
Proceedings of the 2021 Winter Simulation Conference
S. Kim, B. Feng, K. Smith, S. Masoud, Z. Zheng, C. Szabo and M. Loper, eds.

 DYNAMIC, DATA-DRIVEN SIMULATION IN CONSTRUCTION USING ADVANCED
METADATA STRUCTURES AND BAYESIAN INFERENCE

Ramzi Roy Labban

Stephen Hague
Elyar Pourrahimian
Simaan AbouRizk

University of Alberta

5-080 Natural Resources and Engineering Facility
Department of Civil and Environmental Engineering

Edmonton, AB T6G 2W2, CANADA

ABSTRACT

Effective project control in construction requires the rapid identification and subsequent mitigation of
deviations from planned baselines and schedules. Although simulation has been used to successfully plan
projects in the pre-construction phase, the use of simulation for project control during execution remains
limited. Current real-time simulation strategies have difficulty self-adapting in response to deviations from
planned baselines, requiring experienced simulation experts to manually update the input parameters of
simulation models. This study is proposing a dynamic, data-driven simulation environment that is capable
of minimizing the manual intervention required to incorporate as-built construction data in real-time by
coupling newly-developed metadata structures with Bayesian inference. Still in development, an overview
of the proposed simulation environment is presented, details of the advanced data structures are discussed,
and preliminary functionality of the environment is demonstrated.

1 INTRODUCTION

To ensure profitability, construction organizations must continuously refine project plans, ensuring that
resource usage is optimized, project durations are minimized, and potential risks are mitigated (Halpin and
Riggs 1992). For over 40 years, construction researchers have used simulation to model construction
operations for improved project management (Halpin 1973). While this has resulted in a large collection of
simulation-based research, relatively few of these academic contributions have been successfully
implemented for project control in the execution phase of construction (AbouRizk 2010; Leite et al. 2016).

Two factors limiting the use of simulation beyond the planning stages in construction are (1) the rigid
nature of simulation models (Lee et al. 2013) and (2) their inability to appropriately integrate frequent and
transient change (Lugaresi and Matta 2018). Construction projects are variable in nature, with as-built data
regularly deviating from planned baselines and schedules. In contrast to other industries, incorporation of
as-built construction data into simulation models often necessitates model recalibration each time new data
are integrated. Both time-consuming and requiring expert knowledge, current real-time simulation
strategies are not able to generate results in the time-window required to be effectively leveraged for
construction project control (AbouRizk 2010).

The development of self-adaptive simulation models that are capable of incorporating as-built data in
real-time are required before simulation can be effectively used during project execution (Lugaresi and
Matta 2018; Lee et al. 2013). As a step towards this goal, this research is proposing an innovative simulation
environment capable of dynamically and automatically updating simulation models with real-time, as-built
information. The proposed environment uses advanced metadata structures to achieve data-driven self-
adaptation and applies Bayesian inference to more appropriately integrate the frequent deviations and

978-1-6654-3311-2/21/$31.00 ©2021 IEEE

Labban, Hague, Pourrahimian, and AbouRizk

atypical outliers characteristic of construction. This newly-developed approach has the potential to
substantially reduce the manual intervention and expert knowledge required for real-time model updating,
thereby overcoming existing challenges limiting the implementation of simulation in construction practice.
Still in the preliminary stage of development, the aim of this paper is to provide an overview of the
architecture and data flow of the proposed simulation environment and to detail the innovative metadata
structures of the modeling database. Preliminary functionality of the system is demonstrated through an
illustrative example.

2 BACKGROUND

Project control involves the “planning, monitoring, and controlling” of project execution in an attempt to
mitigate the negative consequences of deviations from planned project baselines (CII 2021). Many projects
in construction are sequential in nature, requiring the successive completion of multiple tasks by various
crews (i.e., resources). In contrast to more iterative construction projects, such as earthmoving, where
project deviations generally do not affect system flow, deviations in sequential construction often result in
changes to the underlying logic of the system. Incorporating real-time data into simulation models of
sequential construction operations, therefore, often requires manual intervention and model recalibration.

For simulation to be effective in the execution phase of construction projects, strategies allowing
simulation models to be automatically paused, updated with as-built data, and restarted, are required. An
idealized simulation approach is illustrated in Figure 1. Here, the progress of a project is simulated from
Point A to Point C. Once execution begins, the simulation model is updated with as-built project data. Point
B represents an arbitrary point along the lifecycle where an update to the parameters and/or topology of the
model takes place. The ideal simulation strategy allows the simulation to continue from Point B to Point C
based on real-time progress of the project from Point A to Point B.

Figure 1: Simulation lifecycle during planning and execution phases of a construction project.

3 LITERATURE REVIEW

3.1 Dynamic, Real-Time Simulation in Construction

Real-time simulation (RTS) has the potential to improve the accuracy of performance forecasting over
traditional simulation approaches. Several researchers have adopted RTS in construction, including
approaches for generating new motion plans to prevent crane collisions (Zhang et al. 2012), improving
input models in tunneling projects (Chung et al. 2006), and updating activity durations during the
construction of a concrete plant (Lu et al. 2007). Although successful at incorporating as-built project data,
many RTS approaches in construction have been limited to updating parameter values.

Even fewer attempts to develop self-adaptive simulation models in construction have been made. In 2008,
Song, Ramos, and Arnold proposed a RTS framework for modeling heavy construction operations (Song

Labban, Hague, Pourrahimian, and AbouRizk

et al. 2008). Data and process knowledge were used together to enable a self-adaptive modeling process.
However, the modeling approach proposed by Song et al. cannot be paused and adjusted with real-time data
(i.e., model cannot be paused at Point B in Figure 1). Rather, the model is run, real-time data are input, and
the complete model is then re-run from the start (i.e., Point A). Furthermore, the approach does not appear
to be generalizable, necessitating an original, customized model to be created for each intended application.

3.2 Research Gap

Several issues preventing RTS implementation, namely data collection, automated inputs, auto-validation,
initialization, synchronization, model generation, reactiveness, shared information, modeling methods, and
interfaces, have yet to be addressed in construction (Lugaresi and Matta 2018). Current approaches do not
consider issues related to data streams, dataset size, and different subsets of data that may be needed
(Waschneck et al. 2016).

Many RTS approaches in construction are limited to parameter updating. Where self-adaptive modeling
has been attempted, a lack of generalizability negates potential benefits. In the aforementioned case, manual
intervention is still required to develop a customized model, which is often beyond the expertise of
practitioners. As such, RTS remains limited to efficient look-ahead scheduling, progress monitoring, and
productivity measurement. A generalizable environment capable of automatically (1) generating and (2)
updating both the parameters and topology of simulation models would transform the way simulation is
used for project management and control in construction practice.

Integrating advanced metadata structures with Bayesian inference could address two of the primary
factors limiting RTS in construction—specifically adaptability and reactiveness. Advanced metadata
structures could minimize the intervention required to execute parameter and topology changes to a
simulation model, and combining this approach with Bayesian inference could more appropriately integrate
frequent deviations and atypical outliers inherent to construction. However, a simulation environment
capable of achieving these objectives has yet to be developed.

4 PROPOSED ENVIRONMENT

This research aims to overcome the limitations of previous RTS studies by coupling advanced metadata
structures with Bayesian inference to develop a self-adaptive simulation environment that enables dynamic,
data-driven simulation in construction. The simulation environment centers around a newly-developed
generic database schema that supports model definitions for products, processes, and the environment for
a wide variety of construction domains. The proposed environment also encompasses several supporting
components, including the functions, algorithms, and human interfaces that:

1. Build a simulation model from data.
2. Run the model and generate associated artificial histories of simulation runs.
3. Capture and integrate as-built data at desired intervals (i.e., Point B in Figure 1).
4. Update model parameters, including product status, resource availability, crew composition, and

resource productivity.

An overview of the proposed architecture is illustrated in Figure 2. In construction, the input data used
to define the simulation model are often stored across multiple data sources, including (1) static data, which
are often stored as design drawings, building information models, design specifications, and estimates, and
(2) dynamic data, such as time sheets, inventories, schedules, progress reports, and resource availability,
which are typically stored as part of an organization’s corporate systems.

Input data are retrieved using data adaptors, which transform and feed required data into the modeling
database. Then, data in the modeling database are read by a model generator, which is responsible for
building the simulation model. Once built, the simulation model is run. An artificial history of the
simulation scenario and corresponding model statistics are produced, and output data are written back into
the modeling database after each simulation run. The modeling database receives dynamic input in the form

Labban, Hague, Pourrahimian, and AbouRizk

of either manual or automated updates to its parameters as well as actual project data. To achieve real-time
updating, simulation output data, prior historical data, initial assumptions of the model, and real-time
project information are retrieved from the modeling database and integrated to generate a new set of
performance parameter assumptions for subsequent runs. The modeling database can also act as a data
source for optimization and/or visualization modules. An overview of the data flow is illustrated in Figure
3. Functionality of the various components are detailed as follows.

Figure 2: Architecture of proposed simulation environment.

Figure 3: Data flow of proposed framework.

4.1 Advanced Metadata Structures

The metadata structures define the product, process, and environment components of the model. Product
data define what the construction operation will produce, process data define the tasks and resources
required to produce the product, and environment data define the construction environment. Tables record
the date stamp of the record (i.e., VERSION field, where applicable), thereby permitting modifications to be
made while maintaining previous historical versions. Data tables are detailed as follows.

4.1.1 Product Table

The Product Input Table (Table 1) defines the products of the construction operation and associates each
product with a template of tasks required to build the product (Table 2). Products can be defined in a
hierarchical manner, if required, by adding child products; there is no limit to the hierarchy level.

Labban, Hague, Pourrahimian, and AbouRizk

Table 1: Description of product table fields.

Field Description
Product Input Table
ID Unique identifier
PRODUCT Human-readable identifier for the product
QTY Quantity of products of this type of construction
TEMPLATE Human-readable identifier for the template
PARENT Name of parent product for a child product, or null for a top-level product

4.1.2 Process Tables

Process tables consist of task-related tables and resource-related tables. Task-related tables (Table 2)
include Template and Sequence Input Tables. The Template Input Table defines the tasks required to build
a specific kind of product. Notably, multiple products can share the same template. Every task in the
template defines the crew (i.e., resources) required to perform the task, the productivity rate of the crew,
the product level at which the task is being performed, and the quantity coefficients used to calculate the
amount of work required of the crew. The system supports both constant and stochastic productivity rates.
The Sequence Input Table defines the sequence of the tasks in each of the templates. Sequences can have
complex flows, including linear and parallel flows.

Table 2: Description of task-related table fields.

Field Description
Template Input Table

ID Unique identifier
TEMPLATE Human-readable identifier for the template
TASK Human-readable identifier for the task
QTY_M Quantity multiplier (≥ 1) used to convert the product quantity into the task quantity
QTY_K Constant value (≥ 0) added to the task quantity regardless of the product quantity
RESOURCETYPE Name of crew required to perform task
PRODUCTIVITY Productivity rate (as a constant or probability distribution) of the crew performing the

task; supports manual and/or automated updating
LEVEL Product hierarchy level (e.g., 1, 2, 3, etc.) at which the task is performed
PERSIST Flag indicating that resources are retained from the beginning of the first task to the

end of the last task indicated in the sequence table, allowing resources to be carried
across activities (e.g., a truck transporting material through multiple steps)

CUMULATIVE Flag indicating that the task quantity should be calculated as the cumulative production
rather than the product quantity (e.g., a truck whose traveling distance increases
incrementally with each trip)

VERSION Date stamp of record

Sequence Input Table
ID Unique identifier
TEMPLATE Human-readable identifier for the template
PREDECESSOR Name of predecessor task
SUCCESSOR Name of successor task
VERSION Date stamp of record

Labban, Hague, Pourrahimian, and AbouRizk

Resource-related tables (Table 3) include the Crew Composition Input Table, which defines the resources
(e.g., labor and equipment) that encompass a crew, and the Resource Availability Input Table, which defines
the availability of resources over time, permitting the ramp-up or ramp-down of resources through the
lifecycle of the project.

Table 3: Description of resource-related table fields.

Field Description
Crew Composition Input Table
ID Unique identifier
RESOURCETYPE Name of crew required to perform task
RESOURCE Name of resource
NUMBER Quantity of resource required in crew
VERSION Date stamp of record

Resource Availability Input Table
ID Unique identifier
RESOURCE Name of resource
FROM Start date of specified period for record, or null if record applies throughout model life
TO End date of specified period for record, or null if record applied throughout model life
QTY Quantity of resource available during specified period
VERSION Date stamp of record

4.1.3 Environment Tables

Environment tables (Table 4) include the project Calendar Input Table and the Setup Table. The Calendar
Input Table defines the working hours of a resource by date and/or time. The Setup Table contains the
definitions of the global simulation parameters, including the random number seed, start date for the project,
and the number of Monte Carlo simulation iterations to perform.

Table 4: Description of environment table fields.

Field Description
Calendar Input Table
ID Unique identifier
CALENDAR Name of calendar
RESOURCE Name of resource
FROM Start date of specified period for record, or null if record applies throughout model life
TO End date of specified period for record, or null if record applies throughout model life
SHIFTFROM Start time of shift
SHIFTTO End time of shift
VERSION Date stamp of record

Setup Table
ID Unique identifier
PARAMETER Name of parameter
PARAMVALUE Value of parameter

Labban, Hague, Pourrahimian, and AbouRizk

4.2 Model Generation and Execution

The model generator is executed using a customized, in-house developed software application that reads
updated information from the input tables in the modeling database and constructs a corresponding Simphony
General Template model (as a .sim file) (AbouRizk et al. 2016). An example is provided in Figure 4. The
Simphony model is hierarchical and incorporates the components defined in the database, including crew
availability and templates. The model is linked to the modeling database, allowing (1) products to be read
during simulation execution and (2) simulation results to be written back into the database.

The resulting simulation model can be executed in one of two ways. First, the model can be loaded into
the graphical user interface provided within Simphony (AbouRizk et al. 2016), namely the Simphony
Modeling Element. Once loaded, the model may be viewed, edited (if desired), and executed. Alternatively,
if automation is desired, the model can be executed by the customized, in-house developed software
application prototype. In both situations, the simulation proceeds as follows. First, a connection to the
central database is established, and the Product Input Table is read. Each top-level product is routed as an
entity to the appropriate template sub-model. Next, the discrete-event simulation is performed, with entities
representing products flowing through their respective sub-models. As the simulation proceeds, statistical
information is generated and stored. Finally, after all products are complete, the connection to the database
is re-established, and the simulation outputs are written into the output tables.

4.3 Model Outputs

Simulation output statistics are used both for decision-making and for simulation model updating. Outputs
of the simulation model are collected and stored in output tables (Table 5). Statistics and metrics generated
by the dynamic simulation model, as well as performance metrics of the actual operation, are used to assess
performance of the model and the operation, respectively. Both model-generated and actual performance
metrics are used to update the simulation, as required.

Table 5: Summary of output tables.

Output Table Description of Table Fields

Task Time Start and end times of each task for every product, amount of time waiting for
resources to become available, and amount of time spent performing a task

Resource Use Utilization level of individual resources over time, including the total and in-use
quantities of resources at a given time

Crew Queuing Queuing information of products for crews over time

Model Statistics General statistics generated by the simulation environment

4.4 Model Updating

Statistics generated by the dynamic simulation model (Table 5) are collected and used to update parameters.
Performance data and metrics from actual operations are stored in actual input tables. Currently, actual
durations of tasks based on as-built data are stored in an Actual Task Time Input Table. Output data from
the simulator are integrated with prior historical data, initial assumptions for the model, and as-built data to
generate a new set of assumptions for subsequent simulation runs. Updates can be made manually or
automatically.

Currently, updating is limited to resource-related data (Table 3), including changes to the Crew
Composition, Resource Availability, and Template (specifically, the PRODUCTIVITY field) Input Tables, as
well as updates to the project Calendar Input Table (Table 4). While model updating does not currently
include updates to the process portion of the model definitions, the meta-model is structured in a manner
that can allow model topology to be updated through the addition or removal of rows from the Template
Input Table or the Sequence Input Table (Table 2).

Labban, Hague, Pourrahimian, and AbouRizk

4.4.1 Manual Updating

Manual updates can be performed by the end user at any given point in time through the updating of model
parameters with new values, as required. The end user manages parameter updates through a specialized
interface that allows for modification of model definition data mid-simulation lifecycle (i.e., Point B in
Figure 1), where the simulation is stopped at a specified time, values are altered, and the simulation is
continued. When manually updating the simulation, the system must ensure that the simulation continues
with the actual project scope remaining after it is restarted. First, products are flagged with their completion
status at each stopping point, ensuring that the simulation can restart at the stopping point. Actual project
information that is input into the modeling database can result in changes to the remaining scope. As such,
updates from real project information may include updates to both the parameters and scope.

4.4.2 Automated Updating

The simulation may also be updated using an automated approach. The updating component of the
simulation environment uses Bayesian inference to integrate historical information with real-time, as-built
data for updating purposes. At present, automated updating of only the productivity of a task is supported.

4.4.2.1 Bayesian Inference for Automated Parameter Updating

During automated updating, the productivity rate of a task is defined by a Bayesian distribution
(PRODUCTIVITY field). The Bayesian distribution encompasses a probability distribution, such as a triangular,
log-normal, or beta, together with a multivariate distribution, known as the prior distribution, that specifies
parameter uncertainty (Ang and Tang 2006). When the model is initially executed, numerical integration is
performed to construct a frequency polygon, using the approach previously-described by Hague and
AbouRizk (2019), which approximates the prior predictive distribution. The value is sampled from the
frequency polygon.

When new data are available, Bayesian inference is used to construct the posterior distribution for
automated parameter updating. The posterior distribution is a multivariate distribution that combines the
information contained in the prior distribution with the new data, thereby representing the revised
uncertainty of the parameters. When the model is executed, numerical integration is again performed to
construct the frequency polygon (Hague and AbouRizk 2019). This time, however, the frequency polygon
will approximate the posterior predictive distribution. An updated productivity value is then sampled from
the new frequency polygon.

5 FRAMEWORK APPLICATION PROTOYPE

An illustrative example of an industrial pipe spool fabrication application was developed to demonstrate
the functionality of the proposed simulation approach. A Microsoft Access database containing the
input/output tables described in Section 4 was created, and the input tables were populated using data
adapted by the authors from a real project. A prototype implementing the proposed approach was developed
in C# and the Microsoft Visual Studio IDE (Microsoft 2021). The Core Services component of the
Simphony environment (AbouRizk et al. 2016) was used as the back-end simulation engine.

5.1 Model Definitions

Data were input into the modeling database as follows. The spools (NAME) to be produced, including their
size (QTY), the steps required to produce this type of spool (TEMPLATE), and whether to deal with the spool
at the spool or joint level (PARENT) were defined in the Product Input Table.

The various tasks (TASK) of the pipe spool fabrication process, as well as the associated quantities (QTY_M,
QTY_K), the type of crew (RESOURCETYPE), the productivity rate (PRODUCTIVITY), the hierarchy level at which

Labban, Hague, Pourrahimian, and AbouRizk

the task applies (LEVEL), and other supportive modeling flags were defined in the Template Input Table.
Predecessor (PREDECESSOR) and successor (SUCCESSOR) tasks were defined in the Sequence Input Table.

Crews (CREW) and the quantity (NUMBER), dates of availability (FROM, TO), and shift dates (SHIFTFROM,
SHIFTTO) of their associated resources (RESOURCE) were defined in the Crew Composition, Resource
Availability, and Calendar Input Tables, respectively. Finally, the start date, time unit, seed, and run for the
simulation model were defined in the Setup Table.

5.2 Simulation Model

The simulation model abstracted the pipe spool fabrication activities required to produce the pipe spool
products. The fabrication process was defined as a simulation model using the data structures of the
simulation environment. The Simphony Modeling Element of Simphony (AbouRizk et al. 2016) was used
to visualize the resulting simulation model. A portion of the model is illustrated in Figure 4.

Figure 4: Portion of simulation model for illustrative example.

5.3 Model Outputs

Outputs of the model were stored in the four output tables summarized in Table 5. Start (STARTDATETIME),
end (ENDDATETIMES) times, amount of time waiting for resources to become available (WAITTOSTART), and
the duration (DURATION) of each task (TASK) for each product (PRODUCT) were determined and written to the
Task Time Output Table (Figure 5).

Figure 5: Portion of Task Time Output Table.

The total (RESOURCETOTAL) and in-use (RESOURCEUSE) quantities of resources (RESOURCETYPE) as well as
their queuing information (QLENGTH) over time were output into the Resource Use (Figure 6) and Crew
Queuing (Figure 7) Output Tables, respectively. A variety of general statistics, including standard deviation,
productivity rates, maximum length, maximum utilization, and average inter-arrival, were calculated and
output into the Model Statistics Output Table.

Labban, Hague, Pourrahimian, and AbouRizk

Figure 6: Portion of Resource Use Output Table.

Figure 7: Portion of Crew Queuing Output Table.

5.4 Model Updating

Updates to the model were performed both manually and in an automated manner. Manual updates included
changes to resource availability, crew compositions, and crew productivity. To perform manual updates,
the simulation run was paused at Point B, and model parameters were updated by changing values in the
appropriate locations in the data structure tables. Updated values were derived from either (1) observations
of simulation run results produced up to Point B or (2) assumptions designed to mimic expected occurrences
in a real industrial setting. New records holding the updated values carried a date/time stamp (VERSION) to
signify to the model which value to use and to enable traceability.

In the illustrative example, resource availability was changed at Point B to reflect the addition of a
specific resource type (a welder) due to changes to the operation’s resource availability plan (Figure 8a).
Crew composition was also altered to reflect corrections required based on changes to actual crew
compositions, which involved the addition of one fabricator to the Cut Crew (Figure 8b). Finally, the
productivity of the FitUp Crew was also manually updated to represent an increase in the crew’s
productivity rate onsite (Figure 8c).

(a) (b)

(c)

(d)

Figure 8: Portion of updated (a) Resource Availability, (b) Crew Composition, (c) Template, and (d) Actual
Task Time Input Tables, with manual updates (green) indicated.

Labban, Hague, Pourrahimian, and AbouRizk

In contrast to manual updates (Figure 8a-c), the productivity rate of the Cut Crew was updated
automatically using the Bayesian inference approach previously described (Section 4.4.2.1). Task durations
from as-built data in the Actual Task Time Input Table (Figure 8d; Figure 9, histogram) were—together
with the prior predictive distribution (Figure 9, dashed)—used to generate the posterior predictive Bayesian
distribution (Figure 9, solid) from which productivity rates in subsequent simulation runs were sampled.

Figure 9: Actual observations (histogram) as well as the prior (dashed) and posterior (solid) predictive
Bayesian distributions for Cut Crew productivity.

5.5 Verification and Validation

Preliminary verification of the proposed environment was first performed using a simple problem consisting
of four products, two templates, and eight tasks. Results were calculated manually (using a spreadsheet)
and were compared to those derived using the dynamic simulation environment. Outputs of the environment
matched the hand-derived solution. Notably, the simple problem was converted to an automated unit test.
Functionality and validity was further examined by applying the proposed environment to solve more
realistic problems. Datasets adapted from real project data were used to develop two illustrative examples—
an industrial pipe spool fabrication application (Section 5) and an industrial module erection model. Results
were successfully obtained in both examples and were determined to be reasonable using face validation.

6 DISCUSSION

This work is attempting to address existing challenges in construction simulation through the development
of a new simulation environment capable of executing dynamic, data-driven simulation without the need
for routine manual intervention. The proposed environment uses advanced metadata structures to drive
model self-adaptation and Bayesian inference for automated parameter updating. The purpose of this paper
is to introduce the proposed environment and to describe the preliminary work that has been undertaken to
transform the conceptual model into an implementable tool.

Preliminary results have demonstrated the ability of the proposed environment to generate functional
models and outputs from simplified project datasets. In its present form, the proposed environment is
limited to the automated updating of productivity parameters and is not capable of automatically updating
model flow. Future work, which is currently ongoing, is expanding the functionality of the proposed
environment to include automated updating of model structure, flow, and non-productivity associated
parameters (e.g., resource availability). As the development of the simulation environment progresses from
a conceptual model into an implementable tool, additional verification and validation will be performed to
evaluate the accuracy, robustness, and functionality of the resulting system—including the practical
application of the proposed environment to a real construction project.

Labban, Hague, Pourrahimian, and AbouRizk

ACKNOWLEDGMENTS

This research is sponsored by the Natural Sciences and Engineering Research Council of Canada (NSERC)
through a Collaborative Research and Development Grant (CRDPJ 492657).

REFERENCES

AbouRizk, S. 2010. “Role of Simulation in Construction Engineering and Management.” Journal of Construction Engineering and
Management 136(10):1140-1153.

AbouRizk, S., S. Hague, R. Ekyalimpa, and S. Newstead. 2016. “Simphony: A Next Generation Simulation Modelling Environment
for the Construction Domain.” Journal of Simulation 10(3):207-215.

Ang, A. H-S., and W. H. Tang. 2006. Probability Concepts in Engineering: Emphasis on Applications to Civil and Environmental
Engineering 2nd ed. New York, New York: John Wiley & Sons, Inc.

Chung, T. H., Y. Mohamed, and S. AbouRizk. 2006. “Bayesian Updating Application into Simulation in the North Edmonton
Sanitary Trunk Tunnel Project.” Journal of Construction Engineering and Management 123(8):882-894.

CII. 2021. Project Controls. https://www.construction-institute.org/resources/knowledgebase/knowledge-areas/project-controls,
accessed April 21, 2021. Austin, Texas: Construction Industry Institute.

Hague, S., and S. AbouRizk. 2019. “Nonparametric Frequency Polygon Estimation for Modeling Input Data.” In Proceedings of
the 18th International Conference on Modeling and Applied Simulation, edited by A. G. Bruzzone, L. M. S. Dias, F. de Felice,
M. Massei, and A. Solis, 159-165. Genoa, Italy: DIME University of Genoa.

Halpin, D. W. 1973. An Investigation of the Use of Simulation Network for Modeling Construction Operations. Ph.D. thesis,
Department of Civil Engineering, University of Illinois, Urbana-Champaign, Illinois.

Halpin, D. W., and L. S. Riggs. 1992. Planning and Analysis of Construction Operations. New York, NY: John Wiley & Sons, Inc.
Lee S., A. Behzadan, A. Kandil, and Y. Mohamed. 2013. “Grand Challenges in Simulation for the Architecture, Engineering,

Construction and Facility Management Industry.” Computing in Civil Engineering 2013:773-785.
Leite, F., Y. Cho, A. H. Behzadan, S. Lee, S. Choe, Y. Fang, R. Akhavian, and S. Hwang. 2016. “Visualization, Information Modeling,

and Simulation: Grand Challenges in the Construction Industry.” Journal of Computing in Civil Engineering 30(6):04016035.
Lu, M., F. Dai, and W. Chen. 2007. “Real-Time Decision Support for Planning Concrete Plant Operations Enabled by Integrating Vehicle

Tracking Technology, Simulation, and Optimization Algorithms.” Canadian Journal of Civil Engineering 34(8):912-922.
Lugaresi, G., and A. Matta. 2018. “Real-Time Simulation in Manufacturing Systems: Challenges and Research Directions.” In

Proceedings of the 2018 Winter Simulation Conference, edited by M. Rabe, A. A. Juan, N. Mustafee, A. Skoogh, S. Jain, and
B. Johansson, 3319-3330. Piscataway, New Jersey: Institute of Electrical and Electronics Engineers, Inc.

Microsoft Corporation. 2021. Visual Studio. https://visualstudio.microsoft.com/vs/, accessed June 28, 2021. Albuquerque, New
Mexico: Microsoft Corporation.

Song, L., F. Ramos, K. Arnold. 2008. “A Framework for Real-Time Simulation of Heavy Construction Operations.” In Proceedings
of the 2008 Winter Simulation Conference, edited by S. J. Mason, R. R. Hill, L. Mönch, O. Rose, T. Jefferson, and J. W.
Fowler, 2387-2395. Piscataway, New Jersey: Institute of Electrical and Electronics Engineers, Inc.

Waschneck, B., T. Altenmüller, T. Bauernhansl, and A. Kyek. 2016. “Production Scheduling in Complex Job Shops from an Industry
4.0 Perspective: A Review and Challenges in the Semiconductor Industry.” In Proceedings of the 1st International Workshop on
Science, Application, and Methods in Industry 4.0, edited by R. Kern, G. Reiner, and O. Bluder. Graz, Austria: Know-Center.

Zhang, C., A. Hammad, and S. Rodriguez. 2012. “Crane Pose Estimation Using UWB Real-Time Location System.” Journal of
Computing in Civil Engineering 26(5):625-637.

AUTHOR BIOGRAPHIES

RAMZI ROY LABBAN was a Postdoctoral Fellow in the Department of Civil and Environmental Engineering at the University
of Alberta. He is currently a Senior Advisor at SMA Consulting. His email address is labban@ualberta.ca.

STEPHEN HAGUE is a System Analyst in the Department of Civil and Environmental Engineering at the University of Alberta.
His e-mail address is steve.hague@ualberta.ca.

ELYAR POURRAHIMIAN is a PhD Student at the University of Alberta studying Construction Engineering and Management.
His email address is elyar@ualberta.ca.

SIMAAN ABOURIZK is a Distinguished University Professor, Interim Dean of the Faculty of Engineering at the University of
Alberta, and a Tier 1 Canada Research Chair in Operations Simulation. His email address is abourizk@ualberta.ca.

