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ABSTRACT

This paper studies the problem of calibrating a Cox/G/∞ infinite server queue to a dataset consisting of
the number in the system and the age of the jobs currently in service, sampled at discrete time points.
This calibration problem is complicated owing to the fact that the arrival intensity and the service time
distribution must be jointly calibrated. Furthermore, maximizing the finite dimensional distribution (FDD)
of the number-in-system process (which is the natural calibration objective) is intractable in this setting,
since the computation of the FDDs involves an intractable integration over the path measure of the Cox
input process. We derive an approximate inference procedure that maximizes a lower bound to the FDDs
using stochastic gradient descent. This lower bound is tight when the calibrated parameters coincide with
those of the ‘true’ model. We present extensive numerical experiments that demonstrate the efficacy and
validity of the proposed method.

1 INTRODUCTION

Calibrating stochastic models to a dataset is an important part of modeling and simulation practice. In
this paper, we consider the problem of calibrating infinite server queueing models that operate in random
environments. Specifically, we assume that the input to the queue is well-modeled by a doubly stochastic
Poisson, or ‘Cox’, process and that the service times of arriving jobs are identically distributed with general
service distribution; that is, Cox/G/∞ queues.

These so-called Cox/G/∞ queues have received significant study in the recent past, with particular
focus on asymptotic analysis; see Honnappa et al. (2020) and references therein. Infinite server queues are
often viewed as crude approximations (after all, a free server is always available and no arriving job must
await its turn for service), but they are remarkably useful models for performance analysis of large-capacity
service systems. For instance, early in the coronavirus pandemic, ICU capacity for COVID-19 patients
(in a hospital network) was essentially unbounded as new capacity was created to accommodate incoming
patients. Alternatively, infinite server queues are also useful as demand models in ride-sharing service
systems. Consider a customer requesting a taxi ride through a smartphone application-based service. Ride
requests can be modeled as a pure delay queue, wherein these requests are immediately put into service,
and the (stochastic) amount of time taken for a customer to be matched with a driver represents the “service
time” of the passenger in the matching system. It has been empirically observed that traffic in these systems
exhibits high variability and over dispersion, suggesting that the traffic intensity (i.e., the average number
of jobs to arrive per unit time) is stochastic itself (Wang, Jaiwal, and Honnappa 2020; Zhang, Hong, and
Zhang 2014). Cox processes represent a tractable family of counting process models, wherein the stochastic
traffic intensity is assumed to be ‘trivially’ adapted to the initial filtration of the counting process.

Model calibration of stationary queueing models is facilitated by the fact that these models are finitely
parameterized and, therefore, if precise inter-arrival times and service time data are available, calibration

978-1-6654-3311-2/21/$31.00 ©2021 IEEE



Wang and Honnappa

is straightforward. In practice, however data are typically censored, wherein either the inter-arrival or
service times are unknown to precision, or only the state of the queue (either the number-in-system or the
workload) are available; see Asanjarani et al. (2021) for a classification of the queue observation methods.
For instance, in the infinite server setting, it is typically the case that while the number-in-system can be
observed at discrete points in time, it may only be possible to record the age of jobs in service, while the
precise departure epoch is unknown. This coincides with the suggestion in Pang and Whitt (2010) that the
elapsed service time (age) of the customers should be modeled and used. In practice, of course, queues
are nonstationary and potentially subject to exogeneous stochasticity, and calibrating models in this setting
is a far more complicated problem. In this paper, we consider the problem of jointly calibrating the traffic
intensity model and the service time distribution of a Cox/G/∞ queue, where data consists of observations
of the number-in-system and (potentially) the age of the jobs in service, collected at discrete time points.

Estimation and calibration of infinite server queueing models with nonstationary input has been studied
in the recent literature (Li, Hu, Wang, and Yu 2019; Goldenshluger and Koops 2019). In Li et al. (2019), a
maximum likelihood estimator (MLE) of the arrival intensity and service time distributions of an Mt/G/∞
queue. Goldenshluger and Koops (2019) consider the same setting, but focus on the problem of estimating
the service time distribution assuming the arrival intensity is known. The authors introduce a nonparametric
estimator of the service time distribution (using kernel density estimation methods) and demonstrate that
the method achieves the minimax rate. The standard setting of stationary M/G/∞ queues has received
significantly more attention in the literature; see Goldenschluger et al. (2016), Schweer and Wichelhaus
(2020), Schweer and Wichelhaus (2015) for recent work in this direction and Asanjarani et al. (2021) for a
more extensive survey. Furthermore, all of this existing literature considers Markovian traffic models (i.e.,
Mt/G/∞ queues) with the exception Schweer and Wichelhaus (2015), Schweer and Wichelhaus (2020)
where a renewal traffic model is considered. In this paper we consider the considerably harder problem of
jointly estimating the stochastic arrival intensity model of a Cox input process model and the service time
distribution.

Our approach builds on our prior work Wang et al. (2020) that focused on estimating the stochastic
intensity process of a Cox process alone. While there are many possible choices for the model of the
stochastic intensity, we again assume a Markov diffusion model of the intensity. In other words, we
assume that the intensity is well-modeled as the solution of an Ito stochastic differential equation (SDE).
Furthermore, we will also assume that the intensity process is ergodic in order to highlight some implications
for the calibration method. We assume that the drift and diffusion coefficients of the model are unknown, but
modeled by a universal function approximator (UFA) that can be optimized by a gradient-based optimization
method. On the other hand, we also model the survival function of the service times by a UFA; more
precisely, we model the logarithm of the survival function (also known as the integrated hazard function)
by a UFA. In this paper, we will use artificial neural networks (ANNs) as the UFAs and optimize/train
the parameters of the ANNs using stochastic gradient descent (SGD). Nonetheless, it should be noted that
other choices of UFAs are possible.

We will jointly calibrate the arrival intensity and service time models by maximizing the finite dimensional
distributions of the number-in-system process. However, unlike the Mt/G/∞ queue setting extensively
studied in the literature, this is not a straightforward likelihood maximization problem, since the number-in-
system likelihood function must be further integrated over the path measure corresponding to the stochastic
intensity process. In general, this integration is intractable, and direct inference of a closed-form expression
is impossible. Building on our prior work in Wang et al. (2020), we present an approximate inference
method, wherein we introduce a tractable surrogate objective to the integral which can be leveraged to
approximately calibrate the infinite server model. To be precise, we introduce a lower bound on the logarithm
of the finite dimensional distributions, which is optimize over the parameters of the UFAs. This lower
bound is tight precisely when the optimized parameters correspond to the ‘true’ arrival intensity model and
service time distribution. In this paper, we carefully derive the lower bound and then demonstrate how
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it can be optimized using simualtion optimization. We then provide extensive numerical experimentation
that demonstrates the accuracy and efficacy of the proposed method.

The paper is organized as follows: we briefly review the Cox process in Section 2, followed by a
discussion of the number-in-system process for the Cox/G/∞ queue in Section 3. We then describe the
statistical estimation problem and variational inference in section 4. In Section 5, we present our method
by deriving the evidence lower bound (ELBO) and introducing the detailed training procedure. In Section
6, we present our simulation results and discuss prediction accuracy under different model settings. We
end with concluding remarks in Section 7.

2 COX PROCESSES

We start by recalling the definition of Cox process. Let (X(t) : t ≥ 0) be a non-decreasing Z+-valued point
process, (X|Z) represent the process conditioned on the stochastic process (Z(t) : t ≥ 0), and Poi(Λ)
represent a Poisson process with integrated intensity function (Λ(t) : t ≥ 0). Formally, a Cox, or doubly
stochastic Poisson process (DSPP), is defined as:
Definition 1 Let (Z(t) : t ≥ 0) be a non-negative stochastic process such that with probability one t 7→ Z(t)
is locally integrable. Then, (X(t) : t ≥ 0) is a Cox process driven by (Z(t) : t ≥ 0) if (X|Z) ∼ Poi(Z),
where Z is the integrated process defined as Z(s, t) :=

∫ t
s Z(r)dr for any s < t.

That is, for any set of points {t0, t1, . . . , td} ⊂ (0,∞), where 0 < t0 ≤ t1 ≤ · · · ≤ td < ∞, the finite
dimensional distributions of (X|Z) satisfy

P(X(t0) = k0, X(t1) = k1, . . . , X(td) = kd|Z0:td}) (1)

=
exp(−Z(0, t0))(Z(0, t0)k0

k0!

d−1∏
i=0

exp(−Z(ti, ti+1))(Z(ti, ti+1))ki+1−ki

(ki+1 − ki)!
,

where Z0:t ≡ (Z(s) : 0 ≤ s ≤ t). Formally, the path measure induced by (X(t) : t ≥ 0) is defined as∫
Poi(Z)dP (Z), where P (·) is the path measure induced by the stochastic process (Z(t) : t ≥ 0)), so

that the finite dimensional distribution of X(t) (at any fixed t ≥ 0) satisfies

P (X(t0) = k0, . . . , X(td) = kd) =

∫
P(X(t0) = k0, X(t1) = k1, . . . , X(td) = kd|Z0:td})dP (Z0:td).

(2)

Note that we are deliberately being less than rigorous in our description of this path measure so as to avoid
a heavier notational burden that distracts from the primary message of this paper.

3 INFINITE SERVER QUEUES

We consider a Cox/G/∞ queue where arrivals follow a Cox process with intensity Z(t) and service
time has general distribution G. Let X(t) represent the number-in-system of the infinite server queue. It
is well known (Eick, Massey, and Whitt 1993) that, starting from an empty system, conditioned on the
intensity process (Z(s) : 0 ≤ s ≤ t), the mean queue length is given by E[X(t)|(Z(s) : 0 ≤ s ≤ t)] =∫ t

0 [1 − G(t − s)]Z(s)ds, where Ḡ(t − s) =: 1 − G(t − s) is the tail probability of the service times.
Furthermore, the probability of observing k customers in the system at time t is given by

P(X(t) = k|Z0:t) =
e−

∫ t
0 Z(s)Ḡ(t−s)ds

(∫ t
0 Z(s)Ḡ(t− s)ds

)k
k!

,

and Z(s)Ḡ(t− s) can be interpreted as the “survival intensity” at time s.
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Consider a Cox/M/∞ queue with exponentially distributed service time. The finite dimensional
distribution of the Cox/M/∞ can be derived in multiple ways, see Hillestad and Carrillo (1980) for
instance. Let k1 be the number in the system at t1. Then, one can easily deduce that for t1 < t2, the
probability that i out of k1 customers survive from t1 to t2 follow a binomial distribution with parameters
(k1, Ḡ(t2− t1)). Let Y := (X(t1), X(t2)), then the joint distribution for the two-dimensional case can be
observed to have conditional distribution P (Y = (k1, k2)|Z0:t2)

=Pois
(
k1;

∫ t2

0
Z(t)[Ḡ(t1 − t)]dt

)min{k1,k2}∑
i=0

B(i; Ḡ(t2 − t1))Pois
(
k2 − i;

∫ t2

t1

Z(t)[Ḡ(t2 − t)]dt
) ,

(3)
where B(·; p) refers to the binomial PMF with parameter p and Pois(·;λ) is the Poisson PMF with mean λ.

Before moving to the non-memoryless case, we recall the definition of the Poisson-Binomial distribution
Definition 2 Poisson-Binomial distribution is a discrete probability distribution of the sum of independent
Bernoulli trials that are not necessarily identically distributed. Probability mass function (PMF) of the P-B
distributed random variable B is given by

P(B = k) =
∑
A∈Fk

∏
i∈A

pi
∏
j∈Ac

(1− pj),

where Fk is the set of all subsets of k integers that can be selected from the set {1, 2, 3, ..., n}.
For the Cox/G/∞ system, the conditional distribution is much more complicated due to the non-

memoryless nature of the service time distribution. Additional information is required for the joint distribution
to be derived explicitly. Let S1:X(t1) := {S1, ..., SX(t1)} be the age of the customers in the system at time
t1. Treating S1:X(t1) as a ‘local latent’ variable, the joint distribution can be expressed as

P (Y = (k1, k2)|Z0:t2)

=

∫
P(X(t1) = k1, X(t2 = k2), S1:k1 ∈ ds|Z0:t2)

=

∫
P(X(t2) = k2|X(t1) = k1, S1:k1 = s, Z0:t2)P(X(t1) = k1, S1:k1 ∈ ds|Z0:t2)

=

∫
P(X(t2) = k2|X(t1) = k1, S1:k1 = s, Z0:t2)P(X(t1) = k1|Z0:t2)P(S1:k1 ∈ ds|X(t1) = k1, Z0:t2).

To be precise, suppose that there are k1 customers at time t1 and let s := {s1, s2, ...sk1} be the age
of those customers, then, conditioned on the fact that customer i has already survived for si, the customer
has a further survival probability of pi = P(R ≥ t2 − t1 + si|R ≥ si) = P(R≥t2−t2+si)

P(R≥si) = Ḡ(t2−t1+si)
Ḡ(si)

of
surviving to t2. This fact leads us to treat the existing customers and the new arrivals separately, using
the Poisson Binomial distribution (Definition 2). Let Xt1,t2 and Vt2 be the new arrivals from t1 to t2 and
existing customers at time t1 that are in the system at time t2 (respectively). We know that Vt2 follows
Poisson Binomial distribution with parameters {p1, p2, ...pk1}, and Xt1,t2 follows Poisson distribution with
parameter

∫ t2
t1
Z(t)[1 − G(t1 − t)]dt. It is straight forward that Xt1,t2 ≤ k2 since the number of new

surviving arrivals cannot exceed the total number in the system at t2. Meanwhile, we have Vt2 ≤ k1 by
its definition. It follows that,

P (X(t2) = k2|X(t1) = k1, S1:k1 = s1:k1) =

min{k1,k2}∑
i=0

PB(i; p1:k1)Pois
(
k2 − i;

∫ t2

t1

Z(t)Ḡ(t2 − t)dt
)
.
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In this paper, we will consider the situation where S1:k1 is observable, implying P(S1:k1 = s|X(t1) =
k1, Z0:t2) = δs1:k1 (s), where δ is the Dirac measure. The integral above simplifies to

Pois
(
k1;

∫ t1

0
Z(t)Ḡ(t1 − t)dt

)min{k1,k2}∑
i=0

PB(i; p1:k1)Pois
(
k2 − i;

∫ t2

t1

Z(t)Ḡ(t2 − t)dt
) , (4)

where PB(·;p) refers to PMF of the Poisson binomial with successs probability vector p. In general,
computing the Poisson-Binomial is computationally intensive and approximations may be necessary.
Poisson Approximation. The Poisson Binomial can be approximated by a Poisson distribution with
parameter µ :=

∑k1
i=1 pi (Le Cam et al. 1960). Error bounds are given under condition maxpi∈p pi ≤ 1/4,

indicating that the Poisson approximation works well when the success probabilities are small.
Normal Approximation. The normal approximation of the Poisson Binomial distribution is based on the

central limit theorem, and can be a poor approximation if k1 is small. Let σ :=
[∑k1

i=1 pi(1− pi)
]1/2

and
Φ be the cdf of the standard normal distribution. Applying to our specific case, we obtain

P(Xt2 = Vt2 +Xt1,t2 = k2|z0:t2 , s1:k1) ≈
k1∑
i=0

Φ′(
i+ 0.5− µ

σ
)P (Xt1:t2 = k2 − i|zt1:t2).

4 THE MODEL ESTIMATION PROBLEM AND APPROXIMATE INFERENCE

In the setting of a infinite server queue, the model estimation problem amounts to jointly estimating the
drift and the service time distribution, parameterized by θ and θ1, respectively. For simplicity, consider the
marginal distribution of X(t)

logPθ1,θ (X(t) = k) = log

∫
Pθ1(X(t) = k|Z0:t)dPθ(Z0:t) (5)

where Pθ is the path measure corresponding to the parameters θ. The difficulties of estimating the drift
and diffusion coefficient using MLE are addressed concisely in Section 3 of Wang, Jaiwal, and Honnappa
(2020). Introducing a new measure Pφ,k(Z0:t) (equivalent to Pθ), Jensen’s inequality implies that

logPθ1,θ(X(t) = k) = log

∫
Pθ1(X(t) = k|Z0:t)

dPθ(Z0:t)

dPφ,k(Z0:t)
dPφ,k(Z0:t)

≥
∫

log

(
Pθ1(X(t) = k|Z0:t)

dPθ(Z0:t)

dPφ,k(Z0:t)

)
dPφ,k(Z0:t).

(6)

While this is a lower bound, observe that the inequality can be tightened by maximizing over both θ
and φ (the conditional measure P (Z0:t|X(t) = k) is the “optimal” choice that achieves equality). The
lower bound, however, is highly non-concave in these parameters and consequently we can only guarantee
the computation of a local optimum. Furthermore, the choice of parameterization will, in general, imply
that the class of measures being optimized over may not include the ‘true’ measures, resulting in an
approximation. Therefore, this procedure of optimizing over path measures is an example of approximate
inference, used extensively in the machine learning literature for approximately solving high dimensional
and large sample statistical inference problems, particularly with Bayesian models. See our description of
approximate inference in a more general setting in Wang, Jaiwal, and Honnappa (2020).

[Deep latent models (DLMs) (Goodfellow et al. 2016, Ch. 19, 20) parameterize the probability measures
by deep neural networks (DNNs). Variational autoencoders (VAEs) (Kingma and Welling 2019) are an
example of DLMs in the multivariate setting where the sequence of prior distributions are known only
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up to the parameters of an appropriately chosen DNN modeling these parameters. In the VAE literature
this sequence of prior distributions are also known as decoders. The approximating measures Qn, entitled
encoders in the VAE literature, are also parameterized using DNNs. Given the ensemble Yn, the DNN
parameters of both the encoder and decoder are estimated using stochastic gradient descent (SGD). Our
current setting, of course, is far more complicated than the VAE setting since the DNNs model the drift
and diffusion coefficients of SDEs leading to a more involved training procedure.

5 DLMs FOR INFINITE SERVER QUEUES

We assume access to n independent and identically distributed (i.i.d.) observations of a stochastic process
(X(t), S1:X(t) : 0 ≤ t ≤ T ). In many service systems, such as hospitals and call centers, traffic counts are
collected at fixed, regular intervals; for instance, in many large call centers, this is typically at intervals
of length 30 seconds to 1 minute. It has been observed (Zhang et al. 2014) that a Cox process, with
CIR-type ergodic diffusion process as intensity, is an appropriate model of the traffic counts at operational
time-scales (typically of the order of 10 minutes). The time interval [0, T ] in our model represents this
operational time-scale.

For clarity of exposition, we will describe our method assuming (i) the traffic counts are observed at
the time epochs T/2 and T ; and (ii) a single sample n = 1. These can be extended to more observation
instants and samples at the expense of a more burdensome notation, but our method will not change. We
model the unknown stochastic intensity process by the SDE

dZ(t) = b(Z(t), t; θ)dt+ η
√
Z(t)dW (t), t ≤ T (7)

where {W (t), t ≥ 0} is the standard Brownian motion, b(·, t; θ) : Cb[0, T ] × [0, T ] 7→ R is the drift
and η

√
(·) with η > 0 is the diffusion coefficient. Cb[0, T ] denotes the space of all continuous and

bounded function on the interval [0, T ]. Here, the unknown drift function is modeled using a DNN
parameterized by θ, and to avoid getting bogged down in technical detail, we assume the existence of
a strong solution to (7). For technical reasons (required by the Girsanov’s theorem) we will, for now,
assume that the diffusion coefficient is known. We denote the measure induced by the solution of this
SDE as Pθ(·). The independent increments property implies that the joint distribution of the arrival count
random vector Y1 := (X

(
T
2

)
, X(T )), conditional on the intensity process Z0:T , can be expressed as:

Pθ1 (Y1 = (k1, k2)|Z0:T )

=Pois

(
k1;

∫ T
2

0
Z(t)Ḡ(

T

2
− t; θ1)dt

)min{k1,k2}∑
i=0

PB(i; pθ11:k1
)Pois

(
k2 − i;

∫ T

T
2

Z(t)Ḡ(T − t; θ1)dt

) .
(8)

Note that we assume access to the age information, i.e., P(S1:k1 = s|X(T2 ) = k1, Z0:T ) = δs1:k1 (s) as in
Equation (4).

5.1 A DLM for the Infinte Server Queue

By definition, the variational familyQ must consist of measures that are absolutely continuous with respect
to the ‘prior’ measure Pθ. In our current setting, Q is the class of equivalent measures induced by the
solutions of SDEs that have the same diffusion coefficient as (7). To be precise, consider the SDE

dZ(t) = b̄k1,k2(Z(t), t : φ)dt+ η
√
Z(t)dW (t), for t ≤ T , (9)

where for each (k1, k2) ∈ {0, 1, . . .}2 the drift function b̄k1,k2(·, ·;φ) is modeled using a DNN with parameter
φ. We denote the measure induced by the solution of this SDE as Qφ. Figure 1 illustrates the use of deep
latent models in defining measures Pθ and Qφ and consequently ELBO. Next, we derive the ELBO for the
observation random vector Y1. The proof, omitted for space reasons, follows from Girsanov’s theorem.
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Figure 1: An illustration of the deep latent modeling framework.
Theorem 1 Define uk1,k2(Z(t), t; θ, φ) := (η

√
Z(t))−1

(
b̄k1,k2(Z(t), t;φ)− b(Z(t), t; θ)

)
and suppose

that uk1,k2 satisfies a strong Novikov’s condition, E
[
exp

(
1
2

∫ t2
0 |uk1,k2(Z(t), t; θ, φ)|2dt

)]
< +∞ ∀θ, φ.

Then,

Ŵt :=

∫ t

0
uk1,k2(Z(s), s; θ, φ)ds+W (t) (10)

is a Brownian motion w.r.t. Qφ , dZ(t) = b(Z(t), t; θ)dt+ η
√
Z(t)dŴt, and

logP(Y1 = (k1, k2)) ≥ EQφ
[
logP(Y1 = (k1, k2)|Z0:T )− 1

2

∫ T
0 u2

k1,k2
(Z(s), s; θ, φ)ds

]
:= ELBO. (11)

Here, the likelihood on the right hand side is given by (3). Notice that we must assume that Novikov’s
condition holds for all possible parameterizations of the functions b̄ and b. This is a strong condition that
is satisfied for the class of DNNs that we work with in this paper, since the output of the DNN is bounded
by definition. However, more analysis is required on sufficient conditions for DNNs to satisfy Novikov’s
condition. Another observation is that the latent process in time (0, T2 ] depends on both observations k1

and k2; note the integrand in (11). Therefore, this is a smoothing estimation problem.

5.2 TRAINING THE DLM

Our objective is to train the neural networks b(Z(t), t; θ), uk1,k2(Z(t), t; θ, φ) and Ḡ(t; θ1) by maximizing
the ELBO. We fix uk1,k2(Z(t), t; θ, φ) to be a deterministic neural network defined as ũ(k1, k2, t;β) with
parameters β. Combined with (10), this additional restriction imposed on uk1,k2(Z(t), t; θ, φ) ensures that
the process Ŵt has independent increments. In the variational inference literature (Blei et al. 2017), this
assumption is also known as the mean-field approximation; that is, each partition of the unknown latent
variable is independent of the other. A similar assumption on the latent process was used in Tzen and
Raginsky (2019), where the authors call it a path-space analog of the mean-field approximation. Now
substituting uk1,k2(Z(t), t; θ, φ) = ũ(k1, k2, t;β) in (10) and from the observation dZ(t) = b(Z(t), t; θ)dt+

η
√
Z(t)dŴt, it follows that we can simulate the SDE using W (t) instead of Ŵ (t); that is,

dZ(t) = b(Z(t), t; θ)dt+
√
Z(t)ũ(k1, k2, t;β)dt+

√
Z(t)dW (t) and Z(0) = 0. (12)

We denote the measure induced by the above SDE as Qβ,θ. For simplicity we fix η = 1.
We use stochastic gradient descent (SGD) to maximize the objective in (11) to learn the unknown

neural network parameters θ and β. In order to use SGD, we first need to generate sample paths of the
latent process Z(t) (12), which we do using the Euler-Maruyama discretization method. We partition
the time interval [0, T ] in N equal sub-intervals, denoted as {t0, t1, ...tN}, with t0 = 0 and tN = T , set



Wang and Honnappa

Z(t0) = Z(0), and simulate {Z(tm)}0≤m≤N using the recursive equation

Z(tm+1) = Z(tm)+b(Z(tm), tm, θ)(tm+1− tm)+
√
Z(tm)ũ(k1, k2, tm;β)(tm+1− tm)+

√
Z(tm)∆Wm

(13)
where {∆Wm := W (tm+1)−W (tm)}

0≤m<N are N i.i.d.standard Gaussians.
In order to use SGD we also need to compute the gradient of the objective function (11) with respect to

the parameters θ, θ1 and β. Notice that the expectation in ELBO is with respect to the measure induced by
SDE in (12) denoted as Qβ,θ. Observe that the only source of randomness in generating Z(t) is from the
Brownian motion W (t), which does not depend on either β or θ. Therefore we interchange the differential
operator with respect to the parameters and the expectation in (11). To make the dependence ofZ(t) on β and
θ explicit, we write Z(t) as Zβ,θ(t). In particular for given values of parameters θ and β−j (all components

of parameter β except βj) observe that ∂
∂βj

E
[
logP(Y1 = (k1, k2)|Zβ,θ0:T )− 1

2

∫ T
0 ũ2(k1, k2, s;β)ds

]
=

E
[
∂

∂βj
log

(e− ∫ T
2

0 Zβ,θ(t)Ḡ(T2 −t;θ1)dt

(∫ T
2

0
Zβ,θ(t)Ḡ(T2 − t; θ1)dt

)k1
k1!

)
×

(min{k1,k2}∑
i=0

PB(i; pθ11:k1
)

e
−

∫ T
T
2
Zβ,θ(t)Ḡ(T−t;θ1)dt

(∫ T
T
2
Zβ,θ(t)Ḡ(T − t; θ1)dt

)k2−i
(k2 − i)!

)
− ∂

∂βj

∫ T

0

ũ2(k1, k2, s;β)ds

]
,

(14)

where we use the likelihood expression from (3). Also note that, to avoid any confusion, we have omitted
subscriptQβ,θ from E[·] above. Now applying straightforward product differentiation rule and subsequently
interchanging the integral and ∂

∂βj
, would result into an expression requiring us to compute the derivative

of the process Zβ,θ(t) with respect to βj . To compute the derivative process, it follows from Kunita (1984),
Theorem 3.1) that under certain regularity condition on the drift and diffusion coefficient of the process
Zβ,θ(t) (12) the derivative process ∂

∂βj
Zβ,θ(t) is the solution of the following SDE

∂Zβ,θ(t)

∂βj
=

∫ t

0

(
∂b(Zβ,θ(s), s; θ)

∂Zβ,θ(s)

∂Zβ,θ(s)

∂βj
+
ũ(k1, k2, s;β)

2
√
Zβ,θ(s)

∂Zβ,θ(s)

∂θj
+
√
Zβ,θ(s)

∂us
∂βj

)
ds

+

∫ t

0

(
1

2
√
Zβ,θ(s)

∂Zβ,θ(s)

∂βj

)
dWs and

∂Zβ,θ(0)

∂βj
= 0. (15)

The derivative of the ELBO with respect to the θ1 can be obtained directly from the automatic differentiation.

6 NUMERICAL RESULTS

We conducted a number of experiments to demonstrate performance of the DLM. We start by describing
the setting for the experiments. The code is written in Python using PyTorch. The time complexity for each
iteration of the gradient update is O (N((k + n)T (b) + T (ũ))), where k and n are number of parameters
in β and θ, respectively, T (f) is the time complexity for computing f , and N is the number of time steps
in the time discretization.

Observe that training the neural network by maximizing the ELBO entails solving a stochastic opti-
mization problem in (11). We use a sample average approximation (SAA) of (11) for which we simulate
m independent sample paths of (Z(t) : t ∈ [0, T ]). We integrate the SDE using Euler-Maruyama
discretization, as noted in the previous section.

Next, there are multiple ways of parameterizing the service time distribution. We model the integrated
hazard function (IHF) H(t; θ1), where θ1 denote the parameters of a neural network. It can be easily seen
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that IHF of the exponential distribution is precisely linear. Once we learn the integrated hazard function,
CDF of the service time distribution is simply G(t; θ1) = 1−e−H(t;θ1). To simplify the notation, we define
F (t; θ1) ≡ e−H(ti−t;θ1) for t ∈ (ti, ti+1], i = 1, 2, ..., k − 1, where k is the total number of observation
epochs.

The architecture of the neural networks is

• b(Z(t), t; θ) : R2 → R is a feedforward neural network with 10 fully connected layers of size 10.
The activation function is chosen as tanh. The inputs are time epoch and the current intensity.

• ũ(k, t;β) : R2 → R is also a feedforward neural network with 10 fully connected layers of size
10. The activation function is chosen as tanh. The inputs are time epoch and the state at time T .

• H(t, θ1) : R → R is a feedforward neural network with 3 fully connected layers of size 5. The
activation function is chosen as tanh. The only input is the time. In order to ensure that the
parameters θ1 descent to the correct region, we enforce linear constraints at ≤ H(t, θ1) ≤ bt. In
our simulations, we set a = 0 and b = 4.

“Better” architectures can be achieved through hyperparameter optimization, which we do not pursue here.
We assume that the true latent intensity process is a standard CIR process:

dZ(t) = 0.3(80− Z(t))dt+
√
Z(t)dW (t), (16)

where Z(0) = 5. We set the simulation horizon to be T = 2, and uniformly partition the interval [0, T ]
into the grid P = {t1, t2, .., tM} with tk+1 − tk = 1/50, t1 = 0 and tM = 2. The training data consists
of n = 200 sample paths of the Cox process generated using the theoretical model (16). This data is
further divided into ‘mini-batches’ of size 10 and then fed into the Adam solver (Kingma and Ba 2014).
We run the code for 35 epochs (350 gradient updates in total). The learning rate for b(Z(t), t; θ) and
ũ(k, t;β) : R2 → R are both set to be 0.01.

6.1 Learning the Tail of the Service Time Distribution

We consider the problem of jointly estimating the service time distribution and the intensity process, when the
intensity is in steady state. Following Equation (4), the likelihood becomesP

(
Y = (k1, k2)|Zt0:t2 , s

0
1:k0

, s1
1:k1

)
=

min{k0,k1}∑
i=0

PB(i; p1:k0)Pois
(
k1 − i;

∫ t1

t0

Z(t)Ḡ(t1 − t; θ1)dt

)×
min{k1,k2}∑

i=0

PB(i; p1:k1)Pois
(
k2 − i;

∫ t2

t1

Z(t)Ḡ(t2 − t; θ1)dt

) ,
(17)

where {t0, t1, t2} = {20, 21, 22}, s0
1:k0

is the age of customers that are in the system at time t0 = 20

and s1
1:k1

is the age of customers that are in the system at time t1 = 21. Suppose the service times are
log-normally distributed with mean 0.5 and variance 5 (the variance is chosen to be large deliberately to
emphasize the tail behavior). Figure 2a and 2b shows that the tail prediction is significantly better in the
steady-state case. In addition, the total variation distance for the transient and steady case are 0.167 and
0.103, respectively, implying that the overall prediction for the steady state system is better.

This phenomenon is due to lack of the age information in the transient setting. Recall that the customer
arriving at t1 has a survival probability of pi = P(S ≥ t2 − t1 + si|S ≥ si) = Ḡ(t2−t1+si;θi)

Ḡ(si;θ)
up until time

t2. If learning from an empty system, then no information of the customers surviving beyond t2 enters
the likelihood. Figure 3 is a histogram that demonstrates the age information at different time epochs. We
also run the experiments for different variance. It can be seen that the L1-distance between the true and
learned service time CDF is always smaller in the steady-state case.
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(a) Unknown Intensity (b) Unknown Intensity (c) Known Intensity (d) Known Intensity

Figure 2: Survival function prediction with 95% CI.

(a) At t=1 (b) At t=2 (c) At t=10 (d) At t=20

Figure 3: Histogram of the customer age.
6.2 Estimating the Service Time Distribution with Known Intensity

In this section, we assume access to the true intensity and estimate the service time distribution alone.
Specifically, we set the latent drift bk1,k2(Z(t), t : φ)dt = 0.3(80 − Z(t)) and then optimize the ELBO
objective over θ and θ1. As in the previous section, we let the true service time distribution to be log-normal
with mean 0.5 and variance 5. Comparing Figure 2a-2b to Figure 2c-2d, it is apparent that assuming
knowledge of the true intensity slightly improves the overall prediction. Table 1 summaries estimation of
the service time distribution in terms of the L1-distance. We see from the table that learning of the service
time CDF is more accurate if we learn the service time distribution only and if the system is already in
steady state. This pattern is consistent under different variance of the service time distribution.

Table 1: Simulation result for the L1 distance. (log-normal)

µ = 0.5 σ2 0.1 1 10 100

Transient
CDF 0.111 0.127 0.131 0.120

CDF & Intensity 0.134 0.174 0.167 0.151

Steady
CDF 0.083 0.116 0.095 0.103

CDF & Intensity 0.110 0.152 0.136 0.128

6.3 Estimating Different Service Time Distributions

Next, we explore the prediction under different service time distributions. We are interested in log-normal
and Pareto service time distributions. The mean of the service time is set to be 0.5 and we increase the
variance from 0.1 to 100. We consider the transient case where the observations are made at time t1 = 1
and t2 = 2, and make 500 predictions (independent from the training sample) of the queue length at time
t2 = 2. The simulation is summarized in Table 2. Overall, prediction of the queue length is acceptable
for all the service time distributions. We note that mean of the predictions is slightly off when variance
of the true distribution is large. It can be seen from the central limit theorem that, to achieve the same
variance of the mean prediction, a larger sample size is required for distribution with higher variance. On
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the other hand, variance of the predictions is slightly overestimated. Our observation is that there is a
slight identification issue between estimation of the service time distribution and the SDE, i.e., the drift of
Z(t) can be underestimated slightly so that the random component of the integral

∫ t
0 Z(s)Ḡ(t − s)ds is

overestimated. We believe this can be improved by better choice of the hyper-parameters. But we don’t
further pursuit this. For most of the service time distribution, the true variance is covered in the 95%
confidence interval of the predicted one.

Table 2: Simulation for different service time distribution.
µ = 0.5 σ2 0.1 1 10 100

True Predicted True Predicted True Predicted True Predicted

Log-normal
Mean with CI

14.63
[14.25 15.01]

14.55
[13.88 15.12]

10.84
[10.51 11.16]

10.47
[9.23 11.01]

6.92
[6.74 7.10]

6.97
[6.58 7.36]

4.46
[4.26 4.65]

3.96
[3.66 4.25]

Variance with CI
18.28

[16.21 20.78]
16.61

[13.78 20.42]
13.63

[12.08 15.49]
15.20

[12.69 18.80]
8.22

[7.54 8.99]
7.79

[6.46 7.57]
4.98

[4.41 5.66]
4.48

[3.72 5.51]

Pareto
Mean with CI

14.90
[14.51 15.28]

15.31
[14.65 15.97]

14.08
[13.70 14.45]

13.97
[13.34 14.59]

13.83
[13.46 14.21]

13.43
[12.81 14.04]

13.63
[13.29 13.98]

13.24
[12.63 13.84]

Variance with CI
19.44

[17.24 22.10]
22.42

[18.60 27.56]
18.44

[16.35 20.96]
19.73

[16.37 24.26]
18.21

[16.15 20.70]
19.15

[15.89 23.54]
15.57

[13.80 17.69]
18.75

[15.55 23.04]

6.4 Approximations to the Poisson Binomial Distribution

In this section, we demonstrate how different approximation techniques influence the prediction result. We
follow the same setting as in the previous section while focus only on the log-normal distribution. Observe
from Table 3 that normal approximation is slightly off when the queue length at observation epoch is small.
See prediction of the mean for σ2 = 100 at T for instance. Our interpretation is that Normal approximation
is based on the central limit theorem, see Neammanee (2005) for instance. The approximation can be poor
when number of the surviving customers at the previous observation epoch is small. Otherwise, Normal
approximation makes reasonable prediction on both the mean and variance. On the other hand, Poisson
approximation works well in almost all the predictions. However, one shall be extra cautious when the
overall survival probability is large. It is pointed out in Le Cam et al. (1960) that the Poisson approximation
is guaranteed to work well only if the maximum survival probability is smaller than 1

4 .

Table 3: Simulation for different approximation schemes. (log-normal distribution)

µ = 0.5 σ2 0.1 1 10 100

TRUE
T/2 T T/2 T T/2 T T/2 T

Mean with CI
6.92

[6.66 7.17]
14.63

[14.25 15.01]
5.17

[4.95 5.38]
10.84

[10.51 11.16]
3.21

[3.09 3.32]
6.92

[6.74 7.10]
2.06

[1.93 2.19]
4.46

[4.26 4.65]

Variance with CI
8.38

[7.43 9.52]
18.28

[16.21 20.78]
5.88

[5.21 6.68]
13.63

[12.08 15,49]
3.26

[2.99 3.57]
8.22

[7.54 8.99]
2.12

[1.88 2.41]
4.98

[4.41 5.66]

PB exact
Mean with CI

6.96
[6.56 7.36]

14.55
[13.98 15.12]

5.28
[4.95 5.61]

10.47
[9.23 11.01]

3.85
[3.59 4.10]

6.97
[6.58 7.36]

1.99
[1.79 2.19]

3.96
[3.66 4.25]

Variance with CI
8.31

[6.89 10.21]
16.61

[13.78 20.42]
5.48

[4.54 6.73]
15.20

[12.69 18.80]
3.42

[2.84 4.21]
7.79

[6.46 7.57]
2.00

[1.66 2.46]
4.48

[3.72 5.51]

Gaussian Approx
Mean with CI

6.87
[6.61 8.32]

14.17
[13.80 14.54]

4.77
[4.57 4.97]

10.40
[10.11 10.70]

2.82
[2.67 2.97]

6.32
[6.06 6.57]

1.93
[1.80 2.05]

5.46
[5.27 5.65]

Variance with CI
8.32

[7.38 9.46]
17.41

[15.44 19.79]
5.09

[4.51 5.79]
11.24

[9.97 12.78]
2.87

[2.54 3.26]
8.35

[7.40 7.49]
1.96

[1.73 2.22
4.72

[4.19 5.37]

Poisson Approx
Mean with CI

6.89
[6.63 7.14]

14.37
[14.00 14.73]

5.27
[5.06 5.47]

10.52
[10.18 10.85]

3.76
[3.60 3.91]

6.88
[6.63 7.12]

2.12
[1.99 2.24]

4.77
[4.58 4.95]

Variance with CI
8.42

[7.46 9.57]
17.20

[15.25 19.55]
5.60

[4.96 6.36]
14.51

[12.86 16.49]
3.19

[2.82 3.62]
7.57

[6.71 8.60]
2.05

[1.81 2.33]
4.60

[4.07 5.22]

7 CONCLUSIONS AND COMMENTARY
We present a machine learning based method for estimation of the arrival intensity and service time
distribution for the Cox/G/∞ queues. We demonstrate effectiveness of our method by comparing the
prediction accuracy under: (1) steady/transient queue; (2) different learning objectives; (3) different true
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service time CDF; (4) different approximations of Poisson Binomial distribution. While the predictions are
accurate in almost all the cases, we provide insight on favorable conditions under which our method works
exceptionally well. In future work, we plan to relax the requirement that the age information be available.
We are also interested in establishing statistical guarantees of the estimation. In ongoing work, we aim to
show that, if the architecture of the neural networks are chosen properly, then the DLM is consistent. We
will present the consistency result in the future.
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