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ABSTRACT

This paper presents a local-path planner for water quality monitoring involving an Autonomous Surface
Vehicle (ASV). The planner determines new measuring waypoints based on the information collected so
far, and on two gradient-free optimization and contour-detection algorithms. In particular, the optimization
algorithm generates the locations where the variable/substance under study must be measured and use
them as the waypoints of the external loop of the Guidance, Navigation and Control system of our ASV.
Besides, the contour algorithm obtains useful waypoints to determine the water body locations where the
variable/substance under study reaches a given value. The paper also analyzes how the approach works
via progressive simulations over an ASV carefully modelled with a set of non-linear differential equations.
Preliminary results suggest that the approach can be useful in real-world single-ASV water-quality monitoring
missions where there is not previous knowledge of the state and location of the variable/substance under
study.

1 INTRODUCTION

Fresh water is a fragile resource that has to be monitored to guarantee its adequate conditions for human
consumption and recreational uses. Population growth, water misuse, pollution, extreme floods and droughts
threaten the availability of good-quality inland water bodies. The importance of the problem, which also
affects the species that live around/within the water body, has made water availability and its management
the third goal of the United Nations 2030 Agenda for Sustainable Development (United Nations 2021).
International regulations (e.g. of the United States Environmental Protection Agency 2021 and of the
European Comission 2021) also face the problem and indicate, among other things, the parameters and
substances that should be studied, their admissible or dangerous values, and their monitoring frequency.

Traditional water monitoring approaches range from manually collecting water samples (from manned
boats) in a few points of the water body to automatically measuring water parameters/substances with
probes placed at the few geographically distributed stations of early warning networks (Storey et al. 2011).
To fulfill the newest regulations requirements, these approaches are being complemented with the use of
Autonomous Surface Vehicles (ASVs) especially designed for that purpose and capable of moving the
probes that measure the parameters/substances under study to the points of interest within the water body
(Hitz et al. 2012; Siyang and Kerdcharoen 2016; Shuo et al. 2017). To make these self-driving boats
autonomous monitoring platforms, it is necessary to equip them with a complete automation system that
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(a) Profiling mission (yellow trajectory). (b) Extreme point (red) and contour level (yellow) detection.

Figure 1: ASV water quality missions.

incorporates advanced location, perception, planning, guidance, navigation and control techniques that
decide how to deploy and move the ASVs (Liua et al. 2016).

ASVs distribution and guidance approaches highly depend on the available information of the water body
and on the phases contemplated by the automation system that makes the monitoring mission successful.
Additionally, they have to consider the purpose of the mission, such as determining, with and adequate
granularity, the state of the whole water body or discovering the regions where a selected parameter/substance
(e.g. temperature, pH, dissolved oxygen and nitrogen, algae or pollutant concentration) reaches and extreme
or fixed value/concentration. The first case, schematized in Fig. 1(a), can consume a lot of time of a single
ASV but it is useful to provide a complete profile of the water body. The second one, illustrated in Fig.
1(b), permits to detect regions where the variable/substance is maximal or over the regulated thresholds.

One option to tackle water monitoring problems with ASVs is to use a global planning phase to determine
their complete trajectories before the monitoring mission starts. Moreover, the shapes of these trajectories
can be optimized according to different criteria. For instance, and to name a few, if no information related
to the variables under study is available, the monitoring process can be set up as a coverage problem (where
the ASVs routes are distributed uniformly to reach as many parts of the water body as possible) and solved
using different types of patterns (Valada et al. 2012; N. Karapetyan and Rekleitis 2019) or as a Travelling
Salesman Problem among shore points (Arzamendia et al. 2016; Arzamendia et al. 2019). Otherwise,
when the information to gather in the Regions Of Interest (ROIs) is relevant, the mission can be set up as an
information gain problem, which has already been tackled with bio-inspired optimization algorithms (Xiong
et al. 2019; Xiong et al. 2020). Alternatively, it is also possible to exploit the information provided by
simulators of the water body dynamics and of the pollutants dispersion, in order to obtain ASV trajectories
that maximize the chances to detect the pollution and that minimize the mission time and trajectory length
(Carazo-Barbero et al. 2021). An additional possibility within this group arises when an operator decides
which are the points of interest and the planner has to find the best path to visit them (Xia et al. 2019).

Independently of the underlying purpose, the previous global pre-planning techniques do not take into
account the observations that are made by the sensors on board the ASV during the monitoring mission.
The A*, Potential Field, Rapid-Exploring Random Tree and Fast Marching approaches analyzed in Peralta
et al. (2020) re-plan the trajectories between two points of the global trajectory (determined by Arzamendia
et al. 2019) in order to consider the current situation, avoiding obstacles and trying to make the ASV path
shorter. Nevertheless, the ASV behavior is not driven by the data provided by the sensors that measure the
state of the variables/substances under study. Other local planners do not react to this type of information,
determining where the next measurements must take place as the intermediate solutions of an optimizer of
the unknown function that models the behavior of the variable/substance under study (Bu et al. 2013) or
as the most informative points of a Gaussian Process that models the state of the variable under analysis
and its uncertainty (Blix 2019). However, the last two works are not intended to guide an ASV, which is
both a drawback and an opportunity for developing new approaches.

In fact, the philosophy of the last two data-driven measurement-taken approaches can be adapted to
guide the ASV towards the most promising ROIs of the water body, according to the information of the
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Figure 2: Relationships among the different modules of the whole system.

variables under analysis provided by its sensors. To achieve it, we automate the ASV behavior incorporating
approaches capable of exploring unknown functions (in our case of the variable under study) within a
Guidance, Navigation and Control (GNC) system that moves the ASV towards the waypoints suggested
by the exploring methods. In particular, we design two GNCs for: 1) determining the location of the
extreme points of the variable under analysis or 2) obtaining the shape of a level curve. Moreover, their
guidance subsystems (or local planners) are directly and respectively inspired by the Nelder-Mead Simplex
Optimization Algorithm (NMSOA, Nelder and Mead 1965) and the reliable PATh following algorithm
(PAT, Mezher and Philippe 2000), while their navigation and control loops share a streamlined regulation
system that makes the ASV follow straight lines between two consecutive waypoints. NMSOA and PAT
are especially interesting for our problem, since they only need a single measurement of the function under
analysis (i.e of the variable of interest in our case) at each waypoint.

The purpose of this paper is to present both systems and to analyze their performance under different
simulations, when they are used to guide a single-propeller single-rudder ASV. Simulations in this case
are extremely important as they provide support for the different phases of this research. On one hand, the
incremental simulation of the different parts of the system (ASV, ASV+control+ navigation, and ASV+GNC)
is required because the non-linearities and high inertia of the ASV make it a difficult system to control
and guide. On the other one, a systematic simulation of the whole system allows us to tune the GNC
parameters with the purpose of improving the shape of the ASV trajectory and the overall performance of
the monitoring mission. Last, but not least, simulations let us anticipate some problems that would have
appeared in the experiments, and therefore to optimize our time of research.

2 OVERVIEW OF THE SYSTEM AND COMMON MODULES

Our water quality monitoring system consists of a single ASV equipped with a sensor capable of taking
periodic measures of a given variable of the water body. The ASV is automatically guided using a GNC
that takes into account the measurements provided by the sensor and the objective of the ASV: either to
determine the location of the extreme values of the variable of interest or the contour defined by a fixed
level of that variable. Its extension to multiple ASVs or sensors is briefly discussed in Section 5.

The modules involved in the system are represented in Fig. 2, following the common structure of
a control system with multiple closed-loops, and using gray to indicate which modules are part of the
GNC, and orange to mark which physical elements are simulated in this paper. Besides, sss(t) stands for the
state of the ASV, aaa(kT ) for the control signals for the ASVs actuators (propeller and rudder in the ASV
used in this paper), [νsp(kT ),ϕsp(kT )]T for the ASV speed and angle setpoints, [xwp(l),ywp(l)]T for the
coordinates of the current waypoint, and f ( j) = f (sss(t j)) for the measurement taken by the water quality
sensor. Finally, variable t implies that sss is a continuous-time signal; kT that aaa, νsp and φsp are discrete-time
periodic signals; and l and j that xwp, ywp and f only change when the events of producing a new waypoint
or of taking a new measurement happen.

From a simulation point of view, this implies that the ASV state sss is obtained integrating a continuous-
time system; that the GNC subsystems are run periodically (at every T s); and that the guidance changes its
output and asks for measurements only when required. Moreover, to improve the interactions between the
continuous-time ASV dynamics and the discrete-time GNC subsystems, we have performed many different
simulations that suggest that, for reducing the oscillations of the ASV trajectories, it is convenient to iterate
the GNC subsystems at T = 0.1 s and to obtain the ASV state sss with a 4th order Runge-Kutta that iterates
at dt = T .
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Figure 3: ASV model variables and coordinates systems.

Table 1: ASV complete dynamic model.

Expressions that relate model inputs, states and intermediate variables Differential expressions
vi =

ap
100 (A1) Th = 2 ρ A v2

i (A5) ẋ = ucosϕ− vsinϕ

ẏ = usinϕ− vcosϕ

ϕ̇ = r
u̇ = X

m + r · v
v̇ = Y

m − r ·u
ṙ = N

m
12 ·(b2+w2)


(A9)

ur = u + vi

vr = v − r · lr
V 2

r = u2
r + v2

r

 (A2)
α = αr−ar

Xr =− Dcosα + Lsinα

Yr =− Dsinα − Lcosα

 (A6)

αr = atan2(vr,ur)+ar (A3) X =− cfront ·u + Th + Xr

Y =− csideways · v + Yr

}
(A7)

L = 1
2 ρ V 2

r Sr Cla αr

D = 1
2 ρ V 2

r Sr
(
Cd0 +Cdaα2

r
) } (A4)

N =− crotate · r − lr ·Yr (A8)

Table 2: Parameters of the ASV dynamic model.

m = 20 kg ρ = 997 kg/m3 A = 0.0079 m2 lr = 0.3 m b = 1.2 m w = 0.4 m dt= 0.1 s
Cla = 0.07 Cd0 = 7.37 ·10−5 Cda = 0.0037 Sr = 0.03 m2 cfront = 1.6 csideways = 12.8 crotate = 0.06

2.1 ASV Dynamics

The ASV dynamics are captured by the model of 6 degree of freedom presented in Table 1, whose expression
(A9) states the differential equations over the variables within sss(t) = [x(t),y(t),ϕ(t),u(t),v(t),r(t)]T , where
(x(t),y(t),ϕ(t)) stand for the ASV location and orientation in the absolute coordinate system of Fig. 3a,
and (u(t),v(t),r(t)) stand for the ASV longitudinal, lateral and angular speeds in the body coordinated
system of Fig. 3b. The model inputs (highlighted in magenta in Table 1) are the control signals of the ASV
actuators (aaa(kT ) = [ap(kT ),ar(kT )]T ), i.e. the required ASV propulsion (ap(kT ), provided as a percentage
value within [0,100]) and rudder angle (ar(kT ) within [-30,30] deg). Additionally, Equation (A1) converts
the required ap(t) percentage into the propeller speed vi; (A2) obtains the rudder speeds in the body-axis
(ur,vr) and its module (Vr) taking into account the distance (lr) between the rudder and the ASV gravity
center; (A3) determines the rudder attack angle (αr); (A4) obtains the rudder Drag (D) and Lift (L) forces
considering the rudder surface (Sr) and hydrodynamic coefficients (Cla, Cd0 and Cda); (A5) calculates the
ASV Thrust (Th) taking into account the water density (ρ) and propeller section (A); (A6) projects D and L
to the body-axis (Xr,Yr); (A7) determines the total forces (X ,Y ) over the ASV in the body-axis taking into
account the friction coefficients (cfront and csideways); and (A8) calculates the ASV torque (N) considering
the friction coefficient (crotate). Finally, in (A9) m stands for the ASV mass, b for its length and w for its
width (w). Further details on these expressions can be found in Fossen (2002).

To simulate the ASV behavior we use the constants provided in Table 2. The parameters of the first
row correspond to properties of our own-built ASV, while the ones in the second row have been adjusted
to make the simulated ASV behave as ours. Besides, we integrate (A9) with a 4th order Runge-Kutta
that assumes that inputs (ap(kT ),ar(kT )) are constant during the integration time dt. The results of a
few simulations with different control inputs are provided in Fig. 4. In particular, the two left graphics
represent the ASV trajectories (y(t) vs. x(t)) and signals (ASV angle ϕ and speed V = ||[u,v]T ||) obtained
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Figure 4: ASV simulations under different aaa(t).

Table 3: Controller common equations.

PI controller usual operations Anti-windup additional operations
i∗(kT ) = i∗((k−1)T )+ e∗(kT ) ·T (C2)

if aaux
∗ (kT ) 6= a∗(kT )then

i∗(kT ) = i∗(kT )−K∗,a (aaux
∗ (kT )−a∗(kT ))

}
(C4)aaux

∗ (kT ) = K∗,p · e∗(kT )+K∗,i · i∗(kT )
a∗(kT ) = max(min(aaux

∗ (kT ),UB∗),LB∗)

}
(C3)

with the same ar = 30 deg at ap = 100%, ap = 70% and ap = 40%. In them, we can observe that the
circular trajectories (obtained after the transient time is over) with smaller radius occur at lower ap and that
the ASV speed V is not proportional to the required propulsion. Besides, Fig. 4(b) represents the signals
obtained when we fix the rudder angle to ar = 0 and make the propulsion ap change from 33% to 22% at
t=50 s. The purpose of this simulation is to show the high inertia of the ASV, which reaches steady state
speeds of 1 and 0.5 m/s after a settling time of 40 s. Furthermore, if we compare the propulsion (labels or
values) and speeds signals in the graphics of Fig. 4(a) and 4(b), we can conclude that different propulsion
values are required to obtain similar speeds at different rudder angles. All these facts make controlling the
ASV speed and orientation, in order to make it follow the linear-trajectories defined by pairs of waypoints,
a difficult task that we handle with the GNC presented in the following section.

2.2 Controller and Navigation Modules of the GNC

The controller is in charge of generating the actuators signals aaa(kT ) = [ap(kT ),ar(kT )]T associated to the
requested ASV speed and orientation setpoints [νsp(kT ),ϕsp(kT )]T and to the ASV speed and orientation
[V (kT ),ϕ(kT )]T . To do it, it implements two independent discrete-time Proportional Integral (PI) controllers
with anti-windup (Visioli 2006) for the ASV speed and orientation. Their first step (C1) computes the
controller error (i.e. it calculates ep(kT ) = νsp(kT )−V (kT ) and er(kT ) as the shortest difference in degrees
between ϕsp(kT ) and ϕ(kT )). The remaining steps are summarized in Table 3, using subindex ∗ to show
that they are replicated withing each controller (i.e. with ∗ = r and ∗ = p). Its left column displays the
remaining usual equations of the PI: (C2) integrates the error; and (C3) combines the proportional and
integral terms, and bounds the obtained signal (using [LBp,UBp] = [0,100] % and [LBr,UBr] = [−30,30]
deg). Its right column implements the anti-windup operations. Each controller is executed every T =0.1
s to generate, with an appropriated time resolution, the control signals aaa(kT ) = [ap(kT ),ar(kT )]T that are
hold constant during the ASV model integration step.

The navigation module calculates the ASV requested setpoints [νsp(kT ),ϕsp(kT )]T given the current
ASV state sss(t), and the current and previous waypoints (i.e. [xwp(l),ywp(l)]T and [xwp(l−1),ywp(l−1)]T ),
which are updated by the guidance system whenever the distance between the ASV and current waypoint
[xwp(l),ywp(l)]T is smaller than 5 m. According to the internal operations of Table 4, this module calculates
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Table 4: Navigation equations.

Internal operations for obtaining dLine and dwp Speed setpoint regulator
∆xwp = xwp(l)− xwp(l−1)
∆ywp = ywp(l)− ywp(l−1)

τττ = [∆xwp,∆ywp]
T/
√

∆x2
wp +∆y2

wp

 (N1) if dwp(kT )< 15 then vsp(kT ) = 1
else vsp(kT ) = 0.5
e(kT ) = AngleDifferenceDeg(ϕsp(kT ),ϕ(kT ))
if |dLine(kT )|> 1 then
vsp(kT ) = vsp(kT )− (vsp(kT )−0.5)·|dLine(kT )|

2
elseif e(kT )> 20 then
vsp(kT ) = vsp(kT )− (vsp(kT )−0.5)·|e(kT )|

40
vsp(kT ) = max(0.5,vsp(kT ))


(N6)

A = τ[2]
B =−τ[1]
C =−A · xwp(l)−B · ywp(l)
dLine(kT ) = A · x(kT )+B · y(kT )+C

 (N2)

dwp(kT ) = ||
[
xwp(l)− x(kT ),ywp(l)− y(kT )]T

∣∣ | (N3)
Orientation setpoint regulator
β (kT ) = max(min(Kn,p ·dLine(kT ),90),−90) (N4)
ϕsp(kT ) = atan2(τ[2],τ[1])+β (kT ) (N5)

Table 5: Controller and navigation tunable parameters.

Rudder Controller Propulsion Controller Navigation
Kr,p Kr,i Kr,a Kp,p Kp,i Kp,a Kn,p

Testing ranges [2,10] [0,0.9] [0.25,1.25] [120,160] [10,50] [0.05,0.4] [2.5,17.5]
Selected values 5 0.02 0.28 135 40 0.025 4.3

with (N1) the normalized vector τττ that joins the two waypoints, with (N2) the distance dLine(kT ) between
the ASV location and the line defined by the waypoints, and with (N3) the distance dwp(kT ) between the
ASV location and current waypoint. Next, with (N4) and (N5), the orientation setpoint regulator obtains
ϕsp(kT ) by correcting the angle of the line with a term (β (kT )) that reduces the distance to the line. Finally,
with (N6) the speed setpoint regulator obtains νsp(kT ) ∈ [0.5,1] m/s, taking into account the distances
dwp(kT ) and dLine(kT ), and the shortest angular discrepancy between ϕsp(kT ) and ϕ(kT ), with the purpose
of reducing the ASV speed when the ASV is turning or reaching the current waypoint.

The values of the adjustable parameters of the controller and navigation module, displayed at Table
5 (and the values of the fixed parameters of the speed setpoint regulator) have been tuned performing
many simulations of the whole system with a generic guidance module that returns the waypoints of a
user-defined trajectory. In particular, we make the GNC use the three fixed waypoints represented as green
stars in Fig. 5(a), run thousands of simulations for many combination of values of the parameters within
the ranges defined in the second row of Table 5, and successively shorten the ranges of each parameter
while determining the combination of values that generate low values of overshooting, settling time and
steady state error for dLine(kT ). In other words, we tune the parameters to help the ASV follow the straight
line that joins [xwp(l−1),ywp(l−1)]T and [xwp(l),ywp(l)]T . The results of the simulation with the selected
values (placed at the bottom row of Table 5) are displayed in Fig. 5(a), using red lines for the ASV trajectory
(x(kT ),y(kT )), actuator signals [ap(kT ),ar(kT )]T , ASV angle (ϕ(kT )) and ASV speed (V (kT )), and black
lines for the segments that join the waypoints and for the navigation signals [νsp(kT ),ϕsp(kT )]T . The ASV
speed graphic shows that the ASV arrives at location [15,0] m after 15 s and is required to maintain a speed
smaller than 1 m/s during 28 s, until the ASV is closer than 1 m to the vertical line and its orientation is
between [70,110] deg. Besides, the ASV angle graphic shows that the ASV reaches point [25,0] m at 32
s, and that its angle is almost 90 deg after 40 s. Finally, the trajectory shows that the right distance to the
vertical line is smaller than 0.5 m, while the rudder angle curve suggests that some parameters could be
tuned better to avoid its continuous oscillations (probably, at the expense of increasing the time required
to make the ASV trajectory reach the vertical line). Nevertheless, we have decided to use the selected
parameters, as the controller and navigation modules are good enough to analyze the performance of the
guidance systems presented in Sections 3 and 4, which contain the main contributions of this paper.
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Figure 5: ASV and sensor simulations.

2.3 Sensor Measurements

The ASV is equipped with a static sensor capable of taking instantaneous measurements of the vari-
able/substance under study. To model its behavior, we build the static multi-modal function represented in

Fig. 5(b) by its contour curve and defined as f (x,y) =
4

∑
k=1

[e−[(x−xk)
2+(y−yk)

2]/49000]/1000, and set [x1,y1]
T =

[350,350]T m, [x2,y2]
T = [−350,350]T m, [x3,y3]

T = [490,−70]T m and [x4,y4]
T = [−210,−560]T m in

order to distribute f (x,y) extreme points into a water mass of 1200x1200 m2. It is worth noting that the
sign and magnitude of the function is not relevant for our approach, as the selected exploring algorithms
only compare pair of values of the function. So, our proposal can work with any sensor that instantaneously
provides continuous values of the variable under study when required.

3 GUIDING THE ASV TOWARDS THE EXTREME VALUES OF THE SENSED VARIABLE

The first guidance module generates waypoints that make the ASV explore the unknown variable under
study and determine the locations of its extreme (maximum or minimum) values. It is inspired by the Nelder
and Mead Simplex Optimization Algorithm (NMSOA, Nelder and Mead 1965, Mathews and Fink 2004),
summarized and adapted in the following two sections. Finally, the last subsection within this section also
shows the behavior of the whole system (GNC + ASV + Sensor) over the water body scenario of Fig. 5(b).

3.1 Nelder and Mead Simplex Optimization Algorithm (NMSOA)

NMSOA is an iterative deterministic optimization algorithm that obtains the minimal value of a given
function measuring its values in different waypoints which are obtained triangulating the search space
through 5 different operations: reflection, expansion, external concentration, internal concentration and
shrinking. The order and number of operations is determined by the evaluation of the new points and is
relation with the previous. We have selected this approach as it is a good option when the number of
evaluations must be reduced and when calculating first or second order derivatives is not straightforward.
This happens in our case, as f (x,y) is unknown and its evaluations are obtained from the instantaneous
measurements taken over the trajectory of a single ASV. Finally, note that to obtain the maximal value of
the unknown function, we only need to change the sign of its values (i.e. run the algorithm with − f (x,y)).

For optimizing the two dimensional function f (x,y) required by this paper, the algorithm starts
selecting three not-aligned points (ppp1 = [x1,y1]

T , ppp2 = [x2,y2]
T and ppp3 = [x3,y3]

T ) and evaluating them
( f1 = f (ppp1) = f (x1,y1), f2 = f (ppp2) = f (x2,y2) and f3 = f (ppp3) = f (x3,y3)). Next, it sorts the points and
its values, to ensure that f1 ≤ f2 ≤ f3, and starts the iteration process summarized in Fig. 6(a), using a gray
block for obtaining the centroid ccc, solid-yellow for the reflection operation (to obtain pppr and fr), solid-red
for the expansion (pppe and fe), solid-green for the external concentration (pppce and fce) and solid-blue for
the internal concentration (pppci and fci). The operations order is imposed by the decision (romboid) blocks
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Figure 6: Nelder Mead simplex optimization algorithm (NMSOA).

and the obtained evaluations. The values of the original points (ppp1, ppp2, ppp3) of the algorithm are updated
according to the operations indicated in the gradient-colored blocks (using the same color schema than for
the operation where the updating values were calculated, and gradient-violet for the shrinking operation).
Finally, (ppp1, ppp2, ppp3) are sorted again according to their values ( f1, f2, f3) to re-start the process ensuring
that f1 ≤ f2 ≤ f3. The algorithm iterates until the sides of the triangle (ppp1, ppp2, ppp3) are smaller than a given
value, and returns the lower value of the original unknown f (x,y) and its location in f1 and ppp1.

The algorithm is quite simple, as the operations in 6(a) show, and has some interesting properties for
guiding an ASV. Fisrt, it is possible to calculate, with a negligible computation cost, the intermediate points
of the algorithm (pppr, pppe, pppce and pppci) before evaluating the function in any of them. Second, when using
the typical values of the algorithm parameters (i.e. ρ = 1, δ = 2, γ = 0.5 and σ = 0.5), the intermediate
points are aligned in the segment defined by ppp3 and pppe, as the schema represented in Fig. 6(b) for a given
set of (ppp1, ppp2, ppp3) shows. Finally, the algorithm changes the exploring direction as required, as shown
in Fig. 6(c), where the new possible set of points under study after accepting the results of each of the
possible operations of the current step are displayed using the color-schema of 6(a).

3.2 Using and Modifying NMSOA for ASV Guidance

NMSOA can be straightforwardly used to produce the waypoints [xwp(l),ywp(l)]T generated by the guidance
system. To do it, it only has to calculate the values of the intermediate points (pppr, pppe, pppce and pppci) and
output them as waypoints in the order indicated by its decision blocks. Besides, as the measurement of the
variable under study has to be taken once the ASV reaches the waypoint, the evaluation f∗ = f (ppp∗) has
to be postponed to the time instant where the ASV is close enough to the corresponding waypoint. We
prefer to anticipate the evaluation of the waypoint slightly, to facilitate the turns that have to be performed
in the ASV trajectory after a new intermediate point of NMSOA is output as a waypoint [xwp(l),ywp(l)]T

of the guidance system.
This way of proceeding lets the guidance system identify a local extreme of the variable/substance

under study. In particular, to obtain a minimum, we use the value provided by the sensor, and to obtain a
maximum, its opposite value. Nevertheless, we propose a modification to consider that 1) the ASV must
move from one waypoint to another before taking the measurements required for NMSOA and that 2) in
each iteration the ASV can be closer to the new pppci, pppce or pppe than to pppr (the first point to visit according
to NMSOA). The new variant determines first which intermediate point (pppr, pppe, pppce or pppci) is the closest
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(b) ASV guided by modified NMSOA.
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(c) Trajectory Length Comparison.

Figure 7: Simulations of the ASV guided to detect the minimun value of a given variable.

(pppclosest) to the current ASV location (x(t),y(t)). Second, it makes the ASV go to it, and visit all the
intermediate points in its way from pppclosest to pppr without taking any decision during this process. For
instance, if pppclosest = pppe, the ASV is requested to visit first pppe and afterwards pppr, while if pppclosest = pppci,
it has to visit pppci, pppce and pppr. Finally, once that ASV reaches pppr, it takes the decision according to the
original NMSOA but without making the ASV go back to the points that it has already visited. We have
decided to make this change to see if it could help the ASV travel a shortest distance, because it makes
the ASV follow as much as possible the line that joins the intermediate points.

Another improvement that can be considered in both variants is to let the sensor take measurements
along the ASV trajectory (instead of only in NMSOA intermediate points), with the purpose of trying to
estimate the surface that better adjusts to the measurements taken by the ASV along its trajectory. However,
as this measurements are not used for guidance, they can be obtained at any sampling rate.

3.3 Simulated Results

In this section we analyze the behaviour of the whole system when the ASV is guided towards the water
body regions with maximal values of the variable/substance under study. Although this function is unknown
for the GNC (except at those points on the trajectory where the measurements have been taken), we will
represent its contour curves over the water body to understand better the GNC and ASV behaviors.

Figures 7(a) and 7(b) respectively show, in red, the ASV trajectories (x(t),y(t)) obtained when the ASV,
initialized at sss(0) = [200,−200,0,0,0,0]T , is guided by the original and modified versions of NMSOA,
both started with ppp1 = [322,−210]T m, ppp2 = [413,−238]T m and ppp3 = [427−105]T m. They also show
the underlying triangles and intermediate points of each algorithm iteration, using the colors displayed at
the legend. Under those initialization, the modified NMSOA requires more iterations (12) than the original
one (8), making the length of the ASV trajectory also longer (1918 m vs 1611 m). In order to test if this
behavior is observable in other simulations, we setup 50 new scenarios, randomly initializing both the ASV
location (within the limits of Fig 5(b)) and original triangle (equilateral, of side ∈ [100,200] m, placed
[200,300] m away from sss(0)) of NMSOA and run both approaches in each scenario. Next we compare
their results, measuring the length of the obtained trajectories and representing in Fig 7(c) the quotient of
the length obtained with the modified NMSOA between the length obtained with the original version. We
can observe that this ratio is more often bigger than one, which implies that the original version produces
shorter trajectories than the modified, contradicting our original thoughts.

4 GUIDING THE ASV AROUND A GIVEN CONTOUR LEVEL

The second guidance module generates waypoints that make the ASV determine the contour defined by
a fixed value of the variable under study. It is inspired by the reliable PATh following algorithm (PAT,
Mezher and Philippe 2000), summarized and slightly adapted in the following section. This section also
shows the behavior of the whole system (GNC + ASV + Sensor) over the water body scenario of Fig. 5(b).
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Figure 8: Reliable contour path following algorithm (PAT).

4.1 Reliable Contour PATh following algorithm (PAT)

PAT is an iterative algorithm that places a grid, formed by adjacent rotated equilateral triangles, around the
values of a contour curve of a bi-dimensional unknown function. To build the grid, it adds a new vertex
to the the side of the last triangle and tests if the new ending point falls inside or outside the contour (i.e.
it has a function value lower or higher to the selected level). This algorithm is also a good option when
the number of evaluations must be reduced and when calculating first or second order derivatives is not
straightforward (as it occurs with the measurements taken from the trajectory of a single ASV).

The implementation of this algorithm is even easier. First, it needs to determine two points pppi and pppo
of the search space, which are separated a given distance L and that fall inside and outside a contour of
constant value flevel . Next, and as Fig. 8(a) states, it sequentially obtains a new point (pppnew), evaluates it
( fnew), and use it to substitute the previous inside (pppi) or outside (pppo) point. The algorithm ends when the
contour is closed because the last pppnew reaches one of the original points. Finally, the contour curve can
be defined as the curve that joints the mean point of the vertices of the triangular grid that are connected
and that fall in both sides of the contour. Fig. 8(b) illustrate the behavior of the algorithm, displaying in
black the grid created by PAT over one of the level curves of our scenario, in green the starting pppi and pppo,
and in red the trajectory defined by the sequence of pppnew.

4.2 Using and Modifying PAT for ASV Guidance

PAT can be used to produce the waypoints [xwp(l),ywp(l)]T of the guidance system. In fact, as PAT generates
a unique evaluation point in each iteration, pppnew is the waypoint that should be returned by the guidance
system. Again, we have to postpone its evaluation until the ASV reaches its proximity.

As ASVs can take measurements while moving, we propose the following change: to provide a new
waypoint sooner, after crossing the contour curve (a fact that can be detected by the periodic measurements)
and advancing at most M meters. That is, we provide a new waypoint because we have advanced M meters
after crossing the contour curve or because we have almost reached the previous waypoint. We could also
store the periodic measurements along the ASV trajectory to estimate f (x,y) around the contour curve.

4.3 Simulated Results

In this section we analyze the behavior of the whole system when the ASV is guided to determine a contour
curve of the variable measured by the sensor. Again, we draw its unknown function to understand better
the GNC and ASV behaviors.

Figures 9(a) and 9(b) respectively show, in red, the ASV trajectory (x(t),y(t)) obtained when the ASV,
initialized at sss(0) = [400,−150,0,0,0,0]T is guided by the original and modified versions of PAT, with
L =30 m and M = L/5. They also show the PAT grid and the estimated contour, which covers the one
corresponding to the sensor simulation function. In this case, the trajectory length obtained with the original
PAT is longer (4274 m) than the one obtained with the modified version (3133 m). Again, to test if the
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(c) Trajectory length comparison.

Figure 9: Simulations of the ASV guided to detect a contour level of a given variable.

behavior is systematic, we simulate 50 new configurations, varying the ASV initial location and selected
level of the curve under study. Next, we run both algorithm variants over each case, measure the length of
the ASV trajectories, and represent the length quotient in Fig. 9(c), which shows that the trajectory length
obtained with the modified PAT is usually smaller than the one obtained with the original version.

5 CONCLUSIONS

This paper presents a new GNC especially designed to make an ASV explore a water body in order to
determine the regions with extreme or constant values of a variable under study. The approach exploits two
gradient-free algorithms to generate the waypoints that guide the ASV towards the ROIs. The contributions
of this work are the following. First, its novelty lies on combining those algorithms with the navigation and
control modules of the GNC to move the ASV gracefully between the locations that the selected algorithms
suggest as measurement points. Second, the simulations are crucial to analyze the behavior of the ASV,
tune the parameters of the GNC and demonstrate the viability of our approach. Moreover, the simplicity
of all the elements of the GNC make it ideal to implement them in low-cost processors.

As future work we consider the following possibilities. The extension to multiple independent ASV,
which is straightforward, as far as they operate in different parts of the water body. Otherwise, the system
will require, at least, to incorporate a new module/behavior for avoiding ASVs collisions. We also want to
use our approach to monitor multiple variable/substance (something that can be achieved by performing a
weighted combination of their values into f (x,y)) or to avoid misleading the GNC with the sensor noise (by
incorporating a filter into our system). We also want to improve the GNC further (e.g. by getting inspired
by other approaches that let us generate waypoints with other purposes, or by modifying the controller
and navigation modules). All these changes should be supported by further simulations before performing
experiments with our ASVs, which is the final goal of our research.

ACKNOWLEDGMENTS

This work has been supported by the Spanish National Societal Challenges Program, through the AMPBAS
project (RTI2018-098962-B-C21). The authors want to thank Alfonso Moneo for his collaboration in the
initial simulation setup and analyses.

REFERENCES
Arzamendia, M., D. Gregor, D. G. Reina, and S. L. Toral. 2019. “An evolutionary approach to constrained path planning of

an autonomous surface vehicle for maximizing the covered area of Ypacarai Lake”. Soft Computing 23:1723–1734.
Arzamendia, M., D. Gregor, D. G. Reina, S. L. Toral, and R. Gregor. 2016. “Evolutionary Path Planning of an Autonomous

Surface Vehicle for Water Quality Monitoring”. In Int. Conf. on Developments in e-Systems Engineering. Aug. 31st- Sept.
2nd, Liverpool, UK.

Blix, K. 2019. Machine Learning Water Quality Monitoring. Ph. D. thesis, The Artich University of Norway.



Besada-Portas, Girón-Sierra, Jiménez, and López-Orozco
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Hitz, G., F. Pomerleau, M. Ève Garneau, C. Pradalier, T. Posch, J. Pernthaler, and R. Siegwart. 2012. “Design and Application
of a Surface Vessel for Autonomous Inland Water Monitoring”. IEEE Robotics Automation Magazine 19:62–72.

Liua, Z., Y. Zhanga, X. Yua, and C. Yuana. 2016. “USVs: An overview of developments and challenges”. Annual Reviews in
Control 41.

Mathews, J., and K. Fink. 2004. Numerical Methods Using Matlab. 4th ed. London: Pearson.
Mezher, D., and B. Philippe. 2000. “PAT- a Reliable Path Following Algorithm”. Technical report, INRIA.
N. Karapetyan, J. M., and I. Rekleitis. 2019. “Meander-Based River Coverage by an Autonomous Surface Vehicle”. In Int.

Conf. on Field and Service Robotics. August 29th- 31st, Tokyo, Japan.
Nelder, J., and R. Mead. 1965. “A Simplex Method for Function Minimization”. Computer Journal 7:308–313.
Peralta, F., M. Arzamendia, D. Gregor, D. Reina, and S. Toral. 2020. “A Comparison of Local Path Planning Techniques of

Autonomous Surface Vehicles for Monitoring Applications: The Ypacarai Lake Case-study”. Sensors 20.
Shuo, J., Z. Yonghui, R. Wen, and T. Kebin. 2017. “The unmanned autonomous cruise ship for water quality monitoring and

sampling”. In Int. Conf. on Computer Systems, Electronics and Control. Dec. 25th- 27th, Dalian, China.
Siyang, S., and T. Kerdcharoen. 2016. “Development of unmanned surface vehicle for smart water quality inspector”. In Int.

Conf. on Electrical Engineering/Electronics, Computer, Telecommunications and Information Technology. June 28th-July
1st, Chiang Mai, Thailand.

Storey, M., B. van der Gaag, and B. Burns. 2011. “Advances in on-line drinking water quality monitoring and early warning
systems”. Water Research 42(2):741–747.

United Nations 2021. “2030 Agenda for Sustainable Development”. https://sdgs.un.org/goals. Accessed on March 2021.
United States Environmental Protection Agency 2021. “Drinking Water Requirements for States and Public Water Systems”.

https://www.epa.gov/dwreginfo/drinking-water-regulations. Accessed on March 2021.
Valada, A., P. Velagapudi, B. Kannan, C. Tomaszewski, G. Kantor, and P. Scerri. 2012. “Development of a Low Cost Multi-Robot

Autonomous Marine Surface Platform”. In Int. Conf. on Field and Service Robotics. July 16th- 19th, Matsushima, Japan.
Visioli, A. 2006. Practical PID Control. 2006 ed. London: Springer-Verlag.
Xia, G., Z. Han, B. Zhao, C. Liu, and X. Wang. 2019. “Global Path Planning for Unmanned Surface Vehicle Based on Improved

Quantum Ant Colony Algorithm”. Mathematical Problems in Engineering 2019:10 pages.
Xiong, C., D. Chen, D. Lu, Z. Zeng, and L. Lian. 2019. “Path planning of multiple autonomous marine vehicles for adaptive

sampling using Voronoi-based ant colony optimization”. Robotics and Autonomous Systems 115:90 – 103.
Xiong, C., H. Zhou, D. Lu, Z. Zeng, L. Lian, and C. Yu. 2020. “Rapidly-Exploring Adaptive Sampling Tree*: A Sample-

Based Path-Planning Algorithm for Unmanned Marine Vehicles Information Gathering in Variable Ocean Environments”.
Sensors 20(9):18 pages.

AUTHOR BIOGRAPHIES
EVA BESADA-PORTAS is an Associate Professor of Systems Engineering and Automation at University Complutense of
Madrid. She holds a PhD in Computer Systems from the same university. Her research interests include uncertainty modeling
and simulation, optimal control and planning of unmanned vehicles. Her email address is ebesada@ucm.es.
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