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ABSTRACT

Determining the level of detail necessary to a modeling effort is fundamental to the discipline. Insufficient
detail can limit a model’s utility. Likewise, extraneous detail may impact the runtime performance of
the model, increase its maintenance burden, impede the model validation process by making the model
harder to understand than necessary, or overfit the model to a specific scenario. Intuition suggests that
resolving this tension is an intractable challenge that reflects the art of modeling and is without promise for
general solution. Most analytic communities accept that a truly rigorous, repeatable, engineering solution
to the construction of an arbitrary model is unattainable. But the long history of research in modeling
methodology suggests there are useful steps communities can make in that direction. Through the lens of
current modeling challenges, practices and methods in several domains, we hope to add to this important
discussion at the intersection of philosophy and engineering.

1 INTRODUCTION

A model is a representation of something else; an abstraction of some other thing or system (commonly
denoted as a referent). In theory, there can be an infinite range of models for a given referent, each
representing a different balance of detail, cost to develop and maintain, runtime performance, sensitivity
to underlying assumptions, and myriad other factors. Recognition of this fundamental modeling decision
dates to the earliest work in simulation (Conway et al. 1959),

“Part of the investigator’s problem is the selection of the appropriate alternative; he must
decide how much of a departure from reality can be tolerated in the interest of simplicity and
economy. There are implicit in this procedure the assumptions that the investigator knows
enough about the characteristics of interest to intelligently select or construct an alternative
system and that he knows enough about the interactions to decide which characteristics of
the object system are irrelevant and expendable.”

Today, nearly every text in simulation extols the virtues of parsimony in modeling. And compelling
examples of effective ensembles of simple models abound (Page 2018). On the other hand ...

For want of a nail the shoe was lost.
For want of a shoe the horse was lost.
For want of a horse the rider was lost.
For want of the rider the message was lost.
For want of a message the battle was lost.
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For want of a battle the kingdom was lost.
And all for the want of a horseshoe nail.

This well-known proverb, which is said to have been in existence in one form or another since the 14th
century, is a compelling portrayal of the nature and consequences of causation. Its spirit and teachings
are far-reaching, from parental admonitions to misbehaving children (Franklin 1758) to official opinions
expressed by the U.S. Supreme Court (Roberts 2007).

Let us imagine you were hired as a consultant by the Kingdom of Bröpst to develop a kingdom-scale
model. You are well-read in simulation practice and theory. You proudly display your autographed copies
of (Zeigler, Muzy, and Kofman 2019) and (Law and Kelton 2000). You understand that all models are
wrong and some are useful. You have an appreciation for simplicity. Still, the moral of the horseshoe nail
proverb seems stark: if you want to reason about the loss of kingdoms, details matter. So you set out with
your favorite simulation package, and you begin coding. And coding. And coding. Then one bright, sunny
day, you finish. Everything you could think to include about kingdoms, battles, riders, horses and shoes
is in there. Your model is impressive.

The nail and shoe performed flawlessly.
For want of oats the horse was lost.

Rats. OK, you add details about the nutritional needs and dietary habits of horses. Being clever, you
include variations for several types of horses commonly used by the Bröpst cavalry.

The nail and shoe performed flawlessly.
The well-shod, well-fed horse was on top of its game.
For the want of vertigo medication the rider was lost.

Hmmm. You did not see that one coming. But fair enough, you concede there are non-combat injuries
that riders could fall victim to. You code them up. For completeness, you include spread models for all
known infectious diseases. Surely, your model is now unassailable.

The nail and shoe performed flawlessly.
The well-shod, well-fed horse was on top of its game.
The rider executed the battle plan without error.
The battle was won.
There was significant collateral damage to the citizenry.
For want of a tax base, the kingdom was lost.

Ah, for crying out loud! Adding representations of micro- and macro-economic forces to your model
is beyond the pale. You give up your career as a simulation consultant, and pursue your dream to become
the official blogger for your hometown cricket team.

What do we make of this tar pit? The horseshoe nail proverb illustrates that the tiniest detail can have
significant impact at the kingdom scale, implying that kingdom-scale models should be highly detailed.
But since we cannot include every detail of every situation, what are we left with? We cannot eliminate
the possibility that we left out something that is vitally important to the outcome – and it would seem that
correctly representing whether or not a kingdom falls would be a pretty big deal. Even if we accept that
all models are wrong, some are useful, it would appear that mind-numbing detail is probably required in
order to generate useful models of kingdom-scale phenomena.

In the remainder of this article, we examine this fundamental tension between detail and simplicity
within the current practices in several different modeling domains. We consider the role of complexity
science in the creation of models of kingdom-scale phenomena, and discuss differing notions of usefulness
in modeling and analysis.
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2 THEATER-LEVEL DEFENSE SIMULATION

The horseshoe parable has an obvious and direct linkage to defense simulation and analysis. The long
history of defense analysis has resulted in a framework for modeling abstraction that is often depicted as
a pyramid. The traditional defense M&S pyramid and an extended adaptation by Gallagher et al. (2014)
appears in Figure 1. The traditional pyramid conveys a spectrum of modeling detail (also referred to as
resolution). Engineering level simulations are the most detailed, e.g., representing individual parts and their
physics-based interactions on a vehicle. Engagement simulations tend to represent few-on-few interactions.
Mission level simulations are typically employed to determine how well a group of systems (sometimes
referred to as a force package) work together to accomplish a particular set of objectives. Campaign
simulations are the least detailed, used at the policy-making level, and typically represent conflict at a
theater scope as force-on-force interactions. The adaptation by (2014) inverts the pyramid to suggest breadth
of focus within each level, and adds two additional levels, defense enterprise, and non-military instruments
of power.

Figure 1: The hierarchy of military models.

In reality, nearly all defense simulations are multi-resolution in nature, with elements that cross the
pyramid boundaries. Nonetheless, the levels provide a useful framework for describing prominent loci of
analysis conducted within the defense enterprise. In aspiration – if not always in practice – data and results
from higher-resolution simulations should be used to inform the lower-resolution simulations, thereby
allowing the analysis process to expand in scope while maximizing fidelity without unduly sacrificing
runtime performance, complicating maintenance, and so forth. In theory, efficient theater-wide analysis
may be “seamlessly” informed by interdependent analyses at the lower (engineering, engagement and
mission) levels.

In practice, however, the flow of data and knowledge across the levels of the hierarchy can be kludgy,
opaque, expensive and not always embraced by decision makers. Davis (2016) recounts the events and
rationale behind the loss of support for campaign modeling within the U.S. defense policy and strategy
making process circa 2011. One of the primary criticisms of campaign analysis involved the opacity of
the underlying models and simulations. Decision makers expressed frustration at the volume of input
parameters, layers of aggregation, litany of assumptions, and the lengths to which analysts had to go
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to explain the results. Akst (2013) sympathizes with the decision maker pushback on the analysis, and
suggests that decision maker frustration was partly due to unrealistic expectations with respect to the utility
of campaign simulations:

“[Campaign simulations] can support the examination of alternative force structures or
systems in their ability to achieve the mission. They can provide good insight into such
things as the sequencing of force arrivals or consumption of various supplies and munitions.
They can even help a commander explore the relative merits and shortfalls of alternative
concepts of operation. However, we get into trouble when we start treating the outcomes
of these simulations as predictive. I would caution against using campaign simulations to
predict equipment losses, time to achieve objectives, or casualties.”

Given the current state of campaign simulations, Akst provides sound, practical advice. But his position
raises the question: are predictive models of campaign scale equipment losses, time to achieve objectives,
and casualties an impossibility? Is any meaningful level of prediction supportable? Can we quantify
the uncertainties and rationally bound our predictions? Effective policy making and investment planning
would clearly benefit from such capabilities. Ongoing research in deep uncertainty may offer some help
here (Bankes 1993; Kwakkel and Pruyt 2013; Tolk, Dinh, Comer, and Scott 2020).

Similarly, can we do better in understanding which details matter and in what contexts? Meyer et
al. (2005) describe experiments involving the relationship between probability of kill (Pk) and terrain
resolution in engagements with point and area munitions. They show that when the terrain resolution is
low, high resolution estimates of Pk lead to overestimates of weapon effectiveness. In network simulation,
Abdelhafez and Riley (2006) show that commonly adopted abstractions of certain protocols provide execution
efficiency without unduly sacrificing accuracy when network traffic is low, but these abstractions lead to
overestimates of network performance by as much as 50% under higher loads. It seems reasonable to
believe there are similar risks to campaign analysis. Can we identify critical elements that are typically
over-abstracted at the campaign level?

A recent Defense Science Board (DSB) study (2021) suggests a dual research and investment strategy
for campaign-level analysis: one path geared toward the development of simple, explainable models à
la (Page 2018), and a complementary path to reinvigorate traditional campaign modeling such that the
linkages to higher resolution analysis are more transparent, explicit, and effective.

The DSB findings, and Akst’s challenge to the defense analysis community are a call to reevaluate
fundamental approaches to model conceptualization and implementation, and to challenge the foundational
assumptions in our approach to defense analysis. Warfighting technologies and strategies evolve, and the
geospatial extent of the warfight expands dramatically, while the commander’s decision and reaction time
shrinks to the threshold of human cognition. Our approaches to defense analysis must evolve to meet these
challenges. There seem like a lot more horseshoe nails to deal with these days. There is a pressing need
for reliable, quantifiably predictive, analysis of theater (and above) scale phenomena.

3 IMPLICATIONS AND CONTRIBUTIONS FROM COMPLEXITY SCIENCE

The fundamental tension between detail and simplicity is inherently tied to the concepts of complexity
science. In the late 1940’s Warren Weaver (1991) laid out three broad periods of scientific advancement
covering roughly three centuries. And there are fascinating parallels in Weaver’s outline with the history
of simulation laid out by Goldsman, Nance and Wilson (2010).

3.1 Problems of Simplicity

From the seventeenth century to the late nineteenth century, Weaver claims that science was restricted to
what he deemed problems of simplicity. These problems often involved the interaction between only two
variables, while everything else was held constant. This period includes Buffon’s needle experiment, where
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he estimated π using Monte Carlo simulation techniques (Goldsman, Nance, and Wilson 2010). Buffon’s
random number generator was just a needle tossed onto a table, but using the geometry of lines drawn on
the table and the length of the needle, he boiled the problem down to two variables, the probability his
needle touched one of the lines and the constant π he wanted to measure. Arguably, problems of simplicity
make up the foundations of the hierarchy of defense models. Physics-based interactions constitute the most
notable scientific work of this period, and they are key components of many larger scale simulations.

3.2 Disorganized Complexity

Buffon’s experiment came toward the end of Weaver’s first period of problems of simplicity and it foreshadows
the next evolutionary step in science and simulation. When more than two variables begin to interact the
techniques refined for problems of simplicity are no longer tractable. Confronting this type of problem
gives rise to Weaver’s second period, disorganized complexity. Disorganized complexity is dominated by
the techniques of probability and statistics. Although Weaver does not mention it directly, those versed
in simulation will recognize the out-sized role the central limit theorem plays in disorganized complexity.
Problems of any number of variables (such as the billions of molecules in an ideal gas) are abstracted
into the statistical average. Here again, Weaver’s characterization fits neatly into the history of simulation,
overlapping the work of William Sealy Gosset (Student) and his derivation of the t-distribution in 1908
(Goldsman, Nance, and Wilson 2010) and bringing us to the mid 1900s. Once intractable mathematics
were now abstracted into draws from a probability distribution and population level conclusions could be
reached. These approaches jump over a few levels in the defense simulation hierarchy to the campaign
level and above, as details of individual skirmishes are lost in the statistical average of the entire force.

3.3 Organized Complexity

The Achilles heel of the central limit theorem is the assumption that the variables in question are, at least
approximately, independent and identically distributed (i.i.d.). When this assumption holds true, Gauss’s
Normal distribution, with its symmetry and easy math, will emerge to rescue us from complexity. Combined
with the law of large numbers, we need only crank up the replications to achieve a steady-state and broad
answers to complex problems can be obtained. But when the assumptions of i.i.d. are no longer valid,
we enter Weaver’s final period of organized complexity, borne out of World War II and continuing to the
present day. Organized complexity is characterized by increasingly dependent, often exceedingly diverse,
variables altering their rules for interaction dynamically. Such systems rarely reach a steady-state and are
often characterized by mathematical chaos. They are prone to unpredictable cascades, long memory in their
empirical auto-correlation functions, and heavy-tails (i.e., infinite moments) in the empirical probability
distributions derived from their behavior. But they also often arise from a simple set of rules at the
finest scale. Schelling’s model of segregation (C.Schelling 1969) or Reynolds model for flocking behavior
(W.Reynolds 1987) are based on remarkably simple automata following relatively simple rules. When
they are scaled to a suitably large number of agents, however, patterns of behavior emerge that would
be unexpected if examining only one or two such agents through a strict reductionist approach and then
extrapolating the average behavior to the population. How could one understand an ant colony by studying
an ant in isolation, but how many ants are required to make a colony?

In 1948, Weaver was hopeful these problems would be solved using two recent advancements from
World War II; computers and diverse teams. As simulation practitioners, we are all familiar with the value
computers bring to scientific advancement. But it is the field of complexity science that has fully embraced
the idea of diverse teams tackling a single problem. In order to connect the steps in defense simulation
hierarchy, the concepts of physics need to be combined with military doctrine, intelligence, computer
science, foreign policy, political science, operations research, psychology, and sociology at a minimum.
The necessity of diverse teams is inescapable.
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3.4 Complexity Science - A Border Modeling Example

Today we tend to think of organized complexity as synonymous with “complexity science” and the study of
complex systems. A useful definition of complex systems is “systems that comprise many interacting parts
with the ability to generate a new quality of macroscopic collective behavior through self-organization”
(Sornette 2006). An example of such a system encompasses the ongoing crises on the United States’ border
with Mexico. The U.S. is currently engaged in heated debate about how to handle the constant influx of
unauthorized immigrants on the southern border. The components of this system include the unauthorized
immigrants, Customs and Border Protection and the U.S. Border Patrol, surveillance technology, impedance
technology, politicians, voters, and the politics, economics, and crime rates of the foreign nations many
of the immigrants are fleeing. We can deconstruct this complex system into more manageable pieces and
ask simpler questions, such as what is the best configuration of manpower and surveillance technology
to maximize U.S. Border Patrol’s effectiveness? But even this simple question requires us to define a
measure of effectiveness, quantify the unauthorized immigration rate, consider all possible configurations
of surveillance and manpower, and estimate the relationship between manpower and technology. It is
immediately obvious that non-linear, complex relationships exist. More surveillance generally leads to
more detections of unauthorized entries. But more detections will also increase the utilization of each
Border Patrol Agent. Individual Border Patrol Agents have finite capacity and will ultimately be too busy
with current detections to respond to new ones. Similarly, more apprehensions will lead the unauthorized
immigrants to adapt their behavior in an attempt to avoid being caught. Success in one sector could therefore
be immediately offset by increased flow into an adjacent sector.

This system has components that span the defense simulation hierarchy and is the poster-child for
organized complexity. Moreover, it has been successfully explored with an agent-based simulation that
incorporates all three aspects of Weaver’s historical progression. The surveillance technology and motion
of the human agents in the model boil down to straightforward physics (problems of simplicity). The
arrival rate and location of arrivals can be accurately depicted with draws from a compound Poisson random
variable that considers each arrival as a group of unauthorized immigrants, where the group size is also a
random variable (disorganized complexity). And finally, these components are combined with models of
diverse human behavior that includes law enforcement agents, peaceful economic migrants seeking asylum,
and criminal elements with more nefarious intentions (organized complexity). The key component to the
success of this model was a diverse team that included people with direct border experience, computer
scientists, operations researchers, cartographers, physicists, and industrial engineers. Equally important
was a well-defined objective that hinged on the marginal difference between end states under controlled
configurations of manpower and technology. The net result was a model that accurately quantified the
relationship between manpower and technology, allowing a $15 billion per year organization to make
informed decisions about their investments (Thompson and Rosen 2018).

3.5 Complexity Science - A Pandemic Modeling Example

The model described above would likely satisfy Akst’s desire to limit simulations to quantifying the
contribution of certain assets to the warfight. But it would be short-sighted to claim that such quantification
is unrelated to prediction. One of the most valuable outcomes of simulation modeling is knowledge gained
by the modelers. They inevitably come to know their own system in ways they were never forced to
contemplate before. Those insights lead to predictive abilities. A case in point is an agent-based model
of the recent COVID-19 pandemic. In the United States, state and local authorities were under extreme
pressure to decide between keeping the citizenry safe with non-pharmaceutical interventions (NPIs) that
crushed the economy or risking wide-spread outbreaks and deaths while allowing the economy to thrive.
Shifting the decision-making to the local authorities illuminated a well-known problem with standard
differential equation models of disease propagation; namely homogeneous mixing. Will a person in New
York City have the same probability of an infectious contact as a person in Cheyenne, Wyoming? The
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obvious answer is no, but the more one analyzes this problem, the deeper the rabbit hole goes. Even if
we restrict the model to a given location, are all age groups equally likely to interact or are people of
all occupations equally likely to interact? And the more we subset the population, the more we slowly
degrade the simplifying assumptions that make differential equation models tractable. Once again, however,
complexity science offers some relief. By shifting to an agent-based approach that starts with a network
structure, the individual probabilities of contact are captured by the network’s edges and the decisions
of each agent in the model. The impact of NPIs can be modeled as a dynamic change to that network
structure that some agents will adhere to while others rebel against. A simulation of this type categorizes
which counties in the state of Maryland were at greater risk of outbreak than others if NPIs were lifted too
soon (Koehler, Slater, Jacyna, and Thompson 2021). Interestingly, while the authors of this model were
pursuing publication, the state of Maryland decided to reopen. A subset of the 24 counties in Maryland
refused to follow this reopening schedule due to their case loads at that time (Nirappil, Cox, and Wiggins
2020). These counties corresponded exactly to the counties categorized as being at highest risk according
to the model. This outcome suggests that prediction and actionable information can be reliably gleaned
from complex simulation models if they intelligently combine the problems of simplicity with disorganized
and organized complexity. Achieving this capability within the defense simulation hierarchy may result
from combining our ever-advancing computing power with all the tools we have obtained from simplicity
to complexity and mixing it altogether with diverse teams consisting of strange bedfellows.

4 PREDICTION AND EXPLANATION

Our need for predictive models is widely accepted. But what about explanatory models? While prediction
and explanation may not be orthogonal, they are also not identical. One can fit a complicated function to
a time series and do a very good job of predicting the next few values of said time series. But, that feat
does nothing to explain why the time series is developing in a particular way. On the other hand, we can
do a very good job of explaining how something works while providing little predictive capability. The
theory of evolution, for example, explains why species change over time but does not provide us with a
means to predict species change over time, other than the fact that it will occur under the right conditions.

Should we prefer explanation or prediction? That depends on the question, or at least it should. The
process is more, or less, difficult based on where the problem fits within Weaver’s characterization and on
the needs driving the modeling effort. “Well behaved” systems such as Weaver’s simple or disorganized
complex systems can be easier to predict and explain. When one deals with organized complex systems,
however, prediction and explanation can be much more difficult. Under these circumstances one must
carefully define the modeling effort being undertaken or it can very quickly grow out of control otherwise.
In line with Figure 1, is the simulation being used as a: (a) Thought experiment, problem definition or
basic requirements analysis? (b) Functional analysis, or to experiment with basic generating mechanisms or
coarse-grained forecasting? Or, (c) Synthesis of components, physical validation or fine-grained forecasting?
Finally, is there a referent that can be used to define or understand how well the simulation represents the
phenomena of interest?

On the coarser end of the uses, (a) above, one likely requires only relational equivalence to a referent
(Axtell, Axelrod, Epstein, and Cohen 1996) if there is one. Moreover, at this end of the spectrum, one
likely only needs Level 0 or perhaps Level 1 Empirical Relevance (Axtell 2005). Here the components
of the simulation only need to behave plausibly (qualitative micro-level relevance (level 0) or qualitative
macro-level relevance (level 1)). As the needs and use of the simulation become more specific, e.g., some
form of forecasting or one begins to ask specific questions about the system’s generating mechanisms, then
the simulation should more closely align with the referent. Here distributional equivalence/level 2 empirical
relevance is the goal, specifically distributional agreement, i.e., the aggregated distributions produced by
the simulation and referent are statistically indistinguishable, between the simulation and referent (Axtell
2005; Axtell, Axelrod, Epstein, and Cohen 1996). Finally, as the needs of the analysis require fine-grained
forecasting or ask very specific questions about the generating mechanisms of the system, one strives for
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identical output between the simulation and the referent driven by micro-level quantitative correspondence
(Axtell 2005; Axtell, Axelrod, Epstein, and Cohen 1996). While truly identical output between the referent
and simulation is unlikely, it would be ideal. Moreover, the data requirements for micro-level quantitative
correspondence are very high and may be very difficult to obtain, though given the data collection going
on today, this bar may be getting lower.

In many ways the above outlines a process to define what an adequate simulation is within a given
context. Pulling that thread further, one could then use it as a way to define the necessary validation process
is for the simulation in question. While V&V can easily become a box checking exercise, especially in
resource constrained situations. There is a wealth of guidance on tailoring V&V processes (Balci 1998). Is
the simulation being used to create engineering-grade requirements or specifications? Or is the simulation
being used to inform a thought experiment? The intended use drives the validation exercise. If the simulation
is simply a tool aiding a thought experiment, the necessary validation may be just that the components
behave in plausible ways and interact in reasonable ways. If, on the other hand, one is deriving specific
engineering requirements from the simulation, then the validation exercise must be much more rigorous.

A framework for V&V of agent-directed simulations within a systems engineering context can be found
in (Barry, Koehler, and Tivnan 2009). Beyond the validation question, this framework can also be used
at the beginning of a modeling endeavor to define how far down the horseshoe nail road one should go
down and to define success (validation) so you know when you get there. This structured approach also
helps mitigate potential artificialities of the level-resolution demarcation in Figure 1. To many, the figure
implies that as the scale of the situation being simulated increases the level of resolution must uniformly
decrease. As noted in Section 2, in practice most simulations have elements that cross resolution boundaries.
For example, if a campaign-scale question hinges critically on communications then a simulation may
include a relatively low resolution representation of forces with high resolution communications. Additional
considerations for these trades are discussed in (Meyer, Koehler, Barry, and Tivnan 2005).

By thinking critically about the question, the “thing” to be modeled, the necessary insights and purpose,
and the current understanding of how the “thing” works, one can use the framework outlined above to
define what should be in and out of the model and what success looks like so you know when you are
done. In this sense you can figure out whether or not you need a well-fed horse or simply one with feet
that could be shoeless.

5 CONCLUSIONS

In this article we explore the balance between simplicity and complexity in simulation modeling. Considered
through the lens of defense simulation and analysis, the balance must reconcile the need for detailed physics-
based representations of components at the system engineering level with the ‘softer’ machinations of global
politics at the enterprise and government levels. This tension aligns well with the history of complexity
science, as interpreted by Weaver’s progression from problems of simplicity that focus on just a couple
of variables, to disorganized complexity that exploit statistical averages and the central limit theorem, to
organized complexity that relies heavily on computer simulation and diverse teams to uncover the emergent
effects. Ultimately, the balance between simplicity and complexity is found in the original objective of the
modeling endeavor. The seemingly subtle distinction between prediction and explanation is accentuated
by organized complex systems, where explaining the mechanism often offers little predictive power and
vice versa.

The common thread through these dizzying topics is that the work surrounding the construction of a
simulation is as important – or perhaps more important – than the resulting simulation itself. It has been said,
in a number of different ways, that effective analysis is a combination of both analytical rigor and creative
insightful thinking (Rumelt 2012), (Betts 2000), (Courtney, Kirkland, and Viguerie 1997). However, that
does not mean that a general solution is out of reach. Indeed, the simulation literature provides a framework
that can guide simulation modelers through the journey from simplicity to complexity to generate the
appropriate model for the problem in question. One must first determine the boundaries of the system and
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the objectives they seek. Is the goal to predict or explain or explore or train? Will the real-world decisions
be made at one scale or across multiple scales? Are all the details important or will a marginal comparison
suffice? Once the objective is defined, it should give way to testable hypotheses which in turn suggest the
appropriate model and level of detail required.

Creating a useful simulation is difficult. Knowing what features should be added and at what level of
resolution is critical for creating the insights necessary to answer the question established by the objective.
All is not lost. There are general guiding principles and domain-specific practices, some of which we have
addressed here. The challenge to simulation modelers is to assemble the appropriate diverse team, tailor
their thinking based on the progression from simplicity to organized complexity, and remember that the
most valuable result of simulation is often the insights gained by the modeling team.

In this article, we admit raising more questions than solutions offered. We hope our assessment of the
fundamental tension between detail and simplicity as reflected within current practices in several different
modeling domains, and framed by complexity science, contributes to this important topic in modeling
methodology.
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