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ABSTRACT 

Effective project control in construction requires the rapid identification and subsequent mitigation of 
deviations from planned baselines and schedules. Although simulation has been used to successfully plan 
projects in the pre-construction phase, the use of simulation for project control during execution remains 
limited. Current real-time simulation strategies have difficulty self-adapting in response to deviations from 
planned baselines, requiring experienced simulation experts to manually update the input parameters of 
simulation models. This study is proposing a dynamic, data-driven simulation environment that is capable 
of minimizing the manual intervention required to incorporate as-built construction data in real-time by 
coupling newly-developed metadata structures with Bayesian inference. Still in development, an overview 
of the proposed simulation environment is presented, details of the advanced data structures are discussed, 
and preliminary functionality of the environment is demonstrated.  

1 INTRODUCTION 

To ensure profitability, construction organizations must continuously refine project plans, ensuring that 
resource usage is optimized, project durations are minimized, and potential risks are mitigated (Halpin and 
Riggs 1992). For over 40 years, construction researchers have used simulation to model construction 
operations for improved project management (Halpin 1973). While this has resulted in a large collection of 
simulation-based research, relatively few of these academic contributions have been successfully 
implemented for project control in the execution phase of construction (AbouRizk 2010; Leite et al. 2016).  

Two factors limiting the use of simulation beyond the planning stages in construction are (1) the rigid 
nature of simulation models (Lee et al. 2013) and (2) their inability to appropriately integrate frequent and 
transient change (Lugaresi and Matta 2018). Construction projects are variable in nature, with as-built data 
regularly deviating from planned baselines and schedules. In contrast to other industries, incorporation of 
as-built construction data into simulation models often necessitates model recalibration each time new data 
are integrated. Both time-consuming and requiring expert knowledge, current real-time simulation 
strategies are not able to generate results in the time-window required to be effectively leveraged for 
construction project control (AbouRizk 2010). 

The development of self-adaptive simulation models that are capable of incorporating as-built data in 
real-time are required before simulation can be effectively used during project execution (Lugaresi and 
Matta 2018; Lee et al. 2013). As a step towards this goal, this research is proposing an innovative simulation 
environment capable of dynamically and automatically updating simulation models with real-time, as-built 
information. The proposed environment uses advanced metadata structures to achieve data-driven self-
adaptation and applies Bayesian inference to more appropriately integrate the frequent deviations and 
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atypical outliers characteristic of construction. This newly-developed approach has the potential to 
substantially reduce the manual intervention and expert knowledge required for real-time model updating, 
thereby overcoming existing challenges limiting the implementation of simulation in construction practice. 
Still in the preliminary stage of development, the aim of this paper is to provide an overview of the 
architecture and data flow of the proposed simulation environment and to detail the innovative metadata 
structures of the modeling database. Preliminary functionality of the system is demonstrated through an 
illustrative example. 

2 BACKGROUND 

Project control involves the “planning, monitoring, and controlling” of project execution in an attempt to 
mitigate the negative consequences of deviations from planned project baselines (CII 2021). Many projects 
in construction are sequential in nature, requiring the successive completion of multiple tasks by various 
crews (i.e., resources). In contrast to more iterative construction projects, such as earthmoving, where 
project deviations generally do not affect system flow, deviations in sequential construction often result in 
changes to the underlying logic of the system. Incorporating real-time data into simulation models of 
sequential construction operations, therefore, often requires manual intervention and model recalibration. 

For simulation to be effective in the execution phase of construction projects, strategies allowing 
simulation models to be automatically paused, updated with as-built data, and restarted, are required. An 
idealized simulation approach is illustrated in Figure 1. Here, the progress of a project is simulated from 
Point A to Point C. Once execution begins, the simulation model is updated with as-built project data. Point 
B represents an arbitrary point along the lifecycle where an update to the parameters and/or topology of the 
model takes place. The ideal simulation strategy allows the simulation to continue from Point B to Point C 
based on real-time progress of the project from Point A to Point B. 

 

Figure 1: Simulation lifecycle during planning and execution phases of a construction project. 

3 LITERATURE REVIEW 

3.1 Dynamic, Real-Time Simulation in Construction 

Real-time simulation (RTS) has the potential to improve the accuracy of performance forecasting over 
traditional simulation approaches. Several researchers have adopted RTS in construction, including 
approaches for generating new motion plans to prevent crane collisions (Zhang et al. 2012), improving 
input models in tunneling projects (Chung et al. 2006), and updating activity durations during the 
construction of a concrete plant (Lu et al. 2007). Although successful at incorporating as-built project data, 
many RTS approaches in construction have been limited to updating parameter values.  

Even fewer attempts to develop self-adaptive simulation models in construction have been made. In 2008, 
Song, Ramos, and Arnold proposed a RTS framework for modeling heavy construction operations (Song 
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et al. 2008). Data and process knowledge were used together to enable a self-adaptive modeling process. 
However, the modeling approach proposed by Song et al. cannot be paused and adjusted with real-time data 
(i.e., model cannot be paused at Point B in Figure 1). Rather, the model is run, real-time data are input, and 
the complete model is then re-run from the start (i.e., Point A). Furthermore, the approach does not appear 
to be generalizable, necessitating an original, customized model to be created for each intended application.  

3.2 Research Gap 

Several issues preventing RTS implementation, namely data collection, automated inputs, auto-validation, 
initialization, synchronization, model generation, reactiveness, shared information, modeling methods, and 
interfaces, have yet to be addressed in construction (Lugaresi and Matta 2018). Current approaches do not 
consider issues related to data streams, dataset size, and different subsets of data that may be needed 
(Waschneck et al. 2016).  

Many RTS approaches in construction are limited to parameter updating. Where self-adaptive modeling 
has been attempted, a lack of generalizability negates potential benefits. In the aforementioned case, manual 
intervention is still required to develop a customized model, which is often beyond the expertise of 
practitioners. As such, RTS remains limited to efficient look-ahead scheduling, progress monitoring, and 
productivity measurement. A generalizable environment capable of automatically (1) generating and (2) 
updating both the parameters and topology of simulation models would transform the way simulation is 
used for project management and control in construction practice.  

Integrating advanced metadata structures with Bayesian inference could address two of the primary 
factors limiting RTS in construction—specifically adaptability and reactiveness. Advanced metadata 
structures could minimize the intervention required to execute parameter and topology changes to a 
simulation model, and combining this approach with Bayesian inference could more appropriately integrate 
frequent deviations and atypical outliers inherent to construction. However, a simulation environment 
capable of achieving these objectives has yet to be developed. 

4 PROPOSED ENVIRONMENT 

This research aims to overcome the limitations of previous RTS studies by coupling advanced metadata 
structures with Bayesian inference to develop a self-adaptive simulation environment that enables dynamic, 
data-driven simulation in construction. The simulation environment centers around a newly-developed 
generic database schema that supports model definitions for products, processes, and the environment for 
a wide variety of construction domains. The proposed environment also encompasses several supporting 
components, including the functions, algorithms, and human interfaces that: 

1. Build a simulation model from data. 
2. Run the model and generate associated artificial histories of simulation runs. 
3. Capture and integrate as-built data at desired intervals (i.e., Point B in Figure 1). 
4. Update model parameters, including product status, resource availability, crew composition, and 

resource productivity. 

An overview of the proposed architecture is illustrated in Figure 2. In construction, the input data used 
to define the simulation model are often stored across multiple data sources, including (1) static data, which 
are often stored as design drawings, building information models, design specifications, and estimates, and 
(2) dynamic data, such as time sheets, inventories, schedules, progress reports, and resource availability, 
which are typically stored as part of an organization’s corporate systems.  

Input data are retrieved using data adaptors, which transform and feed required data into the modeling 
database. Then, data in the modeling database are read by a model generator, which is responsible for 
building the simulation model. Once built, the simulation model is run. An artificial history of the 
simulation scenario and corresponding model statistics are produced, and output data are written back into 
the modeling database after each simulation run. The modeling database receives dynamic input in the form 
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of either manual or automated updates to its parameters as well as actual project data. To achieve real-time 
updating, simulation output data, prior historical data, initial assumptions of the model, and real-time 
project information are retrieved from the modeling database and integrated to generate a new set of 
performance parameter assumptions for subsequent runs. The modeling database can also act as a data 
source for optimization and/or visualization modules. An overview of the data flow is illustrated in Figure 
3. Functionality of the various components are detailed as follows. 

 

Figure 2: Architecture of proposed simulation environment. 

 

Figure 3: Data flow of proposed framework. 

4.1 Advanced Metadata Structures 

The metadata structures define the product, process, and environment components of the model. Product 
data define what the construction operation will produce, process data define the tasks and resources 
required to produce the product, and environment data define the construction environment. Tables record 
the date stamp of the record (i.e., VERSION field, where applicable), thereby permitting modifications to be 
made while maintaining previous historical versions. Data tables are detailed as follows.  

4.1.1 Product Table 

The Product Input Table (Table 1) defines the products of the construction operation and associates each 
product with a template of tasks required to build the product (Table 2). Products can be defined in a 
hierarchical manner, if required, by adding child products; there is no limit to the hierarchy level. 
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Table 1: Description of product table fields. 

Field Description 
Product Input Table 
ID Unique identifier 
PRODUCT Human-readable identifier for the product 
QTY Quantity of products of this type of construction 
TEMPLATE Human-readable identifier for the template 
PARENT Name of parent product for a child product, or null for a top-level product 

4.1.2 Process Tables 

Process tables consist of task-related tables and resource-related tables. Task-related tables (Table 2) 
include Template and Sequence Input Tables. The Template Input Table defines the tasks required to build 
a specific kind of product. Notably, multiple products can share the same template. Every task in the 
template defines the crew (i.e., resources) required to perform the task, the productivity rate of the crew, 
the product level at which the task is being performed, and the quantity coefficients used to calculate the 
amount of work required of the crew. The system supports both constant and stochastic productivity rates. 
The Sequence Input Table defines the sequence of the tasks in each of the templates. Sequences can have 
complex flows, including linear and parallel flows.  

Table 2: Description of task-related table fields. 

Field Description 
Template Input Table 

ID Unique identifier 
TEMPLATE Human-readable identifier for the template 
TASK Human-readable identifier for the task 
QTY_M Quantity multiplier (≥ 1) used to convert the product quantity into the task quantity 
QTY_K Constant value (≥ 0) added to the task quantity regardless of the product quantity 
RESOURCETYPE Name of crew required to perform task 
PRODUCTIVITY Productivity rate (as a constant or probability distribution) of the crew performing the 

task; supports manual and/or automated updating 
LEVEL Product hierarchy level (e.g., 1, 2, 3, etc.) at which the task is performed 
PERSIST Flag indicating that resources are retained from the beginning of the first task to the 

end of the last task indicated in the sequence table, allowing resources to be carried 
across activities (e.g., a truck transporting material through multiple steps) 

CUMULATIVE Flag indicating that the task quantity should be calculated as the cumulative production 
rather than the product quantity (e.g., a truck whose traveling distance increases 
incrementally with each trip) 

VERSION Date stamp of record 

Sequence Input Table 
ID Unique identifier 
TEMPLATE Human-readable identifier for the template 
PREDECESSOR Name of predecessor task 
SUCCESSOR Name of successor task 
VERSION Date stamp of record 
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Resource-related tables (Table 3) include the Crew Composition Input Table, which defines the resources 
(e.g., labor and equipment) that encompass a crew, and the Resource Availability Input Table, which defines 
the availability of resources over time, permitting the ramp-up or ramp-down of resources through the 
lifecycle of the project. 

Table 3: Description of resource-related table fields. 

Field Description 
Crew Composition Input Table 
ID Unique identifier 
RESOURCETYPE Name of crew required to perform task 
RESOURCE Name of resource 
NUMBER Quantity of resource required in crew 
VERSION Date stamp of record 

Resource Availability Input Table 
ID Unique identifier 
RESOURCE Name of resource 
FROM Start date of specified period for record, or null if record applies throughout model life 
TO End date of specified period for record, or null if record applied throughout model life 
QTY Quantity of resource available during specified period 
VERSION Date stamp of record 

4.1.3 Environment Tables 

Environment tables (Table 4) include the project Calendar Input Table and the Setup Table. The Calendar 
Input Table defines the working hours of a resource by date and/or time. The Setup Table contains the 
definitions of the global simulation parameters, including the random number seed, start date for the project, 
and the number of Monte Carlo simulation iterations to perform. 

Table 4: Description of environment table fields. 

Field Description 
Calendar Input Table 
ID Unique identifier 
CALENDAR Name of calendar 
RESOURCE Name of resource 
FROM Start date of specified period for record, or null if record applies throughout model life 
TO End date of specified period for record, or null if record applies throughout model life 
SHIFTFROM Start time of shift 
SHIFTTO End time of shift 
VERSION Date stamp of record 

Setup Table 
ID Unique identifier 
PARAMETER Name of parameter 
PARAMVALUE Value of parameter 
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4.2 Model Generation and Execution 

The model generator is executed using a customized, in-house developed software application that reads 
updated information from the input tables in the modeling database and constructs a corresponding Simphony 
General Template model (as a .sim file) (AbouRizk et al. 2016). An example is provided in Figure 4. The 
Simphony model is hierarchical and incorporates the components defined in the database, including crew 
availability and templates. The model is linked to the modeling database, allowing (1) products to be read 
during simulation execution and (2) simulation results to be written back into the database. 

The resulting simulation model can be executed in one of two ways. First, the model can be loaded into 
the graphical user interface provided within Simphony (AbouRizk et al. 2016), namely the Simphony 
Modeling Element. Once loaded, the model may be viewed, edited (if desired), and executed. Alternatively, 
if automation is desired, the model can be executed by the customized, in-house developed software 
application prototype. In both situations, the simulation proceeds as follows. First, a connection to the 
central database is established, and the Product Input Table is read. Each top-level product is routed as an 
entity to the appropriate template sub-model. Next, the discrete-event simulation is performed, with entities 
representing products flowing through their respective sub-models. As the simulation proceeds, statistical 
information is generated and stored. Finally, after all products are complete, the connection to the database 
is re-established, and the simulation outputs are written into the output tables.  

4.3 Model Outputs 

Simulation output statistics are used both for decision-making and for simulation model updating. Outputs 
of the simulation model are collected and stored in output tables (Table 5). Statistics and metrics generated 
by the dynamic simulation model, as well as performance metrics of the actual operation, are used to assess 
performance of the model and the operation, respectively. Both model-generated and actual performance 
metrics are used to update the simulation, as required. 

Table 5: Summary of output tables. 

Output Table Description of Table Fields 

Task Time Start and end times of each task for every product, amount of time waiting for 
resources to become available, and amount of time spent performing a task 

Resource Use Utilization level of individual resources over time, including the total and in-use 
quantities of resources at a given time 

Crew Queuing Queuing information of products for crews over time 

Model Statistics General statistics generated by the simulation environment 

4.4 Model Updating 

Statistics generated by the dynamic simulation model (Table 5) are collected and used to update parameters. 
Performance data and metrics from actual operations are stored in actual input tables. Currently, actual 
durations of tasks based on as-built data are stored in an Actual Task Time Input Table. Output data from 
the simulator are integrated with prior historical data, initial assumptions for the model, and as-built data to 
generate a new set of assumptions for subsequent simulation runs. Updates can be made manually or 
automatically. 

Currently, updating is limited to resource-related data (Table 3), including changes to the Crew 
Composition, Resource Availability, and Template (specifically, the PRODUCTIVITY field) Input Tables, as 
well as updates to the project Calendar Input Table (Table 4). While model updating does not currently 
include updates to the process portion of the model definitions, the meta-model is structured in a manner 
that can allow model topology to be updated through the addition or removal of rows from the Template 
Input Table or the Sequence Input Table (Table 2).  
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4.4.1 Manual Updating 

Manual updates can be performed by the end user at any given point in time through the updating of model 
parameters with new values, as required. The end user manages parameter updates through a specialized 
interface that allows for modification of model definition data mid-simulation lifecycle (i.e., Point B in 
Figure 1), where the simulation is stopped at a specified time, values are altered, and the simulation is 
continued. When manually updating the simulation, the system must ensure that the simulation continues 
with the actual project scope remaining after it is restarted. First, products are flagged with their completion 
status at each stopping point, ensuring that the simulation can restart at the stopping point. Actual project 
information that is input into the modeling database can result in changes to the remaining scope. As such, 
updates from real project information may include updates to both the parameters and scope. 

4.4.2 Automated Updating 

The simulation may also be updated using an automated approach. The updating component of the 
simulation environment uses Bayesian inference to integrate historical information with real-time, as-built 
data for updating purposes. At present, automated updating of only the productivity of a task is supported.  

4.4.2.1 Bayesian Inference for Automated Parameter Updating 

During automated updating, the productivity rate of a task is defined by a Bayesian distribution 
(PRODUCTIVITY field). The Bayesian distribution encompasses a probability distribution, such as a triangular, 
log-normal, or beta, together with a multivariate distribution, known as the prior distribution, that specifies 
parameter uncertainty (Ang and Tang 2006). When the model is initially executed, numerical integration is 
performed to construct a frequency polygon, using the approach previously-described by Hague and 
AbouRizk (2019), which approximates the prior predictive distribution. The value is sampled from the 
frequency polygon.  

When new data are available, Bayesian inference is used to construct the posterior distribution for 
automated parameter updating. The posterior distribution is a multivariate distribution that combines the 
information contained in the prior distribution with the new data, thereby representing the revised 
uncertainty of the parameters. When the model is executed, numerical integration is again performed to 
construct the frequency polygon (Hague and AbouRizk 2019). This time, however, the frequency polygon 
will approximate the posterior predictive distribution. An updated productivity value is then sampled from 
the new frequency polygon. 

5 FRAMEWORK APPLICATION PROTOYPE 

An illustrative example of an industrial pipe spool fabrication application was developed to demonstrate 
the functionality of the proposed simulation approach. A Microsoft Access database containing the 
input/output tables described in Section 4 was created, and the input tables were populated using data 
adapted by the authors from a real project. A prototype implementing the proposed approach was developed 
in C# and the Microsoft Visual Studio IDE (Microsoft 2021). The Core Services component of the 
Simphony environment (AbouRizk et al. 2016) was used as the back-end simulation engine.   

5.1 Model Definitions  

Data were input into the modeling database as follows. The spools (NAME) to be produced, including their 
size (QTY), the steps required to produce this type of spool (TEMPLATE), and whether to deal with the spool 
at the spool or joint level (PARENT) were defined in the Product Input Table. 

The various tasks (TASK) of the pipe spool fabrication process, as well as the associated quantities (QTY_M, 
QTY_K), the type of crew (RESOURCETYPE), the productivity rate (PRODUCTIVITY), the hierarchy level at which 
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the task applies (LEVEL), and other supportive modeling flags were defined in the Template Input Table. 
Predecessor (PREDECESSOR) and successor (SUCCESSOR) tasks were defined in the Sequence Input Table.  

Crews (CREW) and the quantity (NUMBER), dates of availability (FROM, TO), and shift dates (SHIFTFROM, 
SHIFTTO) of their associated resources (RESOURCE) were defined in the Crew Composition, Resource 
Availability, and Calendar Input Tables, respectively. Finally, the start date, time unit, seed, and run for the 
simulation model were defined in the Setup Table. 

5.2 Simulation Model 

The simulation model abstracted the pipe spool fabrication activities required to produce the pipe spool 
products. The fabrication process was defined as a simulation model using the data structures of the 
simulation environment. The Simphony Modeling Element of Simphony (AbouRizk et al. 2016) was used 
to visualize the resulting simulation model. A portion of the model is illustrated in Figure 4. 

 

Figure 4: Portion of simulation model for illustrative example. 

5.3 Model Outputs 

Outputs of the model were stored in the four output tables summarized in Table 5. Start (STARTDATETIME), 
end (ENDDATETIMES) times, amount of time waiting for resources to become available (WAITTOSTART), and 
the duration (DURATION) of each task (TASK) for each product (PRODUCT) were determined and written to the 
Task Time Output Table (Figure 5). 

 

Figure 5: Portion of Task Time Output Table.  

The total (RESOURCETOTAL) and in-use (RESOURCEUSE) quantities of resources (RESOURCETYPE) as well as 
their queuing information (QLENGTH) over time were output into the Resource Use (Figure 6) and Crew 
Queuing (Figure 7) Output Tables, respectively. A variety of general statistics, including standard deviation, 
productivity rates, maximum length, maximum utilization, and average inter-arrival, were calculated and 
output into the Model Statistics Output Table. 
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Figure 6: Portion of Resource Use Output Table. 

 

Figure 7: Portion of Crew Queuing Output Table. 

5.4 Model Updating 

Updates to the model were performed both manually and in an automated manner. Manual updates included 
changes to resource availability, crew compositions, and crew productivity. To perform manual updates, 
the simulation run was paused at Point B, and model parameters were updated by changing values in the 
appropriate locations in the data structure tables. Updated values were derived from either (1) observations 
of simulation run results produced up to Point B or (2) assumptions designed to mimic expected occurrences 
in a real industrial setting. New records holding the updated values carried a date/time stamp (VERSION) to 
signify to the model which value to use and to enable traceability. 

In the illustrative example, resource availability was changed at Point B to reflect the addition of a 
specific resource type (a welder) due to changes to the operation’s resource availability plan (Figure 8a). 
Crew composition was also altered to reflect corrections required based on changes to actual crew 
compositions, which involved the addition of one fabricator to the Cut Crew (Figure 8b). Finally, the 
productivity of the FitUp Crew was also manually updated to represent an increase in the crew’s 
productivity rate onsite (Figure 8c).  
 

  
(a) (b) 

 
(c) 

 
(d) 

Figure 8: Portion of updated (a) Resource Availability, (b) Crew Composition, (c) Template, and (d) Actual 
Task Time Input Tables, with manual updates (green) indicated.  
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In contrast to manual updates (Figure 8a-c), the productivity rate of the Cut Crew was updated 
automatically using the Bayesian inference approach previously described (Section 4.4.2.1). Task durations 
from as-built data in the Actual Task Time Input Table (Figure 8d; Figure 9, histogram) were—together 
with the prior predictive distribution (Figure 9, dashed)—used to generate the posterior predictive Bayesian 
distribution (Figure 9, solid) from which productivity rates in subsequent simulation runs were sampled. 

 

Figure 9: Actual observations (histogram) as well as the prior (dashed) and posterior (solid) predictive 
Bayesian distributions for Cut Crew productivity. 

5.5 Verification and Validation 

Preliminary verification of the proposed environment was first performed using a simple problem consisting 
of four products, two templates, and eight tasks. Results were calculated manually (using a spreadsheet) 
and were compared to those derived using the dynamic simulation environment. Outputs of the environment 
matched the hand-derived solution. Notably, the simple problem was converted to an automated unit test. 
Functionality and validity was further examined by applying the proposed environment to solve more 
realistic problems. Datasets adapted from real project data were used to develop two illustrative examples—
an industrial pipe spool fabrication application (Section 5) and an industrial module erection model. Results 
were successfully obtained in both examples and were determined to be reasonable using face validation. 

6 DISCUSSION 

This work is attempting to address existing challenges in construction simulation through the development 
of a new simulation environment capable of executing dynamic, data-driven simulation without the need 
for routine manual intervention. The proposed environment uses advanced metadata structures to drive 
model self-adaptation and Bayesian inference for automated parameter updating. The purpose of this paper 
is to introduce the proposed environment and to describe the preliminary work that has been undertaken to 
transform the conceptual model into an implementable tool. 

Preliminary results have demonstrated the ability of the proposed environment to generate functional 
models and outputs from simplified project datasets. In its present form, the proposed environment is 
limited to the automated updating of productivity parameters and is not capable of automatically updating 
model flow. Future work, which is currently ongoing, is expanding the functionality of the proposed 
environment to include automated updating of model structure, flow, and non-productivity associated 
parameters (e.g., resource availability). As the development of the simulation environment progresses from 
a conceptual model into an implementable tool, additional verification and validation will be performed to 
evaluate the accuracy, robustness, and functionality of the resulting system—including the practical 
application of the proposed environment to a real construction project. 
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