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ABSTRACT 

Modular construction is gaining popularity in the USA for several advantages over stick-built methods in 
terms of reduced waste and time. However, productivity monitoring is an essential part to utilize the full 
potential of modular construction methods. This paper proposes a framework to automatically measure 

active and idle time at various workstations in modular construction factories, which essentially dictates 
the efficiency of production. This cycle time information can be used as inputs for dynamic prediction using 
simulation modeling. Vibration data were collected from workstations using inertial measurement units 
(IMUs), and a deep learning network was used to extract active and idle time from the vibration data. The 
result of this study showed that the proposed methodology can automatically calculate the active and idle 
time at various workstations with a 2.7% average error. This presents the potential of utilizing sensors and 

AI with simulation modeling for production monitoring and control.    

1 INTRODUCTION AND BACKGROUND 

Modular construction techniques are increasingly gaining popularity over the traditional stick-built methods 
for higher quality in production, and reduced construction time (Lawson et al. 2011). One of such setups is 
the volumetric construction, ensuring maximum modularized construction inside the factory and shipping 
the assembled unit to the project location to be installed on-site (Kawecki 2010). The construction process 

of these modular units in a factory closely resembles a manufacturing production line, where different 
workstations are dedicated to a specific type of activity (e.g., building floors and walls, installing walls, 
installing insulation, etc.), and through which the modular unit would travel. Thus each component of the 
modular unit (e.g., wall, floor, ceiling, etc.), as well as the modular unit spends a different amount of time 
(i.e., cycle time) at each station based on their particular design specifications. Typically, the workstations 
of a modular construction factory can be divided into two categories, off-line stations, and online stations. 

The off-line stations are typically dedicated to the actual creation of panelized components such as walls 
and floors; while on-line stations are part of the assembly line for the volumetric unit, where various pre-
made components are added and assembled to the modular unit. Therefore, the overall productivity of the 
factory depends on the productivity of both types of workstations. A delay at any of the workstations has 
the potential to cause bottlenecks in production that can adversely affect the factor’s ability to meet demand. 
Thus, to plan workstation layout and allocate resources to them, it is essential to know how much time is 

required to complete work at each station and understand how that time is divided between various activities 
performed and idle times at the stations. Traditionally, the activity cycle times or active/idle times are 
measured manually using stopwatches and visual observation, or by studying pre-recorded video footage 
of the operation. These manual approaches are time-consuming, laborious, and error-prone. Moreover, the 
introduction of new construction and assembly methods renders previous data outdated and thus requires 
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more manual effort to determine the impact of the new process. Thus, automatically measuring the cycle 
time, and active/idle time at various workstations (i.e., online and offline stations) can play a significant 
role in reducing the manual effort, and thereby assist in effective production planning and monitoring 

systems. Eventually this cycle time data can be used as simulation inputs for dynamic prediction of 
completion time. To that end, this paper presents an automatic active and idle time measurement technique 
using IMU and a deep learning algorithm. Typically, the major activities (e.g., sanding the floor, placing a 
wall on the floor, etc.) in the modular construction factory generates various vibration signal patterns. The 
IMU unit is used to collect those raw vibrations, and then feed them into a deep learning network, long 
short term memory (LSTM) to identify active and idle states of the workstations. LSTM is a variant of 

recurrent neural network (RNN) specifically designed to handle time-series sequence data. Eventually, the 
trained LSTM network is used to predict the active and idle time at different workstations. 

In on-site construction, there is an extensive body of work related to identifying different activities of 
equipment and workers using real-time location system (RTLS) (El-Omari and Moselhi 2011; Ergen et al. 
2007), inertial measurement units (IMUs) (Akhavian and Behzadan 2012; Mathur et al. 2015; Rashid and 
Louis 2019), and computer vision techniques (Golparvar-Fard et al. 2013; Heydarian et al. 2012; Nath et 

al. 2018). In contrast, offsite construction has not seen such extensive implementation of automated 
technologies. However, radio frequency identification (RFID) technology was explored in an offsite 
construction factory to track various components of the building to calculate the cycle time. Azimi et al. 
(2011) illustrated an automated project monitoring and control framework using high-level architecture and 
RFID. Altaf et al. (2018) developed a production planning and control system using RFID, data mining, 
and simulation-based optimization in a panelized home production factory. Moreover, 3D/4D visualization 

tool was also explored to better perform different activities inside a modular construction factory (Jureidini 
et al. 2016). Lean tools and techniques have been implemented in modular construction facilities to explore 
their feasibility in reducing production time and waste (Moghadam 2014; Nahmens and Ikuma 2012; Yu et 
al. 2013).     
 Even though tracking components of the building with RFID technology demonstrated potential in 
calculating cycle time correctly, the location tracking system is not capable of identifying if there is any 

work done or the building unit is sitting idle at a particular workstation. For example, a floor can spend a 
couple of hours in a wall installation station, but maybe only half of that time was active and value-adding. 
Thus, to develop an efficient production planning and monitoring system, it is essential to know the cycle 
time as well as the active and idle time in the factory. To achieve that goal, this paper utilizes IMU and 
deep learning networks to automatically measure the active and idle time at workstations in modular 
construction factories. The following section discusses the methodological steps undertaken in this paper 

to achieve the abovementioned goal. 

2 METHODOLOGY 

This section presents the methodological steps of this study shown in Figure 1. Raw data collected from the 
IMUs are first segmented using the appropriate window size. The raw dataset consists of a 3-axis 
accelerometer. Gyroscope and magnetometer data are not used in this study as they do not contain any 
value-adding information in classifying active or idle states. Video data are used to label the dataset with 

ground truth. After segmentation, the dataset is split into training, validation, and testing set using 70%, 
10%, and 20% ratios respectively. Raw acceleration data are used as inputs in the LSTM network. No 
feature extraction is performed in this study to harness the capability of the LSTM network to automatically 
extract low-level features from the dataset. An LSTM network architecture with five layers is used to train 
the classification model. Validation data are used to fine-tune the hyperparameter of the model, such as 
learning rate, mini-batch size, number of epochs, etc. Training data are used to train the model with adjusted 

hyperparameters. Testing data are used to evaluate the trained model and to predict the testing data. 
Accuracy, precision, recall, and F-1 score are used as performance metrics to evaluate the model. Then, 
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these predictions are passed through a window filtering for active and idle time calculation. The following 
section discusses details regarding segmentation, LSTM architecture, and window filtering.  

Figure 1. Flowchart of the methodological steps. 

Choosing the appropriate window size to segment data is a particularly challenging task in this study. 
Different activities of the modular house building produce discrete vibration patterns containing idle signal 
patterns in between. For example, installing a wall on the floor contains aligning the wall and nailing the 

bottom plate to the floor. In this case, the first impact of the wall in the floor generates vibration, while the 
fine-tuning of the alignment before the nailing starts may not generate any signal pattern. Even though these 
in-between activities may not generate any vibration, they should be considered as an active state. Thus, 
finding an appropriate window size that correctly corresponds to the state of the workstation is paramount 
for robust model training. Figure 2 shows a random x-axis vibration of a two-minute segment. This segment 
contains the active, idle, and moving state of the modular unit. We can see that shorter window size, such 

as Window A is too small to capture enough vibration spikes to correctly represent the active state, while 
Window B is too big as it contains a large portion of two different states. Thus, after carefully analyzing the 
activities from the video, two different window sizes are selected, 15 seconds for online stations and 25 
seconds for offline stations.   

Figure 2. Challenge in selecting the appropriate window size. 

A bidirectional LSTM network is used to classify different states of the workstation. Three states (e.g., 

active, idle, and moving) for online workstations and two states (e.g., active and idle) for offline 
workstations are considered. The RNN contains five layers as shown in Figure 3. 

Figure 3. The network architecture of the LSTM model. 

Raw 3-axis accelerometer data are used in the sequence input layer. The LSTM layer contains 100 
hidden units to learn long-term temporal dependencies between time steps of sequence data in terms of 

weight matrix and bias vector. The fully connected layer multiplies the inputs by the weight matrix and 
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adds the bias vector. The softmax layer applies a neural transfer function to the input. And finally, the 
classification output layer computes the cross-entropy loss for multi-class classification problems with 
mutually exclusive classes (3 for online stations and 2 for offline stations). Mini batch size of 100 is used 

with a maximum of 40 epochs and a learning rate of 0.001.   

3 CASE STUDY AND RESULTS 

The dataset contains acceleration data for both online and offline workstations. For online workstations, six 
modular units were mounted with IMUs under the floor. For each unit, one full working day (i.e., 8 hours) 
data were collected. For offline workstations, three IMU units were attached under three tables where partial 
walls are built. Four hours of vibration data were collected for each of the offline stations. Figure 4 shows 

the IMU attachment positions in online and offline stations. The vibration data were collected with a  
sampling frequency of 10 Hz.  

  

(a) Online workstation. (b) Offline workstation. 

Figure 4. Location of the IMU attachment. 

The dataset was then labeled using the reference videos and segmented into sequences using two 
different window sizes (15 seconds for online and 25 seconds for offline workstations), both with 50% 
overlap. However, as moving happens only when the modular units travel from one station to another, IMU 
data regarding moving activity are few compared to active or idle. This can create a bias in the training 
process. Thus, time-series data augmentation techniques presented in (Rashid and Louis 2019) were used 

to augment moving data. Table 1 shows the data distribution in training, validation, and testing sets. 

Table 1. Training, validation, and testing data distribution for online and offline stations. 

Class 

Labels 

Number of Sequences 

Online Stations 
(15 sec. window size) 

Offline Stations 
(25 sec. window size) 

Training Validation Testing Training Validation Testing 

Active 12040 1720 3440 1376 197 393 

Idle 20503 2929 5858 459 66 131 

Moving 4715 674 1347 N/A 

 
Online workstations were labeled with three states; active, idle, and moving. As modular units pass 

through various online stations in the assembly line, it is important to know when a unit moves from one 
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station to the next. This moving state will help to calculate the idle and active time at the different online 
stations. As offline workstations are stationary, only active and idle states are labeled. The labeled data 
were split into training, validation, and testing datasets with 70%, 10%, and 20% ratios. Raw acceleration 

data were used as inputs to the LSTM layer with 100 hidden units. This layer mapped the input sequence 
into 100 features. The training and validation data set were used to train the model with fine-tuned 
hyperparameters. Figure 5 shows the training progress of the LSTM network of the online workstations. 

 

  
(a) Training and validation accuracy. (b) Training and validation loss. 

Figure 5. Training progress of the LSTM network for online workstations. 

The validation accuracy for online stations was 94.1% and for offline stations was 94.8%. After training 
the LSTM, the testing data was used to evaluate the performance of the model. Table 2 shows the evaluation 
results of the model tested with the testing data. 

Table 2. Accuracy, precision, recall, and F-1 score of the LSTM model for online and offline stations. 

 Accuracy Precision Recall F-1 Score 

Online Stations 93.4% 93.4% 93.8% 93.6% 
Offline Stations 93.5% 92.1% 90.9% 91.5% 

 

The trained LSTM models demonstrated a 93.6% F-1 score for online stations and a 91.5% F-1 score 
for offline stations. Even though the F-1 score represents the overall performance of the network, they do 
not provide information regarding the misclassification of different classes. Thus, a confusion matrix was 
used to identify the classes that are misclassified as shown in Figure 6. 

 

 
 

(a) Online workstations. (b) Offline workstations. 

Figure 6. Confusion matrix of LSTM network. 
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The confusion matrix of online stations shows that Moving demonstrates the highest precision and 
recall. Moreover, Moving is mostly misclassified with Active, which is understandable as some Activities 
may have a very similar signal pattern as Moving.  

Next, one random section was selected from the dataset for both online and offline workstations to 
calculate active and idle time from the trained model. An 8.5-hour dataset for the offline station was used 
as input to the trained model. Figure 7 shows the ground truth and the prediction for the online stations. We 
can see there were two Moving instances in the ground truth, where five were predicted by the model. A 
closer look reveals that each of the three misclassified Moving instances occurred during the Active class. 
The original dataset contained very few Moving classes, as, after a couple of hours of activities, the modular 

units are moved to the next station using an electric pusher, which takes about 15 to 30 seconds. To balance 
the dataset, augmentation techniques were used to generate synthetic Moving data. A similar plot was drawn 
for the offline stations in Figure 8. Figure 8 contains only the Idle and Active state of the offline 
workstations.     

 

Figure 7. Ground truth and prediction of the LSTM model for online stations. 
 

Figure 8. Ground truth and prediction of the LSTM model for offline stations. 
 

Finally, idle and active time was calculated using the predictions shown in Table 3. We see that, for 
offline stations, out of the 8.5 hours 387.2 minutes were active in reality, and the prediction was 380 minutes 

with a 1.8% error. Similarly, the online workstation showed a 1.4% error in calculating active time from 
the prediction.  
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Table 3. Active and idle time calculation from the trained LSTM model. 
 

 Time (minutes)  
Offline Stations 

(8.5 hours) 
Online Stations 

(4.6 hours)  
Active Idle Active Idle 

Ground Truth 387.20 123.30 175.00 105.88 

Prediction 380.00 129.70 177.50 103.33 

Error 1.80% 5.19% 1.40% 2.40% 

 

4 DISCUSSION AND CONCLUSION 

Tracking the active and idle time at various workstations in a modular construction factory can be a key 
step towards productivity assessment. To address this, this paper investigated the potential of vibration 

generated from the activities performed to identify the active and idle time using a  deep learning approach. 
One of the major challenges was to choose the appropriate window size as an active sequence can have 
multiple idle durations in between, and considering those as idle time is not purely logical. Thus, a larger 
window size (i.e., 15 seconds for online stations and 25 seconds for offline stations) was considered in this 
study. The trained LSTM network demonstrated a 93.6% F-1 score for online stations and a 91.5% F-1 
score for offline stations. The prediction of the LSTM network showed the capability of automatically 

measuring active and idle time with an average error of 2.7%. Measuring the cycle time of separate 
workstations proved to be challenging as a single misclassified moving state can yield to potentially higher 
error rate in active and idle time calculation. This work can be further extended by using this cycle time 
information into a simulation model for the dynamic prediction of completion time. Moreover, combining 
location tracking systems, such as RFID with the proposed system, can be used to detect the movement of 
the unit from one station to another and a deep learning model can calculate the active and idle time within 

each workstation. The primary limitation of this work is, some activities such as painting, sanding has the 
higher potential of not generating enough vibration to distinguish between active and idle state. Future 
research will be extended for other workstations where little or no vibration is generated by utilizing 
computer vision and machine hearing techniques. Overall, the proposed framework demonstrated the 
potential of using inexpensive sensors and artificial intelligence to track active and idle time in modular 
construction factories, which can be used for effective production planning, monitoring, and control system. 
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