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ABSTRACT

Stakeholders’ participation in the modeling process is important to successful Digital Twin (DT) implemen-
tation. The key question in the modeling process is to decide which options to include. Explaining the key
question clearly ensures the organizations and end-users know what the digital models in DT are capable
of. To support successful DT implementation, we propose a framework of explainable modeling to enable
the collaboration and interaction between modelers and stakeholders. We formulate the modeling process
mathematically and develop three types of automatically generated explanations to support understanding
and build trust. We introduce three explainability scores to measure the value of explainable modeling. We
illustrate how the proposed explainable modeling works by a case study on developing and implementing
a DT factory. The explainable modeling increases communication efficiency and builds trust by clearly
expressing the model competencies, answering key questions in modeling automatically, and enabling
consistent understanding of the model.

1 INTRODUCTION

Digital Twin (DT) is a set of digital models and supporting data to represent the real world and offer
intelligent decisions in complex systems (Digital Twin Consortium 2020; Shao et al. 2019; Stark and
Damerau 2019; Wang et al. 2020). Building a DT system involves model developers (hereafter modelers)
and a range of potential stakeholders who are interested in the model or are affected by the insights from
the model. The most common roles include (1) commissioners who specify the general purpose and scope
of the model, provide required resources for the modeling, and monitor the use of the model; (2) users who
own the problem that the model is designed to solve and usually are domain experts (Calder et al. 2018).

Building trust in DT is a critical challenge for its successful implementation. Digital models used
in DT should be explained clearly to ensure the commissioners and users know what DT is capable of
(Fuller et al. 2020). The low stakeholder participation in the modeling process results in a significant
limitation in DT implementation (Jahangirian et al. 2015; Calder et al. 2018; Taillandier et al. 2019). In
particular, the DT concept has been widely used in smart buildings and cities (Du et al. 2020; Pan and
Zhang 2021; Lu et al. 2020) and is viewed as “a new game-changing approach to construction automation
... that will transform the industry quicker than ever before”, according to UNSW Newsroom (2020).
Construction project management especially emphasizes the importance of good team communication,
since poor communication endangers trust and might lead to a considerable loss (Du et al. 2020; Cerić
2015).

We consulted several papers on how modelers are instructed to work with other stakeholders to
determine the key question in modeling: which option should be included and which not in the digital
model. Robinson (2015) suggested performing the following activities, including understanding the problem
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situation, determining the general project objectives, identifying inputs and outputs of the digital model,
determining the scope and fidelity of the model, identifying any assumptions and simplifications. Calder
et al. (2018) summarized a checklist on making and using models. The checklist contains questions to
clarify the understanding of what will be involved, such as purpose, scope, output and follow-up, and
resources. Most of the current instructions are a series of open questions. It will be ineffective if the
communication fails to send a clear message about the project goals, objectives, and progress (Levasseur
2010).

Conventionally, the interaction between modelers and stakeholders in the modeling process is a top-
down, one-way communication (Levasseur 2010). The specification and expectations are handed over to
modelers. Then, modelers design, build and validate the model and return the results to the stakeholders
(Calder et al. 2018). The one-way communication can lead to low stakeholder participation, which is
among the top-ranked nontechnical causal factors in project failure (Levasseur 2010).

To address the above problems, this paper proposes a conceptual framework of explainable modeling
since explanations prove to improve trust (Shin 2021). As far as we know, our research is the first to propose
explainable modeling to support stakeholders’ participation in the modeling and simulation research. This
paper intends to answer the following questions: how to clearly and explicitly express the modeling process?
what types of explanations are needed to improve trust? and how to measure the value of explainable
modeling?

To answer the above questions, we begin in Section 2 with a motivating case. Section 3 introduces
our explainable modeling framework. We first formulate the modeling process mathematically to clearly
express the modeling process. Then, to answer the key question of which option should be included and
which not in the digital model, we develop three types of explanation, including model-based explanation,
scenario-based explanation, and goal-oriented explanation. In Section 4, three explainability scores are
proposed to measure the value of the explainable modeling framework. In Section 5, we present a case
study based on the development and implementation of a DT factory to illustration our framework. We
conclude in Section 6.

2 A MOTIVATING CASE

We begin the discussion with a motivating case. We collaborated with a leading consumer packaged goods
(CPG) manufacturing company to develop a DT factory. The name and specific market segment of the
manufacturer cannot be disclosed due to confidentially concerns. The manufacturer has over 100 SKUs
(e.g., per pack and per carton with different brands) and serves more than 300 regional markets in China by
collaborating with 33 distributors. The annual turnover reaches RMB 90 billion in 2019. In this case, we
play the role of modelers; the commissioner is the factory manager; and the users include the information
system engineers, the domain experts, and workers in the factory.

The ultimate goal of this project is to build a DT factory to achieve advanced digitalization and maintain
a competitive advantage in the volatile market. One of the important tasks in the DT project is the data
integration problem (Jones et al. 2020). To mirror the state of the factory, data should be collected from the
physical factory or integrated from various information systems. There are multiple data sources (options
for the digital model). The modeling is to determine which data (option) should be included and which
not. The integration problem leads to a series of checks during the modeling process. First, how the
decision quality will be improved by including the option. Second, how the model and computation will
be complicated by including the option. Third, how the integration cost will be increased by including the
option. For ease of illustration, we specify the decision quality as the solution quality of the production
planning and scheduling in our case study.

Understanding the problem situation cannot be just left to the modelers but requires multidisciplinary
expertise (Calder et al. 2018). We, as the modelers, know how the option influences the model (size
and computational complexity) and solution quality. The information systems engineers are experts in
evaluating the cost of collecting data from the factory and various systems. The domain experts are familiar
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with the business scenarios and traditional manual scheduling rules. They are also helpful in evaluating
the solution quality.

Explainable modeling is required to communicate ideas and knowledge clearly (Lupeikiene et al.
2014). We summarize the complexity of the practical problem in Table 1. Imagine that conventional
one-way communication is applied. Modelers develop comprehensive models of resource requirements
for automatically-generated production schedules to realize smart manufacturing, while users, who are
absent from the modeling process, will find the underlying scheduling logic are too complex and difficult
to understand and thus proceed with their traditional manual scheduling approaches (Techtarget 2008).
Therefore, explainable modeling is required to highlight the key information and increase stakeholders’
understanding of the modeling process.

Table 1: Complexity of the practical problem.

Data Description
Number of items 31
Number of machines and machine groups 47,21
Number of shift per day 3
Number of sequence-dependent changeover time 372

3 EXPLAINABLE MODELING

In this section, we answer the questions of how to clearly and explicitly express the modeling process
and what types of explanations are needed to improve trust. In Section 3.1, we formulate the modeling
process mathematically. Next, we explore the desirable properties of a good explanation and propose three
approaches to generate explanations automatically in Section 3.2.

Figure 1: The framework of explainable modeling.

The framework of explainable modeling is summarized in Figure 1. The overall goal of the modeling
process is to choose the best model (in other words, to determine which options to include) that satisfies
the performance measures under certain scenarios. In practice, the performance measures are often a set of
competing objectives that are influenced by both the scenarios and models. Therefore, the proposed three
types of explanation generation approach launch around performance tradeoffs under different scenarios
and models. For example, in the above case, the choice of data sources will lead to digital models of the
factory with different levels of fidelity. Both the model complexity and solution quality are considered
important performance measures in DT implementation. The business scenarios, including product variety
and demand volume, have a significant influence on the solution quality as well. The explanations, in this
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case, explain how the data sources inclusion and business scenarios influence the model complexity and
solution quality.

3.1 Formulating the Modeling Process

To clearly and explicitly express the modeling process, we formerly formulate the underlying concepts,
including options, models, scenarios, and performance measures.

Options and models. We consider a configurable system with a set of all candidate options, denoted
by O . We formulate a digital model m ∈M in DT as a function such that m : O→{0,1}. If the option o is
included in the model m, then we have m(o) = 1; otherwise, we have m(o) = 0. In order to compare different
models, we define ∆(m1,m2) : M ×M → O as the function that returns the additional options included
in m1, and we have ∆(m1,m2) = {o ∈ O : m1(o) = 1,m2(o) = 0}. We do not specific the options in the
formulation. The specification of options is determined by application domain and should be understandable
to all parties in the project.

The formulation approach of the options and models is inspired by Siegmund et al. (2015). They
develop a method to describe the influences of configuration options and their interactions. They use
linear regression to learn and estimate the individual options and their interactions’ influence on model
performance. In particular, the proposed method is used to balance the tradeoffs between model accuracy,
model size, and computation efforts (Kolesnikov et al. 2019). Our work differs from theirs in two aspects.
First, we do not restrict a linear relationship between the options and the model performance. Second, we
consider the impact of business scenarios on model performance which is introduced below.

Scenarios and performance measures. In addition to the selection of options, model performance
is also context-sensitive (Yilmaz and Liu 2020) and have to support explanation or exploration of future
scenarios (Calder et al. 2018). Let S be the set of all business scenarios. A scenario s can include many
instances. An instance represents a realization of data inputs required in the model m.

The construction of a model must balance competing objectives (Bertsimas and King 2016; Kolesnikov
et al. 2019). We consider a set of performance measures, labeled by i. A performance measure is formulated
as a function such that πi : M ×S → R. The performance measure can be used to evaluate (1) solution
quality (e.g., the accuracy of a predictive model, the demand satisfaction rate of an inventory planning
model); (2) model configuration (e.g., model size, running time). For simplicity, in this section, we assume
that the higher the value is, the better the performance measure. We relax this assumption in the case study.

An illustrative example. We take the motivating case in Section 2 as an example to illustrate our
formulation. We have m(ochange) = 1 if the option of machine changeover time, denoted as ochnge, is included
in the digital model for the factory. Let s denote a production scenario where the product variety is high
and the production volume of each product is low. The model is supposed to balance several competing
objectives, such as running time and the machine utilization rate. Each objective can be formulated by
a performance measure in our formulation. For instance, if the running time of the model m given the
business scenario s is 90 seconds, we have πrun(m,s) = 90.

Rationale of our formulation. We conclude three reasons that motivate us to formulate the modeling
process mathematically. First, a mathematical formulation can clearly and explicitly express what options
are included in the model and how the option selection and scenarios influence the performance measures.
Without a quantitative model, people often create an imperfect mental model to understand the complex
system due to the cognitive limitations (Norman 1988; Norman 1983). A clear expression avoids misun-
derstanding caused by biased mental models. Having a consistent understanding of what is involved and
what is expected improves communication efficiency and builds interpersonal trust (Harper, Mustafee, and
Yearworth 2021).

Second, a mathematical formulation enables composability that is “the capability to select and assemble
simulation components in various combinations into valid simulation systems to satisfy specific user
requirements” (Weisel et al. 2003). As the model complexity grows, the model could be misused or
misunderstood and, much more often, it remains uncertain about what options should be included in a
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model (Calder et al. 2018). Our formulation considers the impact of options and business scenarios
separately and helps modelers and other stakeholders work closely to uncover the implicit causality in the
problem. The right option can be selected to improve the particular performance measures under a specific
business scenario, which increases model composability.

Third, our formulation has compatibility with analytics, such as network analysis and optimization
problems. For example, the options and scenarios can be formulated as a network and analyzed by the
automatic structural analysis proposed by Honti et al. (2019). They use the network representation to
highlight the relationship between different items and measure the importance of each item. Recall that
we use building a multivariate regression model as an example. Jointly addressing competing objectives
in such modeling tasks can be solved by a mixed-integer quadratic optimization proposed by Bertsimas
and King (2016). However, applying their approach directly in our formulation may lead to intractable
problems, since our formulation can deal with more general modeling tasks where convexity does not
necessarily hold.

3.2 Generating Explanation

In the modeling process, it is critical to understand how different options and scenarios influence the model
performances and which options should be included. Therefore, we propose the following three types of
explanation that closely launch around the above key questions. First, model-based explanation focuses
on explaining how the option selection influences the performance measures. Second, scenario-based
explanation focuses on explaining how the model performances change under various business scenarios
(data input). Third, goal-oriented explanation focuses on explaining how to modify the model to improve
a certain performance measure.

It is important to notice that a good explanation should be contrastive (Miller 2019). For example, the
commissioner and user would not ask why model m is proposed but they would like to know why model m
is proposed instead of model m′ where model m′ might represent their mental model. Therefore, we adopt
tradeoffs-focused explanation templates following Sukkerd et al. (2020). The template takes the form of
“(the model) can improve/worsen these performance measures by these amounts, by taking these actions”.
The proposed explanation templates have been validated by a human subjects experiment. The results show
that the tradeoffs-focused explanation significantly improves the users’ confidence and trust in the result.
Explaining like a dialogue supports interaction and brings all parties closer to modeling (Hoffmann and
Magazzeni 2019; Chakraborti et al. 2020; Sukkerd et al. 2020).

3.2.1 Model-Based Explanation

The model-based explanation is used to answer the basic question in the modeling process: “what are the
differences between the currently proposed model A (mA) and the model B (mB) under scenario s?” The
alternative model mB could be another candidate model design or the stakeholder’s mental model.

The explanation contains two parts. The first part explains the differences in model configuration,
which is capable to capture and express the options and differences explicitly. The second part explains the
tradeoffs between a set of selected performance measures, denoted by Π. Since people may be uncertain
about the objectives at first (Calder et al. 2018), the set can be refined iteratively to help modelers and
other stakeholders to discover the preferences together. We propose a predefined natural-language template
for generating a model-based explanation:

“Under scenario s, compared with model B, model A includes options [∆(mA,mB)], but excludes
options [∆(mB,mA)]. Such configuration differences improve [these performance measures {i : πi(mA,s)>
πi(mB,s),πi ∈Π}] by [these amounts {πi(mA,s)−πi(mB,s) : πi(mA,s)> πi(mB,s),πi ∈Π}], but also worsen
[other performance measures {i : πi(mA,s)< πi(mB,s),πi ∈Π}] by [these amounts {πi(mB,s)−πi(mA,s) :
πi(mA,s)< πi(mB,s),πi ∈Π}].”
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3.2.2 Scenario-Based Explanation

Given a fixed model design, scenario-based explanation is used to answer the following question: “what
are the differences that the currently proposed model m performs under scenario 1 (s1) and scenario
2 (s2)?” Different models might be preferred under different business scenarios facing the company.
Naturally, users would like to explore the model performance under future scenarios (Calder et al. 2018)
and determine whether the currently proposed model is acceptable or not. We propose the following
predefined natural-language template for generating a scenario-based explanation:

“Compared with scenario 2, scenario 1 leads to improvements in [these performance measures {i :
πi(m,s1) > πi(m,s2),πi ∈ Π}] by [these amounts {πi(m,s1)− πi(m,s2) : πi(m,s1) > πi(m,s2),πi ∈ Π}],
but also worsens [other performance measures {i : πi(m,s1) < πi(m,s2),πi ∈ Π}] by [these amounts
{πi(m,s2)−πi(m,s1) : πi(m,s1)< πi(m,s2),πi ∈Π}].”

3.2.3 Goal-Oriented Explanation: Embedding Optimization Problems to Answer Open Questions

The above two types of tradeoff-focused explanations are capable to complete simple model comparisons.
However, if the modeling task is goal-oriented and the performance of the proposed model does not live
up to the stakeholder’s expectation, the model-based and scenario-based explanations are not sufficient.
Therefore, the goal-oriented explanation is supposed to answer the following open question: “Under
scenario s, if we want to improve the performance measure i of the currently proposed model m by α%,
which options should we include/exclude in/from the model?”

To explain the above open question, we formulate an optimization problem to find a new model m′.
According to Camm (2018), we should keep persistence since dramatic changes may lead to managerial
resistance to change. (Miller 2019) also confirms that explanations should be selected. That’s to say, the
information presented should be as succinct as possible. For example, there might be several alternative
options to answer an open question, but we don’s have to provide all the alternatives exhaustively in the
explanation. Therefore, the objective is to find a new model that achieves the improvement with minimal
change. The degree of change is measured by the number of inconsistent options, including both addition
and deletion. Conclusively, we have to solve the following optimization problem:

min
m′∈M

|∆(m,m′)|+ |∆(m′,m)| (1)

s.t.
πi(m′,s)−πi(m,s)
|πi(m,s)|

≥ α (2)

The first part in the objective function (1) counts the number of deleted options in the new model m′ and
the second part counts the number of added options in the new model m′. The performance improvement
required by the open question is modeled by constraint (2). We expect three possible outcomes of the
optimization problem. First, the problem is infeasible. Explainable modeling is supposed to provide the
following explanation:

“[Explanation when infeasible.] Under scenario s, we cannot find a new model which improves the
performance measure i by α%. Please decrease α% and try again.”

Second, the problem is feasible and the optimal solution is unique. To provide more information about
the alternative model m′, a model-based explanation of model m and m′ can be attached to the following
explanation:

“[Explanation with unique solution.] Under scenario s, to improve the performance measure i of the
currently proposed model m by α%, we should include [these options ∆(m′,m)] and exclude [these options
∆(m,m′)].”

Third, the problem is feasible and the optimal solution is not unique. Therefore, we have a set of
model, denoted by M ′ = {m′1,m′2, · · ·}. We can rank the new models by some predefined rules, such as
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minimal addition and minimal deletion. Generally, to provide more information about the alternatives,
pairwise model-based comparisons can be attached to the following explanation:

“[Explanation with multiple solution.] Under scenario s, to improve the performance measure i of
the currently proposed model m by α%, we propose several alternatives: (1) including [these options
∆(m′1,m)] and excluding [these options ∆(m,m′1)]; (2) including [these options ∆(m′2,m)] and excluding
[these options ∆(m,m′2)] ......”

4 MEASURING THE VALUE OF EXPLAINABLE MODELING

To analyze the value of explainable modeling, we introduce three explainability scores. Measuring the
value of explanation is important to overcome the challenge of building trust (Shin 2021). An important
motivation of explainable modeling is to express the model and key performance tradeoffs explicitly to
avoid misunderstanding. Therefore, the value of explainability scores should be a function of the differences
between two contrasted models or scenarios. In other words, the explainability score represents the value
of eliminating the misunderstanding of differences that would have occurred without clear explanations.

The functional form of explainability scores follows the explicability score proposed by Kulkarni et al.
(2019). They study the interpretability of an AI agent’s behavior to a human observer. The explicability
score is the negative exponential function of the distance between the agent’s behavior and the expected one
of the observer. The score takes a value between 0 and 1. The score is higher when the agent’s behavior
is closer to the expected one.

We make modifications for the explainability scores to be suitable in our setting. First, we specify the
distance functions to measure the differences in explainable modeling. Second, we take one minus the negative
exponential function to represent the value of explainable modeling in eliminating the misunderstanding.
The score still takes value from 0 to 1, but it will be higher when the difference expressed in the explanation
is larger.

The difference between models is caused by different options. To quantify the value of explaining the
inconsistent option selection between model m and m′, we introduce the following explainability scoring
function Vmodel in Definition 1. The more different options there are in the two models, the higher the score.
If the model m and model m′ are the same, the explanation does not provide any valuable information, and
the score equals zero.
Definition 1 The value of explaining model configuration difference in a model-based explanation is defined
as follows:

Vmodel(m,m′) = 1− exp
(
−(|∆(m,m′)|+ |∆(m′,m)|)

)
.

The first explainability score Vmodel is not sufficient to consider the value of explaining tradeoffs between
performance measures in the modeling process. Let consider a situation where only one option is different
in two models but results in a significant difference in some performance measure πi ∈Π. In this situation,
the explanation expressing performance measures tradeoffs explicitly plays a vital role in the two-way
communication between modelers and stakeholders and deserves a higher score. Therefore, we propose
the second explainability scoring function Vtradeo f f in Definition 2.
Definition 2 The value of explaining performance measure tradeoffs in a model-based explanation is
defined as follows:

Vtradeo f f (m,m′) = max
πi∈Π,m6=m′

{
1− exp

(
−|πi(m,s)−πi(m′,s)|/|πi(m,s)|

|∆(m,m′)|+ |∆(m′,m)|

)}
.

Various business scenarios also lead to different model performances. The explanation is also valuable
if it helps stakeholders and modelers figure out how the model performance varies under diverse business
scenarios. To quantify the value of scenario-based explanation, we develop the third explainability scoring
function Vscenario in Definition 3.
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Definition 3 The value of scenario-based explanation is defined as follows:

Vscenario(s,s′) = max
πi∈Π

{
1− exp

(
−|πi(m,s)−πi(m,s′)|

|πi(m,s)|

)}
.

The above three explainability scores complete the framework of explainable modeling. In the next
section, we investigate how explainable modeling is applied in building a DT factory.

5 CASE STUDY

5.1 Problem Formulation

In this subsection, we specify the underlying concepts in this case, including options, scenarios, and
performance measures. Each option represents a set of constraints that can be included in the model of
the DT factory. Options include the practical constraints from demand forecast, delivery plan, to machine
capacity. We summarize the options, associated data sources and current integration approaches in Table
2. Options labeled by “(Y)” are mandatory in the model. We specify the notations for other alternative
options, such as obatch, ochange, olimit and ogroup. Including options that are manually inputted into the
systems will cause additional costs due to the requirement of digitization. Due to the seasonal demand, we
consider two business scenarios: (1) high-variety, low-volume; (2) low-variety, high-volume. Let svar and
svol denote the two scenarios separately. The second scenario is common during periods of peak demand.

We consider performance measures from three perspectives. First, the scheduling problem is a multi-
objective problem with the following solution quality measures: on-time delivery rate πdel , production
compliance rate πcomp, number of total changeover time πchange, machine utilization rate πutil , production
balancing rate in three workshop areas (A, B, and C), πbal−A,πbal−B,πbal−C. Second, the model complexity
is measured by πrun which is the running time (second) to solve the production planning and scheduling
problem. The multi-objective scheduling problem is formulated as a mixed-integer programming (MIP)
model. It is first relaxed and solved by a standard solver. After that, we develop a heuristic to fix and
improve the solution. The constraints in the MIP model and functional modules in the heuristic are both
highly configurable. Third, data integration cost is measured by the number of data input that is currently
integrated manually, denoted as πdata. In conclusion, there are nine performance measures in the modeling
process. We expect a higher value of the following performance measures: πdel , πcomp and πutil; other
performance measures are expected to be as small as possible.

Table 2: Option, data source, and current integration approach.

Option Data source Current integration approach
Demand forecast (Y) ERP Retrieve from ERP
Delivery plan (Y) ERP Retrieve from ERP
Batch volume (obatch) ERP Retrieve from ERP
Machine changeover time (ochange) MES Retrieve from MES
Machine capacity (Y) Current scheduling system Manual input
Machine capability (Y) Current scheduling system Manual input
Total production quantity limit (olimit) Current scheduling system Manual input
Working calendar (Y) Current scheduling system Manual input
Machine maintenance plan (Y) Emails Manual input
Machine group (ogroup) Not available online Manual input

5.2 Explanations and Analysis

According to Table 2, four alternative options lead to 16 candidate models. Each model is evaluated by nine
performance measures under two business scenarios (a total of 288 performance measures). Without the
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explainable modeling framework, we, as the modelers, and domain experts always identified the problems
with different languages. Due to a lack of explicit expression, it was time-consuming to reach a consistent
understanding of how options and scenarios interacted to influence model performances and which option
was required.

5.2.1 Model-Based Explanation and Analysis

We first illustrate the model-based explanations by comparing the mental model of the end-user and the most
complex model. Let m0 be the end-user’s mental model which is used to schedule the production manually.
We have m0(obatch)=m0(ochange)=m0(olimit)=m0(ogourp)= 0. The end-user is unable to consider the batch
volume, sequence-dependent changeover time, production quantity limit, and machine group constraints.
Let m f ull be the model where m f ull(obatch) = m f ull(ochange) = m f ull(olimit) = m f ull(ogourp) = 1. Instead of
discussing the detailed solution to the end-users, the following model-based explanation directly illustrates
how the two models perform differently under the two business scenarios.

• Model-based explanation 1: under scenario svar, compared with model m0, model m f ull includes
options [obatch,ochange,olimit ,ogourp]. Such configuration differences improve the [production compli-
ance rate πcomp] by [increasing 1.57%], [the number of total changeover time πchange by [decreasing
10 times] , [machine utilization rate πutil] by [increasing 6.92%], and [production balancing rate
in workshop area A πbal−A] by [decreasing 0.22]; but also worsens [the running time πrun by
[increasing 250 seconds], [data integration cost πdata] by [increasing additional 486 data points
collection per month], and [production balancing rate in workshop area B πbal−B] by [increasing
0.55].

• Model-based explanation 2: under scenario svol , compared with model m0, model m f ull includes
options [obatch,ochange,olimit ,ogourp]. Such configuration differences improve the [on time delivery
rate πdel] by [increasing 0.12%], [production compliance rate πcomp] by [increasing 1.05%], [the
number of total changeover time πchange by [decreasing 26 times] , [machine utilization rate πutil]
by [increasing 10.04%], [production balancing rate in workshop area A πbal−A] by [decreasing
0.99], [production balancing rate in workshop area B πbal−B] by [decreasing 6.22], and [production
balancing rate in workshop area C πbal−C] by decreasing 1.41]; but also worsens [the running
time πrun by [increasing 90 seconds], [data integration cost πdata] by [increasing additional 486
data points collection per month].

The model-based explanations show that the intelligent scheduling system can significantly improve the
solution quality compared with the manually generated solution. However, the end-users and developers
would like to know how the model m f ull can be modified to further improve performance measures of their
interests. For example, the changeover of a production line is a highly time-consuming activity and the
end-users want to reduce the number of total changeover time to reduce the setup time and the workload
of workers. We show how explainable modeling is used to provide goal-oriented explanation.

• Question: under scenario svar, if we want to improve the number of total changeover time of the
currently proposed model m f ull by 5%, which options should we include/exclude in/from the model?

• Goal-oriented explanation 1: under scenario svar, to improve the number of total changeover time
of the currently proposed model m f ull by 5%, we propose several alternatives: (1) excluding [the
option of batch volume obatch]; (2) excluding [the option of total production limit olimit].

In order to answer the question, we specify the constraint (2) introduced in Section 3.2.3 as πchange(m f ull,svar)−
πchange(m′,svar)≥ 5% ·πchange(m f ull,svar) while minimizing the number of different options. In this case,
we find two alternative models with only one different option with model m f ull . One (m1) excludes the
option of batch volume with πchange(m1,svar) = 14 and the other (m2) excludes the option of total production
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quantity limit with πchange(m2,svar) = 15. In order to reduce the number of changeover time, the end-users
may prefer model m1 than m2. To determine whether to exclude option obatch and use model m1 instead of
model m f ull , a model-based explanation between model m1 and model m f ull can be used again to facilitate
the discussion. The model-based explanation below highlights the tradeoff information of using model m1
instead of m f ull .

• Model-based explanation 3: under scenario svar, compared with model m f ull , model m1 exclude
option [obatch]. Such configuration differences improve the [production compliance rate πcomp] by
[increasing 1.49%], [the number of total changeover time πchange by [decreasing 2 times] , [the
running time πrun by [decreasing 104 seconds], and [data integration cost πdata] by [decreasing
additional 62 data points collection per month]; but also worsens [machine utilization rate πutil] by
[decreasing 6.2%], [production balancing rate in workshop area A πbal−A] by [increasing 0.23],
and [production balancing rate in workshop area B πbal−B] by [increasing 0.89].

Finally, we use the explainability scores introduced in Section 4 to illustrate the value of model-based
explanations. We compute the explainability scores Vmodel and Vtradeo f f based on model-based explanations
1 and 3 since both of these two explanations are under the business scenario svar. As shown in Equation 3,
the model-based explanation 1 has a higher explainability score based on Definition 1 because explanation
1 clarifies more option differences than explanation 3. Let Π = {πchange}. Explanation 3 has a higher value
from the perspective of explaining tradeoffs since it expresses clearly how a slight option modification
impacts the performance measure of interest, as shown in Equation 4. However, a limitation of our
explainability scores is that there is no comparison between explainability scores Vmodel and Vtradeo f f . A
more consistent scoring function to measure the explainability is left for future research.

Vmodel(m0,m f ull) = 1− exp(−4) = 0.98 >Vmodel(m f ull,m1) = 1− exp(−1) = 0.63. (3)

Vtradeo f f (m0,m f ull) = 1− e−
|26−16|/26

4 = 0.09 <Vtradeo f f (m f ull,m1) = 1− e−
|16−14|/16

1 = 0.11. (4)

5.2.2 Scenario-Based Explanation and Analysis

Assumed that model m1 is preferred due to the less changeover time and additional data integration cost. It
remains unclear how the model m1 performs under the other business scenario svol . Therefore, we present
the following scenario-based explanation to inform the end-users of the scenario’s impact on performance
measures. For example, the production balancing rates in workshop areas B and C are significantly reduced
because no product needs to be produced in these two areas (low-variety). Meanwhile, the production
balancing rate in workshop area A is increased due to the feature of high volume.

• Scenario-based explanation 1: compared with scenario svar, scenario svol leads to improvements
in [running time πrun] by [decreasing 79 seconds], [machine utilization rate πutil] by [increasing
10.23%], and [production balancing rate in workshop area B πbal−B] by [decreasing 4.47]; but also
worsens [production compliance rate πcomp] by [decreasing 2.73%], [the number of changeover
time] by [increasing 3 times], and [production balancing rate in workshop area A πbal−A] by
[increasing 1.62].

Let Π = {πdel,πcomp,πchange,πutil,πbal−A,πbal−B,πbal−C} that includes all the solution quality related
performance measures. We calculate the value of scenario-based explanation 1 based on Definition 3 in
the equation below:

Vscenario(svar,svol) = max
πi∈Π

{
1− exp

(
−|πi(m1,svar)−πi(m1,svol)|

|πi(m1,svar)|

)}
= 0.69.
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It is shown that the largest impact of scenario svol on performance measures is on the production balancing
rate in workshop area A. If the end-users would like to explore how the model m1 can be modified to
improve the production balancing rate πbal−A, another round of open question and model-based explanations
can be conducted as shown in Section 5.2.1.

In summary, we illustrate how explainable modeling is applied in the modeling process of building
a DT factory. The automatically generated explanations explicitly express the tradeoffs between different
models and scenarios. The open question is helpful to increase stakeholders’ engagement in exploring the
best model under various scenarios.

6 CONCLUSIONS

We propose an explaining modeling framework to help modelers and stakeholders collaborate closely in
the modeling process. It is applicable in various domains. In particular, we present a case study in a
DT factory project. We suggest three directions for future research. First, more explanation generation
approaches should be explored. For example, stakeholders may ask about the interaction between different
options and raise other open questions. Second, we have not discussed the analytics and algorithms to
generate explanations efficiently. Third, a more consistent explainability score is required to analyze the
quality of explanation.
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