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ABSTRACT 

Data scarcity is a major constraint which hinders Scan-to-BIM’s generalizability in unseen environments. 
Manual data collection is not only time-consuming and laborious but especially achieving the 3D point 
clouds is in general very limited due to indoor environment characteristics. In addition, ground-truth 
information needs to be attached for the effective utilization of the achieved dataset which also requires 
considerable time and effort. To resolve these issues, this paper presents an automated framework which 
integrates the process of generating synthetic point clouds and semantic annotation from as-built BIMs. A 
procedure is demonstrated using commercially available software systems. The viability of the synthetic 
point clouds is investigated using a deep learning semantic segmentation algorithm by comparing its 
performance with real-world point clouds. Our proposed framework can potentially provide an opportunity 
to replace real-world data collection through the transformation of existing as-built BIMs into synthetic 3D 
point clouds.   

1 INTRODUCTION 

In the construction domain, numerous researchers from both academia and industry have invested in 
implementing computerized automation of as-built BIM generation (Bassier et al. 2016; Bosché et al. 2015; 
Jung et al. 2018; Kang et al. 2020; Koo et al. 2021; Son et al. 2015). A technological terminology used for 
this process is called Scan-to-BIM which consists of three components: 1) capturing an accurate 
information from physical realities through 2D and/or 3D scanning devices, 2) annotating the building 
elements with semantic classes characterized by a standard building taxonomy such as Industry Foundation 
Classes (IFC), and 3) creating 3D elements per semantics through modeling software.  

In the context of indoor environments, a variety of building types have been explored by Scan-to-BIM 
researchers which include, but are not limited to: academic (Anagnostopoulos et al. 2016; Chen et al. 2019; 
Jung et al. 2014; Jung et al. 2018; Thomson and Boehm 2015; Wang et al. 2019a), structural (Bassier et al. 
2016; Son and Kim 2017), residential (Barazzetti 2016; Wang et al. 2015), commercial (Rocha et al. 2020), 
and industrial facilities (Agapaki and Brilakis 2020). However, developed frameworks from individual 
studies are focused on specific building types, which implies that these methods would not be capable of 
showing the verified performance when applied across different domains having different types and 
distribution of object categories. 

Deep learning algorithms developed in the computer vision community have been shown to interpret 
indoor and outdoor environments well, which includes object detection, identification, and semantic 
segmentation (Hackel et al. 2017; Huang and You 2016; Ioannidou et al. 2017; Landrieu and Simonovsky 
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2018; Qi et al. 2017a; Qi et al. 2017b; Wang et al. 2019b; Zhou and Tuzel 2018). In terms of understanding 
the 3D visual scene, these tasks can be seamlessly integrated into the Scan-to-BIM framework for 
recognizing the building elements from the dataset collected from the construction domain. It is worth 
noting that a critical success factor for having successful performance when leveraging deep learning is 
sufficient amount of data for the deep learning model to be trained on, which guarantees the generalizability 
so that the trained model can be successfully applied to an unseen environment.  

However, collecting datasets for Scan-to-BIM, especially achieving 3D scan data has explicit 
limitations. The 3D laser scanner itself is expensive and its operation is laborious and time-consuming due 
to heavy involvement of manual efforts for turning the scans into an understandable format for a machine. 
To avoid manual data collection and to facilitate deep learning application through a sufficient amount of 
training dataset, deploying synthetic datasets can potentially help automate the Scan-to-BIM framework 
preserving its generalizability. However, regardless of the types of algorithms being targeted, the process 
of generating a new dataset necessarily involves an annotation (i.e., semantic attachment) task where  
significant manual effort is required (Alm et al. 2005; Murthy et al. 2015; Wu et al. 2015). Moreover, it is 
very challenging to annotate 3D point clouds for several reasons: 1) the amount of points that vary 
depending on the spatial resolution of the given environment and 2) difficulties in visually understanding 
each point with human eyes. 

This research presents an automated framework for generating synthetic point clouds from as-built 
BIMs where semantics are automatically attached to every single point leveraging standard building 
taxonomy. Two systematic approaches are illustrated to generate synthetic point clouds where Complete 
Synthetic Point Clouds (CS PCDs) refer to the point clouds generated using surface geometries of 3D BIMs 
and Realistic Synthetic Point Clouds (RS PCDs) refer to the ones generated by placing virtual laser scanners 
inside the 3D BIMs. RS PCDs are annotated in an automated manner with the semantics extracted from CS 
PCDs generation procedure. The viability of the generated synthetic point clouds is investigated by 
comparing the semantic segmentation performance between real point clouds using deep learning 
algorithm. 

2 BACKGROUND 

2.1 Synthetic dataset 

A synthesizing approach allows for filling in missing data when real-world data is difficult to obtain. Some 
explicit advantages of using synthetic data are: 1) diversified and greater flexibility by simulating in a user-
controlled environment, 2) complete annotation of the dataset avoiding errors in interpretation by human 
coders, and 3) cost-effective production compared to collecting real-world data.   
 In the context of Scan-to-BIM domain, Ma et al. (2020) made an initial attempt to leverage pre-existing 
BIMs to generate synthetic point clouds within a reverse approach using three commercially available 
software systems. Their experiments showed the effectiveness of synthetic point clouds especially when 
augmenting a small set of point clouds where a real-world dataset is limited, yet several limitations were 
identified as a future work. First, developing a new synthesizing approach is desired to generate more 
realistic synthetic point clouds. Synthetic point clouds generated from their methodology have uniform 
density across the regions while real point clouds are likely to show non-uniform distribution due to intrinsic 
factors such as occlusion and scanner motion. Also, manual efforts were involved for associating the 
semantics to the point clouds which acted as a bottleneck for automating the generation process. Lastly, 3D 
elements in BIMs were manually segmented prior to generating synthetic point clouds.   

2.2 Annotation strategies 

Raw point clouds achieved from scanning devices are generally represented by only geometric information 
(in a Cartesian coordinate system) or with color information, where semantic association is necessary for 
its utilization. This sub-section summarizes several strategies for annotating 3D point clouds.  

Numerous open-source annotation tools have been developed in computer vision domain which aids in 
the annotation process by improving usability (Berger et al. 2018; Plachetka et al. 2018; Wirth et al. 2019; 
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Zimmer et al. 2019). However, these tools do not automate the annotation process which still requires 
significant manual efforts. Another approach is to leverage a pre-trained deep learning model for labeling 
new points. This approach can semi-automate the annotation task by reducing the manual process, which 
can be limited to only refinement. Also, unsupervised clustering can also be used to group the points having 
similar features without using any ground-truth information (Czerniawski and Leite, 2018). The grouped 
segments would be used as a guideline for human annotators to detect elements more easily as compared 
to browsing raw point clouds. However, all of the aforementioned strategies involve manual processes, 
which are naturally error-prone and have limitations in that they require considerable time and effort. 

To further improve the synthesizing approach proposed by Ma et al. (2020), this study presents a fully 
automated framework to generate more realistic synthetic point clouds from 3D BIMs and to remove 
manual efforts involved for segmentation and annotation tasks. Synthetic point clouds generated from Ma 
et al. (2020) is referred to as CS PCDs while the ones generated from our new approach is referred to as RS 
PCDs. 

2.3 Industry Foundation Classes 

IFC is an open industry-wise standard that allows for communication and exchange of building information 
between project stakeholders. The information is stored in a standardized format which allows it to be 
shared using digital 3D platforms. IFC contains not only geometric information but also relationships 
between objects, attributes such as material type and its properties, and most importantly semantics such as 
object name, type, and unique ID.     

3 METHODOLOGY 

Figure 1 shows an overall framework developed from this research and the subsequent sub-sections provide 
more detailed descriptions for each stage.  

 

 

Figure 1: Overall framework for generating annotated synthetic point clouds and semantic segmentation 
using deep learning. 
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3.1 Semantics extraction via IFC format 

Prior to generating CS PCDs, semantic information is extracted from the as-built BIM through the IFC 
format. Figure 2 visualizes building information of a mechanical room described in the IFC structure using 
IfcOpenShell (http://ifcopenshell.org/), an open source software library that helps users and software 
developers work with the IFC file format. As can be seen in the left side of the figure, each building element 
is characterized by its type, unique ID, geometric information, and all other available information in a 
defined hierarchy. Using IFC, an automatic element-wise segmentation can be performed with its label (i.e., 
type) attached through any compatible software systems or programming languages. This study adopted 
Blender (http://www.blender.org) for the segmentation. 
 

 

Figure 2: 3D illustration of a boiler tank in a mechanical room using IFC. 

3.2 Complete synthetic point cloud generation 

The extracted elements are converted into CS PCDs based on their surface geometries using commercially 
available software systems (Ma et al. 2020). CS PCDs are regularly spaced within a fixed user-defined 
distance.  

3.3 Realistic synthetic point cloud generation 

To generate RS PCDs, the manual scanning processes are simulated by placing virtual scanners in 3D space. 
Blensor (https://www.blensor.org/) offers multiple types of virtual scanners including Time-of-Flight (ToF) 
camera, LiDAR, and Kinect, among others. The parameters required per scanner can be specified via user 
preference. Experimental settings such as the position and orientation of the scanner need to be configured 
for generating RS PCDs (Figure 3). In this study, the scanner locations were designated by visually 
browsing the 3D models, and a total of 24 scans were created for each location – eight scans by rotating in 
top view and three scans by rotating in side view (i.e., Z-axis). The scanning protocol is automated with 
Python programming language (as shown in the below pseudocode). 
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Figure 3: Experimental settings for virtual scanner. 

procedure RSPCDs-GENERATION(S, R, E) 
    s ← S // Load scanner location from CSV 
    r_x, r_z ← R // X and Z axis rotation angles 
    E_sc, E_res_x, E_res_y, E_dist ← E // Scan environment variables (scanner type, 
                                         x and y resolution, and scan distance) 
 
    for s do 
        for r_x, r_z do  
            blensor.tof.scan_advanced(s, r_x, r_z, E_sc, E_res_x, E_res_y, E_dist) 
        end for 
    end for 
end procedure 

3.4 Label transfer via projection 

An ideal solution for automatic annotation is to directly attach the semantics of the as-built BIMs to the 
synthetic point clouds during the virtual scanning process. However, it is hardly achievable within the 
embedded functions in the software systems that this study circumvents the problem by leveraging k-nearest 
neighbor algorithm using annotated CS PCDs. The CS PCDs and RS PCDs have the same coordinate 
system which eliminated the need for registration.  

3.5 Semantic segmentation using deep learning 

To investigate the viability of the generated synthetic point clouds, PointNet (Qi et al. 2017a) is chosen as 
a deep learning semantic segmentation algorithm. This algorithm allows direct consumption of raw point 
clouds for the prediction of semantics for each point. The semantic segmentation performance was 
measured by calculating Intersection-over-Union (IoU) per object which represents a balanced value of 
precision and recall.  

3.6 Dataset 

In this study, the Stanford Large-Scale 3D Indoor Spaces (S3DIS) was selected as a benchmark dataset 
(Armeni et al. 2016). This dataset contains point clouds for six large indoor areas having a total of 271 
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rooms. Among the six areas, 44 rooms in ‘Area 1’ were referenced to model the as-built BIMs and the real 
point clouds of 40 rooms in ‘Area 2’ were used as a testing dataset. 

4 RESULTS 

4.1 Complete and realistic synthetic point clouds 

As a result, for RS PCDs, ~19 million points were generated from the as-built BIMs for Area 1 in S3DIS 
dataset which consists of 44 rooms including: 31 offices, 8 hallways, two conference rooms, once copy 
room, one pantry, and one restroom. Synthetic point clouds were generated for 12 semantic classes that 
include structural elements, furniture, and office items. Figure  visualizes the as-built BIMs, real point 
clouds, and synthetic point clouds for three rooms. Visual inspection illustrates that the CS PCDs are 
uniformly distributed while RS PCDs better resemble real point clouds in terms of sparseness. 
 

 

Figure 4: CS PCDs and RS PCDs generated from as-built BIMs. The ceiling and front walls of 3D BIMs 
were hidden for visual clarity.   

4.2 Semantic segmentation performance 

In order to quantitatively measure the effectiveness of the generated dataset, semantic segmentation was 
performed using PointNet. For the input data, a six dimensional feature set of x, y, and z and normal vector 
was computed. Table 1 summarizes prediction performance for each object when trained on three types of 
datasets.  

For an overall accuracy, real PCDs, CS PCDs, and RS PCDs showed 51.33%, 40.72%, and 45.61%, 
respectively, indicating that RS PCDs showed in average 4.89% improvement over CS PCDs from 12 
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semantic classes. Comparing the performance of CS PCDs and RS PCDs, RS PCDs showed better 
performance in most object categories, and, in particular, a significant improvement was observed for 
windows and boards. This observation confirms that some of the volumetric issues identified in Ma et al. 
(2020) were resolved. However, doors and tables showed relatively inferior results than CS PCDs. The 
class distribution of our synthetic datasets revealed that the proportions of door and table objects in RS 
PCDs compared to CSPCDs were reduced by 4.97% and 1.74%, which contributed to performance 
degradation.  

Compared to real PCDs, lower accuracies were achieved for most object categories and several 
performance limitations remain with the synthetic point clouds. First, as mentioned in Ma et al. (2020), the 
as-built BIMs used in this study do not have the enough detail as compared to real-world environments. 
Also, as can be seen in Figure 5, due to the elements not being modeled in the as-built BIM, the occluded 
parts are different from the real dataset which contributes to observed discrepancies. Also, there would be 
insufficient scans for RS PCDs which would fail to train the model to identify certain types of objects. 
However, it is expected that setting up an experimental configuration would resolve this issue through 
dataset expansion. 

Table 1: Semantic segmentation performance comparison using PointNet 

 Ceiling Floor Wall Beam Column Window 
Real PCDs 80.38 86.03 65.99 65.59 32.85 40.20 
CS PCDs 70.36 65.76 61.33 69.93 10.08 3.02 
RS PCDs 76.56 77.05 63.26 63.53 33.08 21.77 

 Door Table Chair Sofa Bookcase Board 
Real PCDs 19.48 68.95 76.64 28.64 41.49 9.69 
CS PCDs 29.17 73.89 56.71 3.74 44.41 0.23 
RS PCDs 21.97 53.94 77.14 2.22 47.17 9.66 

 

 

Figure 5: Distinct dissimilarities between real and synthetic data. 
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5 CONCLUSION 

This paper presented an automated framework for generating synthetic point clouds from as-built BIMs 
where semantics were automatically annotated via IFC file format. A detailed procedure is provided by 
showing visual graphics and implementation method. In addition, the viability of the generated synthetic 
data was identified by deep learning semantic segmentation model, which showed 4.89% overall accuracy 
improvement compared to the synthetic dataset developed in previous study by increasing similarity 
between the synthetic and real datasets. Our fully automated framework can help researchers reduce manual 
efforts related to attaining a dataset when opportunities to scan the real-world are limited. In addition, with 
the advantage of being able to generate infinite amount of dataset given as-built BIMs, our framework 
contributes to a step-wise advancement for developing such a generalized semantic segmentation algorithm 
which can be applied to interpreting multiple types of building environment. 
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