopping time tϵ can be obtained by the existing result (Curtis and Scheinberg 2020), listed below.
Theorem 3 Let {τk} be a sequence of nonnegative constants, lϵ : [0,∞) → (0,∞) be a non-decreasing
function and Θ ∈ (0,∞) be a scalar such that, for all k < tϵ, if iteration k is successful, i.e., ρk =

f(xk)−f(x̃k+1)
mk(xk)−mk(x̃k+1)

≥ η1 for a given η1 > 0, τk − τk+1 ≥ Θlϵ(δk), and δϵ be a non-negative constant such

that for all k ≤ tϵ, δk ≤ δϵ implies iteration k is successful. Then tϵ ≤ O
(

τ0
lϵ(δϵ)

)
.

To obtain the oracle complexity, we need the iteration complexity and the arithmetic complexity for
each iteration. The following new result ensures that the contraction loop (see Algorithm 1 for its stochastic
version) terminates with in a finite number of steps that is bounded by a bound that is independent of the
iteration.
Theorem 4 In the DTRO-DF Algorithm, for all k < tϵ given some ϵ > 0, the contraction loop terminates
in uniformly bounded finitely many steps where the uniform upper bound is

κclu =

⌈
logw

µϵ

(µκeg + 1)δmax
+ 1

⌉
.
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Proof. For an arbitrary iteration k < tϵ for which we have ∥▽f(xk)∥ ≥ ϵ, let jk be the last run of the
contraction loop, i.e., ∥▽m(j)

k (xk)∥ < µ−1δ
(j)
k for all j < jk. Consider jk − 1, one to the last run of the

contraction loop at iteration k. Full-linearity of the model mk(·) satisfies

∥▽f(xk)− ▽m(jk−1)
k (xk)∥ ≤ κegδkw

jk−2.

Then, by the triangle inequality

∥▽m(jk−1)
k (xk)∥ ≥ ∥▽f(xk)∥ − ∥▽f(xk)− ▽m(jk−1)

k (xk)∥
≥ ϵ− κegδkw

jk−2.

Hence, we get ϵ− κegδkw
jk−2 < µ−1δkw

jk−2 from which we obtain

jk <
log(µϵ)− log((1 + µκeg)δmax)

logw
+ 2

=
log(µϵ)− log(1 + µ(5

√
2d
2 (κLg + κD)))δmax

logw
+ 2,

(3)

where the second equality comes from Theorem 1. Consequently, jk ≤ κclu for all k < tϵ.

Notice from (3) that we can say κclu = O
(
log d

ϵ

)
. We will be using the same uniform bound in the

stochastic proofs in Section 3, by later proving that the additional stochastic error is notwithstanding the
results. To obtain the arithmetic complexity at iteration k, given the uniform upper bound on the number
of function evaluations at iterations k, we need to know how many iterations are required to achieve an
ϵ-stationary solution.
Theorem 5 Let {xk} be a sequence of iterates generated by the DTRO-DF Algorithm, and let Assumptions
1 and 2 hold. Then the first-order ϵ-stationary stopping time satisfies tϵ = O(ϵ−2).

Proof. In order to prove Theorem 5, we need to show that DTRO-DF satisfies two conditions mentioned
in Theorem 3. We define τk := v(f(xk)− f∗) + (1− v)δ2k for some v ∈ (0, 1). Then, we get

τk − τk+1 = v(f(xk)− f(xk+1)) + (1− v)(δ2k − δ2k+1).

By Assumption 2, if iteration k is very successful, we obtain

f(xk)− f(xk+1) ≥ η2(m(xk)−m(xk+1))

≥ η2
κfcd
2

∥▽mk(xk)∥min

{
∥▽mk(xk)∥

κD
, δ̌k

}
≥ η2

κfcd
2µ

δ̌2k min

{
1

κDµ
, 1

}
≥ η2

κfcd
2µ

min

{
1

κDµ
, 1

}
w2(κclu−1)δ2k,

where the third inequality comes from the fact that δ̌k ≤ µ∥▽mk(xk)∥. Since δk+1 = min{γ2δ̌k, δmax} ≤
γ2δk, we obtain

τk − τk+1 ≥
(
vη2

κfcd
2µ

min

{
1

µκD
, 1

}
w2(κclu−1)

)
δ2k + (1− v)(δ2k − δ2k+1)

≥
(
vη2

κfcd
2µ

min

{
1

µκD
, 1

}
w2(κclu−1) + (1− v)(1− γ22)

)
δ2k.
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If iteration k is successful, τk − τk+1 = (1− v)(δ2k − δ2k+1) ≥ 0, since δk+1 = δ̌k ≤ δk. Otherwise, if
iteration k is unsuccessful,

τk − τk+1 = (1− v)(δ2k − δ2k+1) ≥ (1− v)(1− γ21)δ
2
k ≥ 0,

where the last inequality comes from the fact that δk+1 = γ1δ̌k ≤ γ1δk. Then, we can see that τk − τk+1 is
always positive by choosing v sufficiently close to 1. As a result, for k ≤ tϵ, we obtain τk − τk+1 ≥ θδ2k,
where θ ∈ (0,∞). Now, we derive that there exists δϵ such that δk ≥ δϵ for all k ≤ tϵ. For all k ≤ tϵ, we
have ∥▽f(xk)∥ > ϵ and thus, we get ∥▽mk(xk)∥ > ∥▽f(xk)∥ − ∥▽mk(xk)− ▽f(xk)∥ > ϵ− κeq δ̌k.

Then, since δ̌k ≥ β∥▽mk(xk)∥ and δk+1 ≥ γ1δ̌k, we obtain δk+1 ≥ γ1δ̌k ≥ γ1βϵ
1+βκeg

= δϵ. It means
that δk is always greater than or equal to δϵ for all k ≤ tϵ and thus, when δk < δϵ, k-th iteration is always
successful. Thus, the two conditions mentioned in Theorem 3 are satisfied and we get

tϵ ≤
v(f(x0)− f∗) + (1− v)δ20

θδ2ϵ
= O(ϵ−2).

Corollary 6 If we let wϵ be the total work, that is, the total number of function evaluations until the
ϵ-accuracy stopping time tϵ, then wϵ = O( d

ϵ2
log(dϵ )).

Proof. Since 2d new points are evaluated at each run of the model construction inner loop, the total
number of function evaluations for each iteration is at most 2dκclu + 1. Hence, the oracle complexity
becomes wϵ ≤ tϵ(2dκclu + 1) = O( d

ϵ2
log(dϵ )) by Theorems 5 and 4.

Note, if a quadratic local model is constructed with O(d2) order of interpolation points, then the oracle
complexity increases to wϵ ≤ O(d

2

ϵ2
log(dϵ )), which is much worse. Hence, ASTRO-DF with enhancements

can achieve the first-order stationary point faster than the original ASTRO-DF.

3 ASTRO-DF ENHANCEMENTS AND COMPLEXITY ANALYSIS

In ASTRO-DF the function values are estimated at each x ∈ IRd with a random sample size of the form
(4) that determines the accuracy needed at x to enable a speedy convergence to the first-order stationary
point. More precisely, for the random sequence of incumbent solutions generated by ASTRO-DF that we
denote by {Xk, k ∈ N}, each estimated objective function value is denoted by f(Xk, Nk). A complication
in the stochastic setting is that unlike its deterministic counterpart, the function value estimates changes in
almost all iterations, i.e., f(Xk, Nk) ̸= f(Xk+1, Nk+1) even when Xk = Xk+1 as a result of unsuccessful
iterations due to the changed sample size. The main changes from the original ASTRO-DF algorithm, as
developed by Shashaani, Hashemi, and Pasupathy (2018) are the following:

1. In the new ASTRO-DF version, the point selection is deterministic. The only source of stochasticity
is that only function estimates are used at each visited point instead of the true function values to
build the local model, which determines the next iterate.

2. The local model is constructed with 2d new points along the coordinate bases on the trust-region
boundary in each iteration to obtain a diagonal Hessian model.

3. The deterministic sample size lower bound sequence, i.e., {λk, k ∈ N} now grows logarithmically
instead of linearly with k. Consequently, slower growth in the minimum sample size saves more of
the budget as the iterations proceed. Showing that the new rate of λk is adequate for convergence
requires an additional assumption on the function value observations. They are sub-exponential
and possess well-defined moment-generating functions.
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Algorithm 1 ASTRO-DF Algorithm with Enhancements

Require: Initial guess x0 ∈ IRd, initial and maximum trust-region radii 0 < ∆0 < ∆max, model “fitness”
thresholds 0 ≤ η1 < η2, trust-region contraction and expansion constants 0 < γ1 < 1 < γ2, sample
size lower bound sequence {λk}k∈N such that (log k)1+ϵ0 = O(λk) for some ϵ0 > 0, outer and inner
adaptive sampling constants κoas, κias > 0, inner loop contraction factor w ∈ (0, 1), and gradient
balance constants 0 < β < µ.

1: for k = 0, 1, 2, . . . do
Model Construction in a Contraction Loop:

2: Initialize j = 1.
3: repeat

4: Let ∆(j)
k = ∆kw

j−1, Xk := Y
(j)
k,0 , and the interpolation set Y(j)

cb =
(
Y

(j)
k,i ∈ B(Xk; ∆

(j)
k )

)2d

i=1
.

5: Estimate f
(
Y

(j)
k,i , N

(
Y

(j)
k,i

))
for all i = 0, 1, 2, . . . , 2d, where

N
(
Y

(j)
k,i

)
= max

{
λk,min

{
n :

σ̂F

(
Y

(j)
k,i , n

)
√
n

≤
κias(∆

(j)
k )2√

λk

}}
. (4)

6: Construct the model with a diagonal Hessian M
(j)
k (Xk + s) via interpolation and set j = j +1.

7: until ∆(j)
k ≤ µ∥∇M

(j)
k (Xk) ∥.

8: Set Ňk = N(Yk,0), and ∆̌k = min
{
∆k,max

{
β
∥∥∥∇M

(j)
k (Xk)

∥∥∥ ,∆(j)
k

}}
.

TR Subproblem:
9: Approximate the k-th step Sk = argmin∥s∥≤∆̌k

M
(j)
k (Xk + s), and set X̃k+1 = Xk + Sk.

10: Estimate f(X̃k+1, Ñk+1), where

Ñk+1 = max

{
λk,min

{
n :

σ̂F

(
X̃k+1, n

)
√
n

≤
κoas∆̌

2
k√

λk

}}
.

Update:

11: Compute success ratio ρ̂k =
f(Xk,Ňk)−f(X̃k+1,Ñk+1)
M

(j)
k (Xk)−M

(j)
k (X̃k+1)

, and set

(Xk+1, Nk+1,∆k+1) =


(X̃k+1, Ñk+1,min{γ2∆̌k,∆max}), if ρ̂k ≥ η2 [very successful iteration]
(X̃k+1, Ñk+1, ∆̌k), if ρ̂k ∈ [η1, η2) [successful iteration]
(X̃k, Ňk, γ1∆̌k), otherwise [unsuccessful iteration].

12: end for

4. Rather than two types of iterations, namely, successful and unsuccessful, we now allow success
(accepting the candidate solution as new incumbent) to occur with minimal improvement instead
of sufficient improvement. We measure the improvement by the success ratio using threshold η1;
note η1 = 0 implies any improvement in the estimated function values is a success. However, we
only expand the trust-region if the improvement is more significant using threshold η2 > η1. In
this case, we call the iteration very successful, hence producing three types of iterations.

Algorithm 1 lists the new version with the enhancements. In what follows, we first show that the
new local model construction with deterministic point selection renders the full-linearity of the model’s
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required quality in every iteration. This requirement in full Hessian quadratic models is expensive and
hence only ensured in selected iterations or when near a critical region in the search space (Conn et al.
2009a). We extend the existing results that guarantee almost sure convergence of the algorithm to the
enhanced ASTRO-DF. More importantly, we focus on the efficiency of the stochastic trust-region algorithm
in terms of the expected number of iterations to reach an ϵ-accuracy in the optimality gap. To that end,
we define the sample-path stopping time quantity Tϵ := min{k : ∥▽f(Xk)∥ ≤ ϵ}. Existing iteration
complexity analysis by Blanchet et al. (2019) leverages a supermartingale property of the sample path
optimality gap and provides O(ϵ−2) iteration complexity in expectation. This result is proven for STORM
and developed by Chen et al. (2018), that uses probabilistically accurate estimated and probabilistically
fully-linear models. We extend the same results for the ASTRO-DF framework by proving the optimality
gap stochastic process follows the supermartingale property-like conditions. However, we further discuss
the requirements needed to make stronger iteration complexity with almost sure guarantees rather than in
expectation guarantees, using similar arguments as in stochastic approximation and the famous result of
Robbins and Siegmund (1971).

A chief assumption in obtaining the expected iteration complexity result for the STORM algorithm
is that the estimated values are sufficiently accurate with a high probability. Our framework in ASTRO-
DF justifies this assumption with probability one via our adaptive sampling rules. See Theorem 7 and
remark afterward. Note, in the remainder of this paper, the estimation error is denote by Ēk(Nk), i.e.,
Ēk(Nk) = f(Xk, Nk)− f(Xk). The estimation error conditioned on the history will satisfy the following
assumption:
Assumption 3 The Monte Carlo oracle generates iid random variables F (Xk, ξj) = f(Xk)+Ej |Fk with
E[Ej |Fk] = 0, E[E2

j |Fk] = σ2 < ∞ for all k. Furthermore, the conditional errors Ej |Fk, j ≥ 1 are
sub-exponential random variables almost surely, i.e., E[etEj |Fk] ≤ et

2K2
, for all t that satisfy |t| ≤ K−1

and some positive constant K.
As noted earlier, the estimation error is the only source of randomness in the new ASTRO-DF framework.

From a similar analysis to Lemma 5.1 in (Shashaani et al. 2018) we obtain the desired result that states
the estimation error rate of decay is eventually faster than ∆2

k with probability one:

Theorem 7 Let Assumptions 1 and 3 hold. Then for a given c > 0, we have that |Ēk(Nk)| ≤ c∆̌2
k for

sufficiently large k almost surely. In other words,

Pr{|Ēk(Nk)| ≥ c∆̌2
k i.o.} = 0.

We refer the reader to (Vasquez, Shashaani, and Pasupathy 2021) for the detailed proofs. As a remark,
note that if we select c large enough, then −c∆̌2

k ≤ Ēk(Nk) ≤ c∆̌2
k for all k ∈ N with probability one.

Let us now define a stochastic process {τk, k ∈ N} that is formed on the basis of sample path optimality
gap and trust-region size. In particular, we let τk := v(f(Xk, Nk)− f∗) + (1− v)∆2

k for some v ∈ (0, 1)
and prove that it possesses a supermartingale property.
Theorem 8 Let Assumptions 1-3 hold and ϵ > 0 be given. Then the sequence of iterates {Xk, k ∈ N}
generated by Algorithm 1 satisfies E[τk+1|Fk] ≤ (τk − θ∆2

k) for some constant θ > 0. In other words, the
expectation of the reduction in τk conditioned on the history is at most −θ∆2

k.

Proof. First, we note that

E[τk+1 − τk|Fk] = v(E[f(Xk+1, Nk+1)− f(Xk, Nk)|Fk]) + (1− v)(E[∆2
k+1 −∆2

k|Fk]). (5)

When k is unsuccessful, even though Xk+1 = Xk, since their adaptive sample sizes may vary, we can
have that f(Xk+1, Nk+1) ̸= f(Xk, Nk). In this case, there exists a non-negative real number c (as defined
in Theorem 7), such that the right hand side of (5) simplifies to −(v − cv − 1)(γ22 − 1)∆2

k. In the latter
we have used the fact that ∆̌k+1 ≤ ∆k+1 ≤ γ2∆̌k ≤ γ2∆k. When k is at least successful, i.e., ρ̂k ≥ η1,
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the counterpart of Assumption 2 implies that

f(Xk+1, Nk+1)− f(Xk, Nk) ≤ η1(Mk(Xk+1)−Mk(Xk))

≤ −
κfcdη1

2

∆kw
κclu−1

µ
min{(µκD)−1∆kw

κclu−1, ∆̌k}

≤ −∆2
k(
κfcdη1
2µ

w2(κclu−1)min{(µκD)−1, 1}),

with the observation that ∆̌k ≥ ∆kw
κclu−1. Hence, the right hand side of (5) this time simplifies to

−(v
κfcdη1
2µ w2(κclu−1)min{(µκD)−1, 1}+ (v − 1)(γ22 − 1))∆2

k. To complete the proof, choose v such that
max{(v − cv − 1)(γ22 − 1), v

κfcdη1
2µ w2(κclu−1)min{(µκD)−1, 1}+ (v − 1)(γ22 − 1)} ≥ 0.

The next new result proves the proposed ASTRO-DF variant’s in expectation and almost sure complexity.
Theorem 9 Let Assumptions 1-3 hold and ϵ > 0 be given. Then the following hold:

(i) E[Tϵ] = O(ϵ−2).
(ii) Pr{limϵ→0 Tϵϵ

2 = c′ > 0} = 1 for some c′ > 0.

Proof. Part (i) is a direct application of Theorem 2 in (Blanchet et al. 2019) that follows Theorem
8, namely, E[τk+1|Fk]I{k < Tϵ} ≤ (τk − θ∆2

k)I{k < Tϵ} for a given ϵ > 0. We now prove part (ii)
by defining the random variable Zk = 1

k − c′∥▽f(Xk)∥2 following the result of Theorem 8; observe
that Zk ≥ 0 almost surely for large enough k. We now prove part (ii) by defining the random variable
Zk = 1

k − c′∥▽f(Xk)∥2 following the result of Theorem 8; observe that Zk ≥ 0 almost surely for large
enough c′. We can write

E[Zk+1|Fk] =
1

k + 1
− c′E[∥▽f(Xk+1)∥2|Fk]

≤ 1

k

(
1− 1

k + 1

)
− c′∥▽f(Xk)∥2

(
1− 2E[∥▽f(Xk)− ▽f(Xk+1)∥|Fk]

∥▽f(Xk)∥

)
≤

(
1− 1

k + 1

)(
1

k
− c′∥▽f(Xk)∥2

)
=

(
1− 1

k + 1

)
Zk.

In the above, we use two observations: (a) ∥▽f(Xk)∥ ≤ ∥▽Mk(Xk)∥ + ∥▽f(Xk) − ▽Mk(Xk)∥ ≤
( 1β + κeg)∆̌k due to full linearity of the model, and (b) E[∥▽f(Xk)− ▽f(Xk+1)∥|Fk] ≤ κLg∆̌k due to
the Lipschitz continuity of the gradient. Lastly, note that ( 1β + κeg) ≤ 2(k + 1)κLg for sufficiently large
k. Next, we apply the Robbins and Siegmund (1971) Theorem with Ak = 1

K+1 and Bk = Ck = 0 to
conclude that Zk → 0 as k → ∞ almost surely. Alternatively, (Tϵ)

−1− c′ϵ2 → 0 as ϵ → 0 with probability
one, which in return completes the proof of part (ii).

4 NUMERICAL EXPERIENCE

Problem Description Dimension Known Structure

FACLOC Facility Location 4 None
AMBUSQ Ambulance Bases in a Square 6 f Discontinuous

SAN Stochastic Activity Network Duration 13 f Convex
Table 1: The list of problems and their characteristics.
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Figure 1: Performance of the 6 SO algorithms on 3 zeroth-order stochastic oracles of varying dimensions.
At each budge point, an average of the estimated function value at each solution from 20 macro-replications
is reported within its 95% confidence interval. The right panel is a zoomed-in view of the left.

In this section, we report the finite-time performance of the solvers on various problems from SimOpt
library (Eckman et al. 2019). The SimOpt solver library contains direct-search methods, gradient-based
methods, and model-based methods. The SimOpt problem library includes optimization problems in which
the simulation oracle obtains objective function value at a given point. Hence, we can only know little
information about the structure of the objective function for most problems in SimOpt. We would like to
emphasize that utilizing stochastic simulation oracles in experimentation is preferred to the deterministic
problems with added stochastic noise, for the latter leads to highly artificial solution-dependent estimators,
especially with the use of CRN. Table 1 shows the SimOpt problems we use in this paper, all with unknown
optimal solutions and varying simulation budgets. Since all algorithms work well on the low-dimensional
problems we only report the higher dimensional problems in this paper.
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There are three procedures in SimOpt. First, we run m number of macro-replications for each solver
and problem via the runwrapper. Within a macro-replication, a solver solves the problem until the
pre-defined budget is exhausted. At each solution x, the function is evaluated by n number of replications
to estimate the objective function with sample average approximation, which varies per solver (adaptive
solvers use a random size N(x)). Second, the postwrapper runs ℓ post-replications at the intermediate
solutions of each macro-replication for objective function estimates without optimization bias. Third, the
plotwrapper records and plots the sample mean, sample variance, and quantiles at each of the solutions
reported at the budget points across the macro-replications. SimOpt uses the budget points instead of the
number of iterations since the running time depends on the number of oracle calls (i.e., the number of function
evaluations). For a fair comparison and variance reduction, the SimOpt uses common random numbers
for macro-replication and post-replications, however the initial solution changes at each macro-replication.
We test the solvers’ performance using the confidence intervals on each solver’s produced solutions to
understand their convergence behavior with m = 20 macro-replications and ℓ = 200 post-replications.

For ASTRO-DF, we use following common parameters: µ = 100, β = 50, w = 0.9, η1 = 0.1, η2 =
0.5, γ2 = 1.25(2/d) = 1/γ1, λk = 10(1+(log k)1.5), κoas = κias = 100, and ∆max = 100. For each macro-
replication, we tune the ∆0 by a pilot run for three candidates 0.08∆max × (0.5ln(d+1), 1, 1/0.5ln(d+1))
using 1% of the total budget for each candidate. We compare two implementations of Algorithm 1 with
that of the original ASTRO-DF - labeled by ASTRO-DF(full quad) - that always uses (d + 1)(d + 2)/2
poised points:

- ASTRO-DF(diagonal quad) always uses a quadraci local model with a diagonal Hessian to approx-
imate some curvature information at a lower cost.

- ASTRO-DF(lin+quad) heuristically combines linear and fully quadratic models for the hope of
improving practical efficiency. The heuristic ensures that local linear models are used when far
away, i.e., ∆k < ∆max/100 and quadratic models otherwise. We separately selected this heuristic
condition among several others as the best.

For direct-search methods, we implemented the Nelder-Mead (NELDMD) and the Random Search
(RANDSH). NELDMD iteratively maintains and updates a simplex of d + 1 vertices, and RANDSH
evaluates solutions drawn from a particular probability distribution and is a global search method, whereas
ASTRO-DF is a local search method. For gradient-based methods, we used the Simultaneous Perturbation
Stochastic Approximation (SPSA). SPSA uses a line search method with the gradient estimation by the
function values at two points: one in a random direction and another in the negative direction.

Figure 1 shows that among ASTRO-DF algorithms, ASTRO-DF(diagonal quad) has the fastest con-
vergence rate and exhibits robust performance, i.e., achieves a good solution with high reliability (less
variability = smaller CIs). NELDMD shows good performance in general. SPSA struggles relative to the
other algorithms.

5 CONCLUSION

This paper leverages interpolation via coordinate bases in ASTRO-DF - an adaptive sampling solver based on
the trust-region methodology for stochastic oracles. We show that the resulting underdetermined quadratic
local model does not harm the consistency of ASTRO-DF. Our new variant substantially improves the
computational complexity by reducing the cost of approximating the Hessian. Furthermore, we analyze the
efficiency of the proposed algorithm and prove its almost sure O(ϵ−2) iteration complexity. The original
ASTRO-DF does not have any complexity guarantees. To the best of our knowledge, almost sure complexity
results for this class of algorithms have not been obtained prior to this work. The interpretation of our new
results is that while losing some of the model quality, applying the coordinate bases interpolation makes
up for the high expense of handling the stochastic error by reducing the number of design points required
from O(d2) to O(d). Hence, ASTRO-DF with the new enhancements achieves the first-order stationary
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point faster than the original ASTRO-DF. We leave the precise analysis of the oracle complexity to future
research and discuss the new model construction approach’s rough effect on the complexity results and our
numerical experiments.
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