
Proceedings of the 2021 Winter Simulation Conference
S. Kim, B. Feng, K. Smith, S. Masoud, Z. Zheng, C. Szabo and M. Loper, eds.

COMPLEXITY ANALYSIS ON FLATTENED PDEVS SIMULATIONS

Guillermo G. Trabes Veronica Gil-Costa

Department of Systems and Computer Engineering Universidad Nacional de San Luis
Carleton University and CCT CONICET San Luis

and Universidad Nacional de San Luis Ejército de Los Andes 950

Ottawa, ON K1S 5B6, CANADA San Luis, D5700, ARGENTINA

Gabriel A. Wainer

Department of Systems and Computer Engineering
Carleton University

1125 Colonel By
Ottawa, ON K1S 5B6, CANADA

ABSTRACT

Discrete Event Systems Specification (DEVS) is a well-known formalism to develop models using the
discrete event approach. One advantage of DEVS is a clear separation between the modeling and simulation
activities. The user only needs to develop models and general algorithms exist in the literature to execute
simulations. DEVS was enhanced to handle better simultaneous events in the PDEVS formalism. To
execute PDEVS simulations, a well-know and widely accepted algorithm was introduced: the PDEVS
simulation protocol. However, since its creation, the protocol has evolved, and several versions have been
proposed and implemented. In this work we propose and analytical approach to fully define and analyze
this protocol. We divide the protocol into steps and sub-steps and for each of them we present a computer
complexity analysis based on two key factors of the protocol’s execution: the messages the components
interchange and the computations the components execute.

1 INTRODUCTION

Modeling and Simulation (M&S) has become an essential tool in science and engineering. Its ability to

represent problems in several disciplines and perform scientific exploration has increase its popularity.
There are many methodologies to develop M&S solutions, and some of them allow defining the models
formally, which has a few advantages. In particular, the Discrete Event System Specification (DEVS)
(Zeigler et al. 2000) provides a theoretical framework to develop discrete-event M&S and it was used in
many applications since its creation.
 In DEVS, models are defined using two kinds of components: atomic models and coupled models.
Atomic models define the behavior of the elements of the system, whereas coupled models define their
structure. The various components of the model interact with each other through well-defined modular
interfaces. In some versions of DEVS, such interfaces include the definition of input/output ports.
 The formal definition of DEVS provides many advantages. One of them is the capacity to separate
model definition, implementation, and experimentation. Models that are valid under a given experimental
frame are defined using a formal notation and then simulated using algorithms that have been formally

verified. This separation of concerns boosts the reusability of models and ease the verification of the models.

978-1-6654-3311-2/21/$31.00 ©2021 IEEE

Trabes, Gil-Costa, and Wainer

 Sometimes, when building a discrete-event model, we need to represent the occurrence of simultaneous
events. In classic DEVS, when simultaneous events occur, the simulation algorithm executes the models
involved in according to the specifications defined in a tie-break function. This function specifies the order
of execution of the model’s components when they have simultaneous events to be executed. This way of
handling collisions might not be adequate to reflect the actual response of the system to simultaneous events.
To deal with this problem, Parallel DEVS (PDEVS) was introduced to deal with simultaneous events more

elegantly (Chow and Ziegler 1994). One of the changes of PDEVS is that enables the modeler to define the
behavior of the components when there are collisions of events. To do so, PDEVS adds a new function in
atomic components that deals with the collision, removing the need for the tie breaking function. Another
major change is that PDEVS models also modifies the way in which inputs and outputs are defined. PDEVS
allows the transmission of bags of events as inputs and outputs, allowing transferring information about
multiple input/output events simultaneously.

Besides the efforts to define the formalisms, there have been efforts to develop algorithms to execute
simulations. The most famous and widely accepted algorithm to execute PDEVS simulations is the PDEVS
simulation protocol. However, since its creation, this protocol has evolved, several versions have been
proposed and this created new problems we need to address. The first problem is that many details in the
execution of the algorithm have not been completely defined, for example how to handle the event-list on
the simulation. This has been implemented on several ways on different simulators. Second, the

communication between components and what information they must interchange was implemented in
different ways. In third and last place, we need more efforts to fully understand the advantages and
limitations of using this protocol. Its message passing mechanism is one of the greatest overheads and
finding ways to minimize the messages interchanged will provide more efficient executions. In addition,
any efforts to reduce the computations needed to execute simulations will be beneficial to performance.

In this work we propose an analytical approach to solve this problem. We present a computational
complexity analysis on the execution of the PDEVS simulation protocol that addresses this issue. To this
end, we analyze the complexity two important factors: the number of messages transmitted between the
components and the number of computations the algorithm must perform to execute the simulation.
 The rest of the paper is organized as follows. In section 2, we summarize DEVS and PDEVS. We also
explain the ideas behind the PDEVS simulation algorithm and the flattening algorithm for DEVS. In section
3, we develop a complexity analysis for the PDEVS simulation protocol by dividing the protocol in steps

and sub-steps and analyzing them individually. Finally, in section 4, we present the conclusions and future
research lines of this work.

2 BACKGROUND AND RELATED WORK

2.1 DEVS

Discrete Event System Specification (DEVS) (Zeigler et al. 2000) is a well-known mathematical formalism
that provides a theoretical framework to think about modeling using a hierarchical, modular approach. In
DEVS, atomic models provide behavior and coupled models provided structure.
 Atomic models are defined as a tuple: A = <S, X, Y, int, ext,  ta> where: S is the set of states, X is the
set of input ports and values, Y is the set of output ports and values, int: S → S is the internal transition
function, Q = {(s, e) | s ∈ S, 0 ≤ e ≤ ta(s)} is the local state set (where e is the time elapsed since the last
transition), ext: Q × X → S is the external transition function,   S → Y is the output function, and ta: S →
ℝ+ is the time-advance function. An atomic model, also known as basic model, is always in a specific state

waiting to complete the lifespan delay returned by the ta function, unless an input of a new external event
occurs. If no external event is received during the lifespan delay, the output function  is called first, and
then the state is changed according to the value returned by the int function. If an external event is received,
then the state is changed according to the value returned by the ext function, but no output is generated.
 Coupled models define a network structure in which nodes are atomic or coupled models and directed
links represent the routing of events between outputs and inputs or to/from the upper level. Formally, a

Trabes, Gil-Costa, and Wainer

coupled model is represented by the tuple C = <X, Y, D, {Mi}, {Ii}, {Zij}, SELECT>, where: X is the set of
input events, Y is the set of output events, D is an index for the components, Mi | i ∈ D, is a Classical-
DEVS models as defined previously, Ii, are the influencees of model i, ∀ j ∈ Ii, Zij: Yi→ Xj is the i to j
translation function and SELECT: 2D \ ∅→D is the tie-breaker function that sets priority in case of
simultaneous events.
 The formal definitions of DEVS provides many advantages. DEVS has the capacity to separate model

definition, implementation, and experimentation. Models that are valid under a given experimental frame
are defined using a formal notation and then simulated using algorithms that have been formally verified.
This separation of concerns along with its hierarchical and modular approach boosts the reusability of
models and ease the verification of the models.

2.2 PDEVS

Even though Classic-DEVS has been used in many applications and tools, it has a limitation when dealing
with simultaneous events. Simultaneous events are handled sequentially based on the order specified in the
tie-break SELECT function. This collision behavior may not accurately represent the behavior of the actual
system. Parallel DEVS (PDEVS) (Chow and Ziegler 1994) was introduced to deal with tie-breaking and
better handling of simultaneous events. PDEVS introduces two main characteristics:

• The inputs and outputs for every PDEVS model, X, and Y respectively, are defined as bags

(multisets) instead of sets, as in classical DEVS. In this way, multiple elements can be

transmitted at the same time.

• A confluent function is introduced which defines the model’s behavior when an internal and

external transition are scheduled at the same time.

 With these new features PDEVS can handle the occurrence of multiple events at the same time in a
simple way, and therefore, tie-break function SELECT, defined in classical DEVS, is no longer needed.
 The PDEVS atomic models are defined as a tuple: A = < S, X, Y, int, ext, conf,  ta > where: S, int,
and ta are defined as in classical DEVS. As mentioned, X and Y are defined as bags of elements. The output,
external and the additional confluent function are defined respectively, as follows:  S → Yb, ext: Q × Xb
→ S and conf: Q × Xb → S.

2.3 PDEVS Simulation Protocol

In addition to the development of the formalisms, there have been many efforts in the development of a
simulator. Following the ideas from classical DEVS, PDEVS makes a clear separation between the model
and the simulation. The models are defined by users following the specifications defined by the formalism
and, to execute simulations, a general mechanism is provided. This mechanism is known as the PDEVS
abstract simulator.
 Given a PDEVS model, the PDEVS abstract simulator creates a structure that allows to execute the
behavior of the model and to obtain the correct simulation results. The PDEVS abstract simulator consists
of three types of components: simulators, coordinators, and root-coordinator. Each atomic model is

associated with a simulator and each coupled model is associated with a coordinator. One root-coordinator
is placed at the root of the structure hierarchy. In Figure 1, an example of a PDEVS model and its
corresponding PDEVS abstract simulation structure.
 Once the abstract simulator was defined, there is a mechanism to execute PDEVS simulations, called
PDEVS simulation protocol. It was initially proposed in (Chow et al. 1994). However, since then several
versions have been proposed and implemented. We base our work in the one defined in (Nutaro, 2019).

Trabes, Gil-Costa, and Wainer

Figure 1: Example of a PDEVS model and its corresponding PDEVS abstract simulator structure.

This simulation procedure is implemented by exchanging several types of messages between the
components. These are messages for initialization (i), to compute output (*) to execute a state transition (x)
and send outputs (y). In contrast to classical DEVS where imminent models are sequentially activated,
coordinators enable concurrent execution of state transitions and output calculations for atomic models.
The outputs of these models are collected into a bag called the mail. The mail is analyzed to determine the
part going outside the scope of the coordinator due to external output coupling and the parts to be distributed
internally due to internal coupling. The internal transition functions of the imminent models are not
executed immediately since they may also receive input at the same simulation time. Similarly, as with the

simulators, the coordinators react to i, *, x and y messages sent by a parent coordinator, and they reply to
messages received from a subordinate. At the top of this hierarchy is a root-coordinator whose role is to
initiate i and * messages in each simulation cycle. The complete details for this algorithm can be found in
(Nutaro 2019).

2.4 Flattening Algorithm for the DEVS Abstract Simulator

As mentioned in the previous section, the simulation execution is message-driven; it is based on message
exchange among components. The message passing overhead is significant if the model structure is too

complex or extremely large (Glinsky and Wainer 2002; Kim et al. 2000, Wainer et. al 2011). This overhead

can be minimized if the simulator’s hierarchy is flattened. This way, the number of exchanged messages is
reduced, and better performance can be obtained with the flattened simulation approach. In addition, it was

proven than any hierarchical DEVS simulation can be transformed into an equivalent flattened that can give

the same simulation results. In Figure 2, we can see an example of how a hierarchical abstract simulator

can be transformed into a flat one.
The flattening algorithm works by eliminating every intermediate level coordinator by directly connect

all simulators with the top-most coordinator. Therefore, in a flat abstract simulator the structure is composed

by one root-coordinator, one coordinator and one or more simulator subcomponents.
To conclude this section, it is worth to mention that even though this approach was originally proposed

for Classic DEVS, it can be used in the same way for PDEVS abstract simulators.

Trabes, Gil-Costa, and Wainer

Figure 2: Example of a hierarchical PDEVS simulation structure and an equivalent flattened structure.

3 PDEVS SIMULATION PROTOCOL COMPLEXITY ANALYSIS

In this section we present our computational complexity analysis on the PDEVS simulation protocol. We
use a basis for our analysis a generic flattened PDEVS abstract simulator. Since any hierarchical PDEVS
abstract simulator structure can be transformed into an equivalent flat PDEVS Abstract Simulator we can
generalize our analysis for any PDEVS simulation execution. We can see a graphical representation for this

structure in Figure 3.

Figure 3: Flattened PDEVS abstract simulator structure.

 There are several reasons to use a flattened PDEVS simulator approach. In first place, the algorithm is
simpler and therefore easier to understand, analyze and implement. Second, the number of messages
transmitted between components is reduced by eliminating all intermediate levels in the tree hierarchy.
Also, some of the most complex parts of the coordinator algorithm, like analyzing which outputs received
must be send to the parent component are simplified. Therefore, the complexity of executing the algorithm,
in the way we analyze it in this work, is reduced. In third place there is empirical evidence showing the
benefits of applying this method and how this can accelerate simulation’s executions in practical
implementations (Wainer et. al 2011).
 Before starting our analysis some details on the PDEVS simulation protocol must be clearly defined.
In first place, as the execution takes place on different components while they interchange messages it

Trabes, Gil-Costa, and Wainer

should be clearly stated how the components interchange message and the information that must be
transferred between them. It is not clear in (Nutaro 2019) how the information for next event’s time is
transmitted from children to parent components. To define this properly, we use an idea from the original
PDEVS Simulation protocol in (Chow et al. 1994). This idea is to include a (done, time) message. This way,
communication between components is clearly defined. In addition, a waiting for done message mechanism
is included when a component needs to hold its execution while waiting from other components messages.

 In second place, another important topic is how to determine the next events taking place on the
simulation. On (Nutaro, 2019) an event-list in coordinator is mentioned, but there are no details on how this
list should be implemented.

Figure 4: PDEVS Root-Coordinator pseudocode.

Figure 5: Flattened PDEVS Coordinator pseudocode.

1: PDEVS-ROOT-COORDINATOR

2: variables:

3: t
4: sim_time
5: t = t0
6: send (i,t) to child
7: wait until (done, tnext) is received

 8: t = tnext
 9: while (t<sim_time)
10: send(*,t) message to child

11: wait until (done, tnext) is received

12: t = tnext
13: end-while
14: end-PDEVS-ROOT-COORDINATOR

 1: FLATTENED-PDEVS-COORDINATOR
 2: variables:
 3: DEVN = (X,Y,D,{Md},{Id},{Zi,d})
 4: parent
 5: tl
 6: tn
 7: event-list

 8: IMM
 9: receivers
10: y1,..,yD //output bags for children
11: x1,..,xD //input bags for children
12: when receive i-message (i,t)
13: for d є D do

14: send (i,t) to child d

15: end-for
16: wait until (done,tnd) is received
 from every child

17: for d є D do
18: insert d in event-list according to
 tn

19: end-for
20: tn = first element’s time in event-
 list
21: tl = last element’s time in event-list
22: send (done, tn) to parent
23: end-when
24: when receive *-message (*,t)

25: if t ≠ tn then

26: error: bad synchronization
27: end-if
28: IMM = first element in event-list

29: remove first element from event-list
30: for d є IMM do

31: send *-messages(*,t) to d

32: end-for
33: wait until (yd) is received
 from every child in IMM
34: for d є IMM do
35: for r such that r є Id do
36: add yd to xr
37: end-for
38: end-for
39: receivers = {r|r є children ∧ xr≠∅}
40: for a є (IMM U receivers) do
41: send x-messages (xr,t) to a
42: end-for
43: wait until (done,tnext) is received
 from every child in IMM U receivers
44: for r є receivers do
45: remove r in event-list
46: end-for
47: for a є (IMM U receivers) do
48: insert a in event-list according
 to tn
49: end-for
50: tl = t
51: tn = first element’s time in
 event-list
52: send (done, tn) to parent
53: end-when
54: end-FLATTENED-PDEVS-COORDINATOR

Trabes, Gil-Costa, and Wainer

Figure 6: PDEVS Simulator pseudocode.

 The event-list or future event list (FEL) representation is a core problem in Discrete Event Simulation
(DES). The aim is to being able to store and access efficiently events scheduled to occur in the future on
the simulations. Several data structures have been proposed, such as queues (Himmelspach and Uhrmacher
2007), unordered and ordered lists, heaps (Franceschini et al. 2015) and calendar queues (Brown 1988). In
general DES simulators, only two operations are required: insertion of events (called enqueue in the
literature) and remove the elements with the minimum time (named dequeue in the literature). For DEVS
and PDEVS one additional operation is required, this is since some components with events already on the
structure may have to update their time for the next event in the case they receive an external transition.
Therefore, the elements with outdates time for the next event must be updated or removed and inserted
again. To do this, the simplest solution is to remove the elements and use the insertion operation. Therefore,
for our analysis, we need to define the complexity for three operations on the operations on the event-list:

enqueue, dequeue and deletion.
 From all data structures proposed for the event-list, one stands over the others: The Ladder Queue (Tang
et al. 2015). This structure is a special implementation of a calendar queue. This structure is a multi-level
list with three levels, and it has the advantage of delaying the ordering of events scheduled far in the future
until the ordering is needed. The complexity for this structure is O(1) in enqueue, dequeue and deletion on
the average case (Furfaro and Sacco 2018). Furthermore, there is empirical evidence of the use of Ladder
Queue in PDEVS is faster than other proposed structures (Franceschini et al. 2015). To the best of our
knowledge this is the best structure proposed up to date and for that reason we use the complexity of its
operations for our analysis.
 With these details defined we can start with our analysis. As mentioned, we propose to analyze the
complexity cost for executing the PDEVS simulation protocol on a flattened PDEVS abstract simulator.
The complete pseudocode for the algorithm used in our approach is show in Figures 4,5 and 6.

 For our analysis we will consider the complexity on two important factors that summary the cost of
executing this algorithm.:

• The number of messages transmitted between components.
• The number of computations performed by the components.

Our approach involves analyzing the interaction and execution of the ROOT-COORDINATOR, the

COORDINATOR, and the SIMULATORs.

 1: PDEVS-SIMULATOR
 2: variables:
 3: parent
 4: tl
 5: tn
 6: DEVS
 7: y
 8: when receive i-message (i,t)
 9: tl = t – DEVS.e
10: tn = tl + DEVS.ta(DEVS.s)

11: send (done,tn) to parent

11: end-when
12: when receive *-message (*,t)
13: if t = tn then
14: y = DEVS.λ(s)
15: send y-message(y,t) to parent

16: end-if
17: end-when
18: when receive x-message (x,t)
19: if x = ∅ ∧ t = tn then
20: DEVS.s = DEVS.δint(DEVS.s)
21: else if x ≠ ∅ ∧ t = tn
22: DEVS.s = DEVS.δconf(DEVS.s,x)
23: else if x ≠ ∅ ∧ (tl ≤ t < tn)
24: DEVS.e = t - tl
25: DEVS.s = DEVS.δext(DEVS.s,DEVS.e,x)
26: end-if
27: tl = t
28: tn = tl + DEVS.ta(DEVS.s)

29: send (done,tn) to parent
30: end-when
31: end-PDEVS-SIMULATOR

Trabes, Gil-Costa, and Wainer

3.1 Step 0: Initialization

The first step in the simulation is an initialization step. The objective of this step, which we call step 0, is
to obtain the time for the first events occurring in the simulation in ROOT-COORDINATOR. In addition,
the time for the next event on every SIMULATOR will be stored on the event list on COORDINATOR.
 Let us analyze how this step works analyzing the interaction between the components in the abstract
PDEVS simulator. A graphical representation on how this step executes can be seen on Figure 7.

Figure 7: Step 0 - Initialization.

 This step is composed by the following sub-steps:

• Sub-step 0.1: ROOT-COORDINATOR sends a (i,t) message to COORDINATOR, this can be seen
on line 6 in Figure 4. The complexity of this sub-step is O(1) messages.

• Sub-step 0.2: COORDINATOR sends a (i,t) message to every SIMULATOR on the structure, this
can be seen on lines 13-15 in Figure 5. After this, COORDINATOR waits until all done message
are receiver from SIMULATORs. The complexity of this step is O(N) messages.

• Sub-step 0.3: Each SIMULATOR computes its time advance function to determine its time for the
next event. We can see this sub-step in lines 8-10 In Figure 6. The complexity for this step is N, the
number of simulators, multiplied by the maximum cost for the time advance function executed.
Therefore, the complexity of this sub-step is O(N*max(ta)) computations.

• Sub-step 0.4: Each SIMULATOR sends a (done, t) message to COORDINATOR. This sub-step
can be seen in line 11 in Figure 6. The complexity is O(N) messages.

• Sub-step 0.5: When COORDINATOR receives all done messages, it inserts the time and id of each
simulator on the event-list. This way, all SIMULATOR that must execute next can be found on the
first element of event-list. Using a Ladder Queue, the complexity or insert each element is O(1) on
the average case. After this COORDINATOR obtains the time for the last and next event, both
operations have a complexity of O(1). This can be seen in lines 17-21 in Figure 5. Therefore, the
complexity of this step is O(N) computations.

• Sub-step 0.6: To finish this step, COORDINATOR sends a (done, t) message to ROOT-
COORDINATOR. This can be seen in line 22 in Figure 5. This step has a complexity of O(1)
messages.

3.2 Step 1: Output Collection

After the initialization step is completed a simulation cycle begins. The simulation will execute until the
time limit for the simulation is reached. To simplify our analysis, we divided the simulation cycle in 2 steps:

Trabes, Gil-Costa, and Wainer

output collection named step 1 and state transition executions named step 2. In this section we analyze step
1. The objective on this step is to collect all outputs from imminent models in COORDINATOR. In Figure
8 we can see a graphical representation for this step.

Figure 8: Step 1 - Output collection.

 Let us analyze define and analyze the sub-steps required to execute this step:

• Sub-step 1.1: On the first sub-step, ROOT-COORDINATOR checks if the simulation is over
comparing the simulation time with the time for the next event. This step is show in line 9 in Figure
4. The complexity of this step is O(1) computations.

• Sub-step 1.2: ROOT-COORDINATOR sends a (*,t) message to COORDINATOR. This step is
show in line 10 in Figure 4. This step has a complexity of O(1) messages.

• Sub-step 1.3: COORDINATOR selects the first element in event-list and store it into the IMM set
and removes it from the list. This way, IMM set contains the id of all imminent subcomponents.
This is show in lines 28-29 in Figure 5. This step has a complexity of O(1) computations.

• Sub-step 1.4: Next, COORDINATOR sends a (*,t) to every SIMULATOR child in IMM. Then
COORDINATOR waits until it receives a reply from all of them. This is show in lines 30-33 in
Figure 5. The complexity of this step is O(|IMM|) messages.

• Sub-step 1.5: In this sub-step, each simulator calculates its output function. This can be seen in line

14 in Figure 6. The complexity for this sub-step is the number of imminent models multiplied by
the maximum complexity of the output functions executed. Therefore, the complexity of this sub-
step is O(|IMM|*max()) computations.

• Sub-step 1.6: Finally, every imminent child reply with a y-message with the output generated on
the previous step and the messages are received by COORDINATOR. This is show in line 15 in
Figure 6 and in line 33 in Figure 5. This sub-step has a complexity of O(|IMM|) messages.

 Following these steps, COORDINATOR receives all outputs from imminent SIMULATORS, and the
step is concluded.

3.3 Step 2: State Transition Execution

The objective of this step is twofold, in first place to execute the SIMULATOR’s state transitions and

second, obtain the time for the next simulation cycle. Not every SIMULATOR must execute on this step.

Trabes, Gil-Costa, and Wainer

Only those who are imminent and those who receive an input from an imminent component in the previous
step. In Figure 9 we can see a graphical representation for this step.

Figure 9: Step 2 – State Transition Execution.

 Let us analyze define and analyze the sub-steps required to execute this step:

• Sub-step 2.1: The goal for this sub-step is to fill the bags that must be send to the receivers. This is
achieved by iterating over every imminent model. For each imminent SIMULATOR, the output
from that simulator must be inserted on each influencee component bag. This sub-step can be seen
in lines 34-38 in Figure 5. The complexity of this step is the number of imminent components
multiplied by the maximum number of influencees imminent components have. Therefore, the
complexity is O((|IMM|*max(|Ii|)) computations.

• Sub-step 2.2: Next, COORDINATOR sends a x-message to every imminent and receiver
component. This is show is lines 40-42 in Figure 5. The complexity of this step is O(|IMM U
RECEIVERS|) messages.

• Sub-step 2.3: In this step, each imminent and receiver simulator calculates its state transition
function and the time for its next event. This step can be seen in lines 18-28 in Figure 6. The

complexity for this sub-step is the number of imminent models multiplied by the maximum
complexity of the state transition functions plus time advance executed. This sub-step has a
complexity of O(|IMM U RECEIVERS|*max(+ta)) computations.

• Sub-step 2.4: After computing the internal transition function and time advance, every
SIMULATOR in imminent or receivers, sends a (done, t) message to its parent COORDINATOR
This is show in lines 29 in Figure 6. The complexity of this sub-step is O(|IMM U RECEIVERS|)
messages.

• Sub-step 2.5: In this sub-step, the event list should be updated, and the minimum time should be
determined. To do this, three tasks should be executed. First, elements in RECEIVERS should be
deleted from event-list. Second, all imminent and receivers’ components should be added into
event-list. Third and last, the time for the next event should be selected from the first element in
event-list. Delete each element in the Ladder Queue has a complexity of O(1). Therefore, the

complexity of deleting all receiver components is O(|RECEIVERS|) computations. Similarly, insert
an element in Ladder Queue has a complexity of O(1) computations. Therefore, insert all imminent
and receiver components has a complexity of O(|IMM U RECEIVERS|) computations. Last, obtain
the time for the last and the next event has a complexity of O(1). As the insertions have the higher
complexity order, the complexity for this sub-step is O(|IMM U RECEIVERS|) computations. This
step can be seen in lines 44-51 in Figure 5.

Trabes, Gil-Costa, and Wainer

• Sub-step 2.6: Finally, COORDINATOR sends a (done, tn) sends to ROOT-COORDINATOR. This
sub-step is show in line 52 in Figure 5 and has a complexity is O(1) messages.

3.4 Complexity Cost to Execute a PDEVS Simulation

With the analysis made in previous sections, we can determine the complete cost to execute a DEVS
simulation under this protocol. The initialization step, which we call step 0, will be performed only once at
the beginning of the execution, and therefore the complexity of executing this step is given by the maximum

sub-step. As we can see from the analysis the cost on this step depends on the number of simulators and on
the maximum time advance function defined by the user. On Table 1 we can see a summary of the
complexity of this step.

As mentioned in previous sections, steps 1 and 2 occur on a simulation cycle. A summary for the
complexity of this steps is presented in Table 2. For both steps 1 and 2, the complexity cost is given by the
maximum sub-step on each of them. As it can be seen from the analysis, the cost of step 1 depends on: the
number of imminent simulators on the step and by the cost of the maximum output function on the imminent
models on the step. Similarly, for step 2, the complexity cost depends on: the number of imminent models,
the number of receiver models, the number of influences each imminent simulator has and on the maximum
cost of the state transition function and time advance on the imminent and receivers’ simulators on the step.

We can see that the complexity depends on many factors, some static such as the number of elements,
but also some factors that depend on the dynamics of the simulation, for example, the number of imminent

and receivers on a particular simulation step. In addition, it must be considered that any PDEVS simulation
will end after the execution of a finite number of simulation cycles, M. This is another factor to consider
when defining a cost for the simulation’s execution. The cost for each simulation cycle is given by the
maximum complexity cost of executing steps 1 and 2 in that cycle. Then, the cost for this simulation loop
is given by the cycle with the maximum cost, multiplied by M, the number of cycles. In summary, the
complete complexity of executing the simulation is: O(max(simulation cycle’s cost)*M).

Table 1: Summary on the complexity of step 0.

Sub-step Complexity

0.1 O(1) messages

0.2 O(N) messages

0.3 O(N*max(ta)) computations

0.4 O(N) messages

0.5 O(N) computations

0.6 O(1) messages

Table 2: Summary on the complexity on the simulation cycle, steps 1 and 2.

Sub-step Complexity Sub-step Complexity

1.1 O(1) computations 2.1 O((|IMM|*max(|Ii|)) computations

1.2 O(1) messages 2.2 O(|IMM U RECEIVERS|) messages

1.3 O(1) computations 2.3 O(|IMM U RECEIVERS|*max(+ta)) computations

1.4 O(|IMM|) messages 2.4 O(|IMM U RECEIVERS|) messages

1.5 O(|IMM|*max()) computations 2.5 O(|IMM U RECEIVERS|) computations

1.6 O(|IMM|) messages 2.6 O(1) messages

4 CONCLUSIONS AND FUTURE WORK

In this work we presented a complexity analysis on the execution of flattened PDEVS simulations using
the PDEVS simulation protocol. The objective of any PDEVS simulation algorithm is to minimize the
number of messages interchange between the components and the number of operations require to execute

Trabes, Gil-Costa, and Wainer

the simulations. Our aim with this work is to present a base algorithm divided in steps and sub-steps where
each of them can be clearly identify and its complexity stated. This way, improvements can be made on
specific parts in the algorithm and different versions can be compared.
 As future work, we propose to continue this analysis by analyzing and categorizing the factors that
contribute to the cost of executing simulations and how this can help to enhance the development of
practical applications. In addition, we plan to implement the algorithm describe as an improvement for the

Cadmium simulator (Belloli et al. 2019). Finally, we plan to use this analysis to identify which parts can be
executed in parallel. This way, a parallel algorithm can be proposed, and the execution cost for that
algorithm can be determined.

REFERENCES

Belloli, L., D. Vicino, C. Ruiz-Martin and G. Wainer. 2019. “Building DEVS Models with the Cadmium Tool”. In Proceedings of
the 2019 Winter Simulation Conference, edited by N. Mustafee, K.-H.G. Bae, S. Lazarova-Molnar, M. Rabe, C. Szabo, P.

Haas, and Y.-J. Son, 45–59. Piscataway, New Jersey, USA: Institute of Electrical and Electronics Engineers, Inc.

Brown, R. 1988. Calendar Queues: a Fast 0(1) Priority Queue Implementation for the Simulation Event Set Problem.

Communications of ACM 31(10):1220–1227.
Chow A.C. and B. P. Zeigler. 1994. “Parallel DEVS: a Parallel, Hierarchical, Modular, Modeling Formalism”. In Proceedings of

the 1994 Winter Simulation Conference, edited by J. D. Tew, M. Manivannan, D. A. Sadowski, and A. F. Seila, 716–722.

Piscataway, New Jersey: Institute of Electrical and Electronics Engineers, Inc.

Chow, A.C., B. P. Zeigler and D. H. Kim. 1994. "Abstract Simulator for the Parallel DEVS Formalism". In Proceedings of the
Fifth Conference on AI, Simulation, and Planning in High Autonomy Systems, edited by P. A. Fishwick. 157-163. Gainesville,

FL, USA: Institute of Electrical and Electronics Engineers, Inc.

Furfaro, A., and L. Sacco. 2018. "Adaptive Ladder Queue: Achieving O (1) Amortized Access Time in Practice.". In Proceedings

of the 2018 ACM SIGSIM Conference on Principles of Advanced Discrete Simulation, edited by F. Quaglia, A. Pellegrini,
and G. K. Theodoropoulos. 101-104. Ney York, NY. USA: Association for Computing Machinery.

Franceschini, R., P. A. Bisgambiglia, and P. Bisgambiglia. 2015. "A Comparative Study of Pending Event Set Implementations for

PDEVS Simulation" In Proceedings of the Symposium on Theory of Modeling & Simulation: DEVS Integrative M&S

Symposium, edited by F. Barros, M. H. Wang, H. Prähofer, and X. Hu. 77-84. San Diego, CA: USA: Society for Computer
Simulation International.

Glinsky, E. and G. Wainer. 2002. Definition of Real-Time simulation in the CD++ toolkit. In Proceedings of 2002 Summer

Computer Simulation Conference. San Diego, CA: USA: Society for Computer Simulation International.

Himmelspach,, J. and A. M. Uhrmacher. 2007. "The Event Queue Problem and PDEVS." In Proceedings of the 2007 Spring
Simulation Multiconference - Volume 2, edited by M. J. Ades. 257-264. San Diego, CA: USA: Society for Computer

Simulation International.

Nutaro J. 2019. “Chapter 14 - Parallel and Distributed Discrete Event Simulation” in Theory of Modeling and Simulation. 3rd edition,

edited by B. P. Zeigler, A. Muzy and E. Kofman. 339 – 372. San Diego, CA, USA: Academic Press.
Tang W. T., Goh R. S. M., and Thng I. L. 2005. Ladder Queue: An O(1) Priority Queue Structure for Large-Scale Discrete Event

Simulation. ACM Transactions on Modeling and Computer Simulation 15(3):175–204.

Wainer G., E. Glinsky, and M. Gutierrez-Alcaraz. 2011. Studying performance of DEVS modeling and simulation environments

using the DEVStone benchmark. SIMULATION 87(7):555-580.
Zeigler, B. P., H. Praehofer, and T. Kim. 2000. Theory of Modeling and Simulation. 2nd ed. Orlando, FL, USA: Academic Press,

Inc.

AUTHOR BIOGRAPHIES

GUILLERMO G. TRABES is a Ph.D. student in Electrical and Computer Engineering (Carleton University) and Computer

Science (Universidad Nacional de San Luis). His email address is guillermotrabes@sce.carleton.ca.

VERONICA GIL COSTA is a former researcher at Yahoo! Labs Santiago hosted by the University of Chile. She is currently an

associate professor at the University of San Luis and researcher at the National Research Council (CONICET) of Argentina. Her

email address is gvcosta@unsl.edu.ar.

GABRIEL A. WAINER is Professor at the Department of Systems and Computer Engineering at Carleton University. He is a

Fellow of the Society for Modeling and Simulation International (SCS). His email address is gwainer@sce.carleton.ca.

https://dblp.org/pid/q/FrancescoQuaglia.html
https://dblp.org/pid/15/2894.html
https://dblp.org/pid/51/7514-1.html
https://dl.acm.org/profile/81100254514
mailto:gwainer@sce.carleton.ca

