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ABSTRACT

A large family of black box methods rely on surrogates of the unknown, possibly non linear non convex
reward function. While it is common to assume stationarity of the reward, many real-world problems
satisfy this assumption only locally, hindering the spread application of such methods. This paper proposes
a novel nonstationary regression model combining Decision Trees and Support Vector Machine (SVM)
classification for a hierarchical non-axis-aligned partition of the input space. Gaussian Process (GP)
regression is performed within each identified subregion. The resulting nonstationary regression model is
the Treed Gaussian process with Support Vector Machine (SVMTGP), and we investigate the sampling
efficiency from using our a model within a Bayesian optimization (BO) context. Empirically, we show how
the resulting algorithm, SVMTGP-BO never underperforms BO when this is applied to an homogeneous
Gaussian process, while it shows always better performance compared to the homogeneous model with
nonlinear functions with complex landscapes.

1 INTRODUCTION

1.1 Motivation and Background

Gaussian Process (GP) modelling (Rasmussen and Williams 2006; Gramacy 2020) is usually based on
the assumption of stationarity, meaning that the same covariance function (kernel), is used throughout the
entire input space. In many real-world problems such an assumption could be not desirable because the
modelled process might exhibit a different variability from one region to another of the input space. Fully
non-stationary kernels have been used in the literature to overcome this challenge (Hebbal et al. 2021;
Higdon et al. 1999; Schmidt and O’Hagan 2003). However, the complexity of the model makes these
approaches computationally intractable. To face this problem, the idea of partitioning of the input space
into subregions, and fitting separate stationary GP models within each subregion was proposed, leading
to a single nonstationary model (Gramacy and Lee 2008; Kim et al. 2005). The combined adoption of
partitioning and Gaussian processes (sometimes referred to as treed-GP) results in computationally tractable
algorithms. Although first papers on Treed-GP modelling date back to more than 10 years ago (Gramacy
et al. 2007; Gramacy and Le Digabel 2011), a renewed interest on this topics has been recently emerging,
for instance with respect to building engineering applications (Civera et al. 2017; Civera et al. 2020).

Partitioning is also used in Adaptive Random Search methods for global optimization, such as Prob-
abilistic Branch and Bound (PBnB) (Zabinsky et al. 2019; Zabinsky and Huang 2020), and level set
estimation (Shekhar and Javidi 2019). Partitioning is usually based on a simple procedure consisting into
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dividing a region of the input space equally along the longest side. Methods differ on the criteria used to
choose the region to split, also depending on the specific task (e.g., function learning, level set estimation
or global optimization).

Differently, Treed-GP modelling considers splitting as a part of the learning process itself. For instance,
if one uses a regression tree learning algorithm like CART (Classification And Regression Tree), regions
are not split equally along the longest side but the best split is identified to minimize regression error
on the available observations. In all these cases, splits are always parallel to the dimensions of the input
space, thus implicitly assuming that the nonstationarity of the function can be expressed through splits into
axis-aligned hyper-rectangles, throughout the input space. Warping is considered in Marmin et al. (2018)
for multivariate outputs, but the approach relies on low effective dimensionality concerning the direction
of largest variation of the variance. Also, the local GP models approach proposed in Gramacy and Apley
(2015), overcomes axis-aligned partitioning underlying TreedGP. Local-GPs do not consider partitioning
and fitting, on-the-fly, a GP model on the observations within the neighbourhood of a target location.
Our SVM-TGP replaces axis-aligned with a more flexible and general partitioning technique and does not
assume the existence of a low dimensional manifold.

To overcome these modelling limitations, more sophisticated regression and classification tree algorithms
have been proposed within the Machine Learning community, with nodes of the decision tree consisting of
classification models allowing for non-orthogonal splits of regions of the input space. A typical example
consists in using linear Support Vector Machine (SVM) classifiers as nodes of a decision tree (Fei and Liu
2006; Chang et al. 2010; Cohen and Fernández 2012; de Boves Harrington 2015; Chen and Ge 2019).
Figure 1 shows the resulting divisions of the input space into regions provided by (a) a simple partitioning
based on equally dividing split, (b) a regression decision tree (i.e., a common CART), and (c) a decision
tree with linear SVM classifiers as nodes.

Figure 1: Different separations into subspaces for three different classes of methods.

1.2 Contributions

Our approach tackles the non-stationarity challenge with non linear boundaries while maintaining compu-
tational efficiency. Our algorithm, contributes to the literature by:

• proposing a new Treed-GP having SVM classifiers as intermediate nodes and GP regression models
as leaves. We refer to the resulting nonstationary model as SVMTGP.

• providing a specific implementation of SVMTGP for Bayesian optimization (BO), with a simple
and computational efficient criterion (i.e., median) for organizing, into two classes, the observations
falling within each partition.

• empirically comparing the advantagaes/drawbacks in using linear or non-linear SVM classifiers in
SVMTGP. Figure 2 compares the splitting of the input space obtained from a decision tree with
linear and nonlinear SVM classifiers as nodes.

• providing preliminary empirical evidence of the SVMTGP-based BO performance.
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Figure 2: Separation induced by SVM-based Decision Tree: linear vs non-linear SVM classifiers.

The remainder of the paper is structured as follows: Section 2 provides a description of the proposed
SVMTGP modelling strategy, with training and inference algorithms provided, separately. Section 3 briefly
recaps the basics of Bayesian optimization, focusing on its specialization in the case that an SVMTGP is
used as probabilistic surrogate model of the black-box objective function. Section 4 details the experimental
setting, and the relevant numerical results are commented. Finally, conclusions about the advantages and
limitations of the proposed approach are provided, with a perspective on ongoing and future works.

2 SVMTGP - SUPPORT VECTOR MACHINES TREED GAUSSIAN PROCESS

2.1 Training an SVMTGP and Making Inference

Figure 3: An example of a SVM-Treed GP.

Denote the set of available observations (i.e., function
evaluations in the case of a global optimization task)
with D1:n = {(x(i),y(i))}i=1,...,n, where x(i) ∈ Ω∪ℜd and
y(i) = f (x(i)) + ε with ε a zero-mean Gaussian noise,
ε ∼N (0,σ2

ε ). Let L be a list whose elements are sub-
sets of evaluated locations belonging to a specific region
in Ω. Finally, assume to have a binary decision tree where
each node j refers to a specific model h j(x). In particu-
lar, h j(x) is a Support Vector Machine (SVM) classifier at
each branching (intermediate) node (circle in Figure 3) or
a Gaussian Process Regression (GPR) model in the case of
a leaf node (square in Figure 3). Just for simplicity in the
notation, we use the following enumeration for the tree’s
nodes – and consequently models: h1(x) is the root, h j(x)
is a generic branching node with children h2i(x) and h2i+1(x). The example in Figure 3 does not show
nodes indexes {8,9,12,13,14,15} because the associated parent nodes are leaves (i.e., nodes 4,6,7). While
tree-based models having SVM classifiers as nodes have been already proposed in the ML literature, their
application is mostly related to classification problems, leading to learn the tree structure depending on the
misclassification error on a given dataset. On the other hand, in Treed-GP – generating axis-aligned splits
– the structure is obtained via regression tree learning. Our attempt is to get the best from the two worlds
by introducing a criterion to split observations at each intermediate node (classification) while function
inference is done at the leaves (regression).

Since we use Bayesian optimization at the core of sampling and optimization, in this paper, we propose
a simple optimization-oriented splitting criterion: observations at an intermediate node are divided into
two classes, i.e., observations above (+1) and below (-1) the median observation at that node. This simple
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criterion leads to the following properties: (i) at each node of the partitioning tree, the observations are
divided into two balanced classes, avoiding issues associated to unbalanced data which should be explicitly
addressed, for instance via cost-sensitive classification; (ii) there is no need to perform operations such
as pruning or rotations of the decision tree nodes, which are instead required for regression tree learning
algorithms; (iii) along the BO process, new observations are collected leading to changes of the median
values within – potentially all – the intermediate nodes. First, we summarize the SVM-tree GP training
procedure in Algorithm 1.

Algorithm 1: Training an SVM-Treed GP
Result: H = {h j(x)}: list of nodes (i.e., models) of the SVM-treed GP
L = {D1:n}, J = {1}, τ > d, with τ points per subregion, and d being the dimensionality;
while |L |> 0 do

∆←L [1] # first element in L ;
L ←L \L [1];
j← J[1], J← J \ J[1], m← median

(x(i),y(i))∈∆

{y(i)};

∀i = 1, ..., |∆| set `(i) =

{
−1 if y(i) < m
+1 otherwise

h j(x)← train SV M classi f ier
({

(x(i), `(i))
}

i=1,...,|∆|

)
;

∆−←{(x(i),y(i)) ∈ ∆ : sign(h j(x(i) < 0))} ;
∆+←{(x(i),y(i)) ∈ ∆ : sign(h j(x(i) > 0))} ;
if
(
|∆+|> τ AND |∆−|> τ

)
then

J← J∪{2 j};
L ←L ∪{∆−};
J← J∪{2 j+1};
L ←L ∪{∆+};

else
h j(x)← f it GP(∆);

end
end

Algorithm 2 gives the overview of the inference algorithm.

Algorithm 2: Predicting by SVM-Treed GP
Result: (µ(x),σ(x))
x ∈Ω;
j← 1;
while h j(x) is an SVM classifier do

if sign(h j(x))< 0 then
j← 2 j # left child;

else
j← 2 j+1 # right child;

end
end
(µ(x),σ(x))← h j(x) # by construction, h j(x) is a GPR (i.e., node j is a leaf);
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2.2 An example of Learning with SVMTGP

We present an example of inference performed via an SVM-Treed-GP (Figure 4). The model has been
trained on 100 function evaluations, chosen via Latin Hypercube Sampling (LHS), of the Branin rescaled
test function (Picheny et al. 2013). On the left hand side of Figure 4a, we show the partition of Ω into 13
subregions according to the tree intermediate nodes (i.e., the hierarchically organized SVM classifiers). The
right panel shows the mean of the GP regression models, each one fitted by using the function evaluations
belonging to the associated subregion of the input space. Although this could result in large values of
σ(x), when few observations are in that region, this is not a drawback in the BO setting. Indeed, the
acquisition function combines µ(x) and σ(x) to balance exploitation and exploration in sampling the
next point. Moreover, increasing τ increases the number of minimum observations for each partition,
allowing to manually reduce the predictive uncertainty of all the GPs, if needed. A 3D representation of
the approximation provided by the SVM-Treed-GP is reported in Figure 4b. The discontinuities introduced
by the hierarchical organization into regions of the input space are clearly visible.

(a) An example of prediction provided by an SVM-Treed-GP
on the Branin rescaled test function: the separation into regions
(left) and the final prediction mean (right). Dots refer to 100
locations sampled via LHS whose function evaluations have been
used to train the SVM-Treed-GP model.

(b) A 3D representation of the ap-
proximation provided by the SVM-
Treed-GP for the Branin rescaled
test function.

Figure 4: SVM-Treed-GP model applied to the Branin rescaled test function.

3 NONSTATIONARY BAYESIAN OPTIMIZATION WITH SVMTGP

Bayesian Optimization (BO) (Shahriari et al. 2015; Frazier 2018; Archetti and Candelieri 2019) is a
sample efficient and sequential method for global optimization of black-box, expensive and multi-extremal
functions. In this paper, we consider, without loss of generality, the minimization setting:

x∗ = argmin
x∈Ω

f (x) (1)

BO is based on two key components: (i) a probabilistic surrogate model approximating the objective
function, depending on n function evaluations already performed, and (ii) an acquisition function (aka
utility function or infill criterion) driving the selection of the next location x(n+1) where to evaluate the
objective function, depending on the current surrogate’s prediction and associated uncertainty. Choosing
x(n+1) requires to solve an auxiliary optimization problem whose cost is usually negligible compared to
that incurred for evaluating f (x), more precisely:

x(n+1) = argmax
x∈Ω

α(x) (2)
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with α(x) the acquisition function. Being a sequential method, BO has to choose, at each iteration, the
next x(n+1) by dealing with the exploration-exploitation dilemma, in order to provide global convergence.
Several acquisition functions have been proposed in the literature offering different mechanisms to balance
between exploration and exploitation; here we consider the (Lower) Confidence Bound, which is optimistic
in face of uncertainty. Denote with µ(x)(n) and σ(x)(n), respectively, the predictive mean and standard
deviation, at location x, given by the probabilistic surrogate model trained on the available set of n function
evaluations (i.e., D1:n, as denoted in the Section 2.1). Then, the Lower Confidence Bound (LCB) is computed
as LCB(x)(n) = µ(x)(n)−

√
β (n)σ(x)(n), with a proper no-regret schedule for β (n) given in (Srinivas et al.

2012). While σ(x) could be large at the boundaries of each partition, this does not necessarily lead to
select a “boundary point”, due to the fact that the acquisition function considers both µ(x) and σ(x). To
be compliant with notations in (2) we have to set α(x) =−LCB(x).

A schematic representation of the overall SVMTGP-BO algorithm is given in Algorithm 3.

Algorithm 3: SVMTGP-BO
Result: (x+,y+), that is the function evaluation associated to the lowest observed value;
set N as the maximum number of function evaluations;
set n0 as the number of function evaluations required to initialize the SVMTGP;
choose

{
x(1), ...,x(n0)

}
∈Ω, for instance via Latin Hypercube Sampling;

observe
{

y(1), ...,y(n0)
}

;
store function evaluations into D1:n0 ;
n← n0;
while n≤ N do

(µ(x),σ(x))← train the SVMTGP as in Algorithm 1 and make inference as in Algorithm 2;
x(n+1)← argmax

x∈Ω

{
−
[
µ(x)(n)−

√
β (n)σ(x)(n)

]}
;

observe y(n+1) = f
(
x(n+1)

)
+ ε;

D1:n+1← Dn∪
{(

x(n+1),y(n+1)
)}

;
n← n+1;

end
i+ = argmin

i=1:N

{
y(i)
}

;

(x+,y+) = Di+

It is important to highlight that the overall BO framework holds independently from the specific
acquisition function and, even more importantly in the scope of this paper, the framework is robust to
the specific surrogate model being used. Although GP regression is the most common choice (GP-based
BO or GP-BO), alternative modelling strategies have been proposed, with Random Forest (RF) regression
among the most successful especially when the considered input space Ω is complex, in the sense that it
is spanned by mixed (i.e., continuous, integer, nominal) and/or conditional decision variables. A relevant
example of RF-based BO is given by Automated Machine Learning (AutoML) (Hutter et al. 2019; He
et al. 2021). These cases are becoming increasingly relevant: often complex dynamical systems behavior
is the result of interplay of discrete variables (e.g., switching dynamics based on a binary condition) and
continuous variables that for example describe the differentiable dynamics within a specific class. The
difficulty is that the way the discrete and continuous components interact is not known, hence, the surrogate
implicitely plays the role of capturing the interaction among these different components. Cyberphysical
systems represent a perfect application for this kind of problem, but also biological applications such as
molecular design where residues concentrations, and orientation, interplay with residues choices and bonds
among residues (discrete).
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In our approach, the Gaussian process is replaced with our SVMTGP with no substantial changes to
the Bayesian optimization framework, resulting into a nonstationary GP-based BO approach. An important
aspect is that the SVMTGP is learned at each BO iteration, leading to a completely different division
of the search space and nonstationary regression model from one iteration to the next, depending on the
observations sequentially collected (examples are reported in Figures 5-6). This is quite different from
partitioning based algorithm, such as PBnB (Zabinsky and Huang 2020), where each region is iteratively
refined by further splits, but never changing the axis-aligned hyperrectangles defined at previous iterations.

(a) Partition after 10 evaluations. (b) Partition after 40 evaluations. (c) Partition after 100 evaluations.

Figure 5: Partition obtained with linear SVM.

(a) Partition after 10 evaluations. (b) Partition after 40 evaluations. (c) Partition after 100 evaluations.

Figure 6: Partition obtained with non linear SVM.

Due to the nonstationarity of the SVMTGP, and the hierarchical splitting it performs, the resulting final
model is not continuous, as well as the associated acquisition function. Thus, analogously to the RF-BO,
derivative free methods are used to solve (2), instead of gradient-based algorithms typically adopted in
GP-BO. It is important to remark that the cost for evaluating the acquisition function is negligible compared
to f (x), so (Adaptive) Random Search as well as Evolutionary approaches can be successfully applied,
taking advantage of their amenable parallelism and the low cost of evaluation of the infill function.

4 PRELIMINARY ANALYSIS

All the experiments have been performed on a Microsft Azure virtual machine, H8 (High Performance
Computing family) Standard with 8 vCPUs, 56 GB of memory, Ubuntu 16.04.6 LTS. Code has been
developed in R and it is freely available at: https://github.com/acandelieri/SVM-Treed-GP. Section 4.1
describes the experimental setting of our study, specifically (i) the set of 2-dimensional test functions

https://github.com/acandelieri/SVM-Treed-GP
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considered, (ii) the BO’s settings with respect to the different models adopted (i.e., stationary GP, TreedGP
and the proposed SVMTGP), and (iii) the computational settings. Section 4.2 discusses the obtained results.

4.1 Experimental Settings

Test Functions. We considered eight 2D test functions, with different levels of homogeneity and, con-
sequently, difficulty (i.e., simple and hard). While in general the concept of function homogeneity is
related to its multiplicative scaling behaviour, when Gaussian processes are used as processes, we are
specifically interested in the ability of the hyperparameters in a subregion of the input to reflect the
behavior of the function in distant regions. Equivalently, the homogeneity of the function is reflected
by the ability of a single covariance function to reflect the output landscape. Two examples are shown
in Figure 7. All the test functions are available at https://www.sfu.ca/∼ssurjano/optimization.html and
http://infinity77.net/global optimization/index.html. All the functions are considered noise-free in the ex-
periments.

Figure 7: Examples of homogeneous (left) and non-homogeneous (right) test functions.

• Branin rescaled (simple): f (x) = 1
51.95

[(
x̄2 − 5.1x̄2

1
4π2 + 5x̄1

π
− 6
)2

+
(

10 + 10
8π

)
cos(x̄1)− 44.81,

]
,

where x̄1 = 15x1−5 and x̄2 = 15x2. Ω = [0,1]2, f (x∗) = 0.397887 x∗ = (−π,12.275),(π,2.275)
and (9.24478,2.475);

• Cosine mixture (simple): f (x) =−0.1∑
2
i=1 cos(5πxi)−∑

2
i=1 x2

i ,
where Ω = [−1,1]2, f (x∗) =−0.2 and x∗ = (0,0);

• Levy03 (hard): f (x) = sin2 (πw1)+∑
d−1
i=1 (wi−1)2[1+10sin2 (πwi+1)]+(wd−1)2,

where wi = 1+ xi−1
4 , Ω = [−10,10]2, f (x∗) = 0 and x∗ = (1,1);

• Qing (simple): f (x) = ∑
2
i=1(x

2
i − i)2,

where Ω = [−500,500]2, f (x∗) = 0 and x∗ = (±
√

1,±
√

2);

• Rosenbrock modified (hard): f (x) = 74+100(x2− x2
1)

2 +(1− x1)
2−400exp− (x1+1)2+(x2+1)2

0.1 ,
where Ω = [−2,2]2, f (x∗) = 34.37 and x∗ = (−0.9,−0.95);

https://www.sfu.ca/~ssurjano/optimization.html
http://infinity77.net/global_optimization/index.html
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• Tripod (hard): f (x) = p(x2)[1+ p(x1)]+ x1 +50p(x2)[1−2p(x1)]+ x2 +50[1−2p(x2)],
where p(xi) = 1 iff xi >= 0, p(xi) = 0 otherwise, Ω = [−100,100]2, f (x∗) = 0 and x∗ = (0,−50);

• Ursem01 (simple): f (x) =−sin(2x1−0.5π)−3cos(x2)−0.5x1,
where Ω = [−2.5,3]× [−2,2], f (x∗) =−4.81680 and x∗ = (1.69714,0);

• UrsemWaves (hard): f (x) =−0.9x2
1 +(x2

2−4.5x2
2)x1x2 +4.7cos [2x1− x2

2(2+ x1)]sin(2.5πx1),
where Ω = [−0.9,1.2]× [−1.2,1.2], f (x∗) =−8.5536 and x∗ = (1.2,1.2).

Bayesian Optimization setting In the following, we provide the information related to the compared
approaches and their settings:

• Initial set of function evaluations (aka initial design): 10 samples through LHS-maximin;
• Total budget: 100 function evaluations overall (including the initial design)
• Approaches: GP-BO (i.e., no partitioning), and the proposed SVMTGP-BO
• 2 types of SVMTGP-BO: (i) with linear SVM classifiers, namely linSVMTGP-BO; (ii) with nonlinear

SVM classifiers, namely nolinSVMTGP-BO. SVM classifiers kernel: Radial Basis Function (RBF)
kRBF(x,x′) = e−γ||x−x′||2 (default value: γ = 1/|Ω|)

• GP’s kernel: Squared Exponential (SE) kSE(x,x′) = e−
||x−x′ ||

θ

• Macro-replications: 30 for each test function and each approach (given a run, the initial design is
the same for all compared methods)

• metric: (i) Best seen: y+(n) = min
{

y(i)
}

1:n (for tabular results) (ii) Gap metric: G(n) = (y+(n0)−
y+(n))/(y+(n0)− y∗) (for charts), with y+(n0) the best so far and y∗ the actual optimum

• Statistical test for comparison: Mann-Whitney’s U test, the hypothesis is that the best seen distri-
butions of two approaches are similar with p-value=0.05.

4.2 Results Discussion

Figures 8-9 compare the average gap metrics of the three approaches over function evaluations.

(a) Rescaled Branin. (b) Cosine Mixture. (c) Ursem01.

Figure 8: Cases with no difference between approaches.

From Figure 9, it is possible to notice that GP-BO outperforms the proposed SVMTGP-BO approach
only on the Qing test function, while (at least one the implementations of) SVMTGP-BO outperforms GP-
BO on non-homogeneous functions, specifically, Rosenbrock modified, Levy03, and Usermwaves. On the
remaining test functions, the three approaches are equivalent in terms of gap metric. It is however apparent
that the complexity of non linear partitioning not always results in increased performance. Nonetheless, the
new algorithms show clear advantage in performance when applied to the most complex functions (Levy03
and modified Rosenbrock).
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(a) Rosenbrock. (b) Levy03. (c) Tripod.

(d) Qing. (e) UrsemWaves.

Figure 9: Cases with difference among approaches.

Table 1: Best seens of the approaches: average and standard deviation over 30 independent runs. Symbols:
Hfor significantly underperforming, Nfor significantly outperforming and 4for outperforming on average.

Test Function GP-BO linSVMTGP-BO nolinSVMTGP-BO
Branin rescaled −1.0474(0.0) −1.0474(0.0) −1.0474(0.0)
Cosine mixture −0.2(0.0) −0.2(0.0) −0.2(0.0)
Rosenbrock modified 74.0002(0.00032)H 64.5709(15.72908) 72.7417(7.30998)
Levy03 0.0029(0.00747)H 0.0002(0.00046) 0.0(0.0)
Tripod 1.0198(0.71705) 0.9337(0.78939)4 1.1362(0.77615)
Qing 16666.06(24163.19)N 528872.3(1703224) 27505369(72340940)
Ursem01 −4.8168(0.0) −4.8168(0.0) −4.8168(0.0)
Ursemwaves −7.4906(1.03481) −7.7367(0.93083)4 −7.2739(1.27227)

Table 1 summarizes the results, reporting the best seen, y+, at the end of the optimization process
in terms of mean (standard deviation) on 30 independent runs. Branin rescaled, Cosine mixture and
Ursem01, GP-BO and SVMTGP-BO (in both the linear and the nonlinear implementations) perform the
same. These are the simplest test functions among those considered, and all the three BO approaches
converge to the optimum. On 2 out of 8 test functions, namely Tripod and Ursemwave, linSVMTGP
outperforms the other two approaches, on average, but this difference in performances is not statistically
significant (p-value > 0.05). Then, on 2 out of 8 test functions, namely Rosenbrock modified and Levy03
GP-BO significantly underperforms the two SVMTGP-BO implementations (p-value≤ 0.05). These are,
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basically the two hardest – in terms of stationarity – test functions among those considered. Finally,
GP-BO significantly outperforms the two SVMTGP-BO implementations only on the Qing test function
(p-value ≤ 0.05). The intuitive reason why SVMTGP-BO performs worse on this test function is that the
SVMTGP model introduces discontinuities, due to the underlying partitioning process, which are end up
being detrimental in cases with high-order smooth functions such as the Qing case.

SVMTGP-BO does not underperform BO while outperforms it on nonstationary test functions.

5 CONCLUSIONS

We propose, for the first time, the algorithm SVMTGP-BO. SVMTGP-BO addresses an important challenge
arising when black box optimization methods are applied to general non linear non convex problems that
may exhibit heterogeneity of the reward. In such cases, the kernels normally used to construct the predictor
for the function will typically show degrading performance due to the inability of the correlation structure
to capture the landscape. Nonetheless, several applications require to consider rewards with heterogeneity.
As an example, dynamical systems with switching dynamics will typically exhibit sharp transitions of
the reward for inputs in different subregions. Our preliminary analysis shows that partitioning tends to
improve the performance. While the shape of the subregions impacts such performance, partitioning-based
approaches beat vanilla BO, especially in the case of non-stationary, non-smooth functions.

More analysis is required to understand how to automate the choice of the partitioning model, and
scaling to higher dimensions. In fact, the cost of estimating the partition may not be worth the accuracy gain.
We are currently investigating different criteria for partitioning, and focusing on examples where a “vanilla”
Gaussian process fails to capture the reward with focus on real applications such as automated testing of
cyberphisical systems. Also, an extended testing bench of competing algorithms is being developed.
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