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ABSTRACT

Multi-Paradigm Modeling (MPM) advocates to explicitly model every part and aspect of a system, at the
most appropriate level(s) of abstraction, using most appropriate formalism(s). We show, starting from a
representative Personalized Rapid Transportation rail car example, how MPM naturally leads to the need to
combine formalisms. To give these formalisms a precise semantics and to make them executable, we choose
to map them all onto behaviorally equivalent (modulo some level of approximation in the case of continuous
formalisms) Discrete EVent system Specification (DEVS) models. Our focus and main contribution is the
principled combination TFSA>(CBD+StEL) of Timed Finite State Automata (TFSA) and Causal Block
Diagrams (CBDs) using a State Event Location “glue” formalism StEL, and their mapping onto DEVS.
The result of our principled workflow, explicitly modeled in a Formalism Transformation Graph + Process
Model (FTG+PM) is an accurate and efficient simulator. This is demonstrated on the rail car case.

1 INTRODUCTION AND EXAMPLE PROBLEM

To set the stage for our contribution, we consider the behaviour of a simplified Personalized Rapid
Transportation (PRT) (Buchanan et al. 2005) rail car, traveling along a single track from an origin to a
destination station.

The Environment in which the rail car System under Study (SuS) operates consists of passengers
arriving at the origin station with an Inter-Arrival Time (IAT) uniformly distributed in [0, IATMAX(= 10)]s.
Passengers can board one by one (as the car doors are narrow) as long as the car has not yet departed.
Boarding takes 5 seconds per passenger. If either the car has departed or other passengers are waiting to
get on or are getting on the train, passengers have to queue inside the station.

The car has a capacity of MAX(= 10) passengers. Once all passengers have boarded, the origin station
is notified (so no more passengers are allowed to board) and the car starts up during 5 seconds. This
includes, i.e., powering up the engine, making departure announcements, and closing the doors. The car
then departs for its destination. A bang-bang controller (also known as an on-off controller) regulates the
car’s velocity v. Initially in the on mode, the controller instructs the car’s engine to accelerate until the
car reaches the maximum allowed speed vmax(= 30 km/h). The controller then switches to off mode,
letting the car coast. Due to air resistance and wheel friction, the rail car will decelerate. When the speed
drops below vmin(= 24 km/h), the controller switches back to the on mode. The alternation between on
(accelerating) and off (decelerating) modes continues until the car reaches position xstop(= 2.8 km). It then
starts braking to come to a standstill at the destination station. Once arrived, passengers leave the car one
by one, every 5 seconds.

We wish to model and simulate the behaviour of the rail car: the position x, velocity v of the car as
well as the number of passengers on board, over time. The upper part of Figure 1 shows the velocity v
(solid red line, left axis) and the number of passengers (blue dot-dashed line, right axis). The lower part

978-1-6654-3311-2/21/$31.00 ©2021 IEEE



Paredis, Denil, and Vangheluwe

of that same figure traces the mode changes of the car’s movement (left axis) and of its passengers (right
axis).

Figure 1: Rail car dynamics.

Starting from the above specification, we now want to model the system. Following Multi-Paradigm
Modeling (MPM) (Mosterman and Vangheluwe 2004) principles, each part and aspect of the system’s
structure and behaviour should be modeled using at the most appropriate level(s) of abstraction, using the
most appropriate formalism(s) (also known as modeling language(s)). As is often the case, this will lead
to a multi-formalism model.

In the following, the (sub-)models and their formalisms will be informally introduced. In section 3, a
precise semantics will be given to these formalisms as well as to their combinations by mapping onto the
Discrete EVent system Specification (DEVS) (Zeigler et al. 2000) formalism.

Figure 2 shows a hierarchical model of the rail car system and its environment following its earlier
informal description. The boxes represent model instances. The notation “modelName:Formalism” (in
the top left of the boxes) is used to specify the formalism the model is specified in. At the top level of
the hierarchy, the causal Network formalism is used to describe the connectivity of individual components
Boxes have input (black triangles) and output ports (white triangles) and the directed connections between
them denote interaction/communication “channels”. The total state set of a network is the cross product
of all total state sets of each of its components.
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Figure 2: Passenger arrival and rail car dynamics multi-formalism model.

The arrival of the passengers on the platform in the origin station is most naturally modeled using a
Process Interaction Discrete Event (PI-DEV) World View modeling language such as GPSS (Overstreet
and Nance 2004).

The rail car’s number of passengers and its movement are mostly independent. We modularly separate
these concerns, each using a most appropriate formalism.

The evolving number of passengers in the rail car can be elegantly described using a Timed Finite State
Automaton (TFSA). A TFSA consists of multiple distinct states or modes (represented by roundangles in
this paper) and transitions (arrowed connections) between them. A transition is labeled with three (optional)
parts: a guard (between square brackets, denoting a condition that must be satisfied), an input (the event
that triggers the state change) and an output (output events to broadcast or action code to execute when this
transition is taken). The input event is either a normal event (when it’s a word), a delayed event (when using
“after”), or a crossing through a state variable that requires state-event location (when either ↗ or ↘
is present). passengers:TFSA starts in BOARDING mode with the number of passengers initialized
to 0. Each time a new pass event is received from the arrival process, passengers is increased, until
MAX is reached. This brings passengers:TFSA in the ON BOARD mode. When the train arrives at its
destination, the movement sub-model sends an arrived event. This causes a transition to the EXITING
mode during which passengers is decremented every 5 seconds until no passengers are left.

The movement of the car is best expressed in a hybrid (discrete-continuous) formalism (Nilsson et al.
2003). Hybrid formalisms are typically used, either because not enough details of the physics of a system
are known to construct a fully continuous model, and time-scale and/or parameter abstractions need to
be used, or to increase simulation performance. The continuous behaviour of the rail car is naturally
described using a set of Ordinary Differential Equations (ODEs) obtained from Newton’s Second Law of
Motion. The continuous behaviour changes depending on which of three distinct movement modes the
car is in: ACCELERATING, DECELERATING, or BRAKING. For the remaining states PRE DEPART,
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STARTING, and ARRIVED, we refer to the earlier description of the movement. The discrete changes
between these modes can again be described in the TFSA formalism. In each of these modes, an ODE model
is embedded describing the laws governing the movement of the car while in that mode. The resulting
hybrid formalism is TFSA>ODE. The “>” identifies the direction of embedding: ODE is embedded
in TFSA. The trigger to transition from one continuous mode to another is done by monitoring (some
function of) the variables in that continuous mode. When such a monitored variable crosses a threshold
in a particular direction (e.g., from below), this generates a state event. This is the trigger for the mode
transition. Such monitors are described in a State Event Location (StEL) formalism. The hybrid formalism
is thus really TFSA>(ODE+StEL). When entering a new mode, the ODE embedded in that mode needs
to be (re-)initialized. This is done based on the values of the variables in the old mode at the time of the
state event. The behaviour traces of such a hybrid model are piecewise continuous.

Note that in our Network models, we do not consider direct connections between ODE sub-models.
This leads to a co-simulation (Gomes et al. 2018; Gomes et al. 2019) problem for which solutions exist.

In the rest of this paper, Section 2 introduces the DEVS (Discrete-EVent systems Specification) and CBD
(Causal Block Diagram) formalisms used as building blocks later on. Section 3 subsequently describes a
workflow combining different model transformations to transform hybrid models in the TFSA>(ODE+StEL)
formalism to a single hierarchical DEVS model. Section 4 presents some related work. Section 5 concludes
the paper and outlines avenues of future work.

2 BACKGROUND

This section briefly introduces the two main formalisms Causal-Block Diagrams (CBDs) and DEVS used
later on to construct the hybrid formalism TFSA>(CT-CBD+StEL).

2.1 DEVS

DEVS (Zeigler et al. 2000) is a modular discrete-event formalism introduced by Bernard Zeigler in
the ’70s. It consists of basic components, called atomic DEVS, which have the following structure:
〈X ,Y,S,δint ,δext ,λ , ta〉. Here, the input set X denotes the set of admissible input events of the model
and output set Y denotes the same for the output events. When properly structured, X and Y describe a
collection of ports through which a model sends or receives events. S is the state set and indicates the set
of sequential states of the model. The internal transition function δint : S→ S specifies the state the system
transitions to after ta time, unless when interrupted before. The time advance function ta : S→ R+

0,+∞

specifies how long the system remains in a state, before δint takes it to the next sequential state. Prior
to the application of δint , the output function λ : S→ Y is called, specifying the output event that is to
be produced. The external transition function δext : Q×X → S, where Q = {(s,e)|s ∈ S,0≤ e≤ ta(s)} is
called when an external input (i.e., an interrupt) arrives.

Multiple DEVS models can be combined into a network structure. Such a coupled DEVS is fully
characterized by ∆ = 〈X∆,Y∆ D,Mi, Ii,Zi, j,select〉. Similar to atomic DEVS, X∆ and Y∆ denote the in-
and output sets of the network. The set of component references is denoted by D, where Mi identifies
the DEVS model component i,∀i ∈ D. Ii is the set of influencees of component i,∀i ∈ D∪{∆} (with
i /∈ Ii). I fully specifies the connection topology of a coupled model. The transfer function Zi, j is defined
∀i ∈ D∪{∆}, j ∈ Ii as Z∆, j: X∆→ X j; Zi,∆: Yi→ Y∆; and Zi, j: Yi→ X j. It serves to translate events as they
travel along network connections. Finally, select : 2D→ D is the select function that allows the selection
of a single component i ∈ D multiple models in the network are simultaneously imminent (i.e., they are
due to transition at the same time). As DEVS is closed under coupling, coupled DEVS models may be
nested to any arbitrary depth.
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2.2 Causal-Block Diagrams (CBDs)

A system that consists of multiple interacting components is naturally modelled using “boxes and arrows”,
which may be hierarchically composed. This is a common notation used in many different domains,
including schematic system overviews and electrical circuit modeling (Åström et al. 1998). Causal-Block
Diagrams (CBDs) (Gomes et al. 2020) is a formalism which specializes the box-and-arrow notation. The
arrows denote signals and the boxes represent mathematical operations over the input signals, producing
an output signal. The denotational semantics of a CBD with continuous time base (R) is the corresponding
set of Algebraic, Ordinary Differential, or Differential Algebraic Equations (and ultimately, the signals,
continuous functions of time, that satisfy the constraints imposed by these equations). As such, ODE and
CBDs can be transformed into each other without loss of information. Time-discretization leads to an
approximation, but does allow for iterative simulation. To simulate a discretized CBD model, two nested
loops are used. In the outer loop, a stepping variable k is started at 0 and increased for every iteration
of the loop. In-between k and k+ 1, a time-delay hk ∈ R is used to advance the simulated time. The
simulation finished when some termination condition (a function of current simulation time ∑

k
i=0 ki and/or

state variables) becomes true. When hk is independent of k, the simulation is said to have a fixed step
size. The smaller hk, the better the numerical simulation results will approximate the continuous solution.
Adaptive step size algorithms vary hk throughout the simulation, to keep the stepwize approximation error
within given bounds. A commonly used adaptive step size discretization is the fourth-order Runge-Kutta
Fehlberg method (RKF45). The difference between the fourth and fifth order approximations is used as
an estimate for the stepwize error.

The inner loop focuses on the computation of an output signal for a given iteration k. Here, a schedule
is defined, determining the order in which the blocks of the model will be traversed. This schedule is
typically based on the topological order of the dependency graph of the model, making sure a block is
only visited once all its dependencies have been computed. Each block has their own definition of what
this “computation” may entail. For instance, the adder block will output the sum of all its inputs.

An algebraic loop occurs when there is a cycle in the dependency graph. The strong components,
i.e., all blocks belonging the algebraic loop, should therefore be computed as a whole. It’s possible to
distinguish two methods for solving a strong component:

1. The blocks are converted to a system of equations, such that a (non-)linear solver is able to find
a solution for the system. For instance, when these equations are all linear, the Gauss-Jordan
Elimination (GJE) algorithm can be used.

2. Tearing the algebraic loop. Some connections in the strong component are broken and replaced by
initial guesses for the values that are supposed to be signaled over the connection. When this torn
loop has found a solution, the initial guesses are replaced by this solution and the loop is computed
again. This small algorithm is executed until convergence.

7 OUT1 ∏ OUT1
IN1

IN2

∑ OUT1
IN1

IN2

3 OUT1 - OUT1IN1

Figure 3: CBD model with algebraic loop.

In Figure 3, a simple CBD model is shown, repre-
senting the algebraic equation x = 7x− 3. See Table 1
for an overview of the used blocks and their meanings.
The inner loop will compute 7, 3 and the negation of 3
(= −3), before arriving at the algebraic loop containing
the Product block and the Adder block. As the equation
is linear, GJE can be used to find x = 0.5.

Continuous-time blocks Integrator and Derivative
will be symbolically expanded based on some discretiza-
tion schema when they appear in a CBD model. If the

step size is fixed, these blocks can be replaced by a hierarchical block, containing Delay and algebraic
blocks. The Delay block has two inputs (IC and IN1) and a single output (OUT1). For iteration k, the
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Table 1: CBD block syntax and meaning for the blocks used in this paper. Italic text identifies the shape’s
description.

Symbol / Description Name Meaning
value in circle Constant Outputs a constant value

small black triangle Input Takes an external input value
small white triangle Output Produces an external output value
− (triangle) Negator Negates the input

∑ Sum Adds both input values
∏ Product Multiplies both input values∫

(triangle with box) Integrator Computes the integral of the input signal over time
clock Delta Outputs the hk value

signal on OUT1 will however always be the signal that arrived on IN1 in iteration k−1. Only when k = 0,
OUT1 will output the obtained input from IC. It can be assumed that computations from past iterations
are known in future iterations, giving the Delay block the unique property of being able to “break” an
algebraic loop by partially delaying it until the next iteration.

IntegratorBlock

0 OUT1

D OUT1
IC

IN1

D OUT1
IC

IN1

∏ OUT1
IN1

IN2

∑ OUT1
IN1

IN2

IN1
delta_t

IC OUT1

Figure 4: Symbolic fixed step size approxi-
mation expansion for the Integrator block.

When the model uses an adaptive step size, specifically
RKF45, the original model will be transformed. The set of
blocks required to obtain the integration/derivation result(s)
will be extracted as a custom function block f, which
is to be used and computed at multiple positions in the
transformed model. Figure 4 shows the symbolic expansion
for the Integrator block using a fixed step size backwards
difference discretization.

3 FORMALISM TRANSFORMATIONS AND A
HYBRID FORMALISM

As discussed in (Vangheluwe 2000), the DEVS formalism
is a “common denominator” onto which all discrete-time
and discrete-event formalisms can be mapped. If a dis-
cretization or quantization step is introduced, continuous
formalisms can also be mapped onto DEVS, albeit resulting in an approximation of the mathematical
semantics. The following will present translations onto DEVS for each of the modeling formalisms used
in Figure 2. This gives a precise and executable (by means of a DEVS simulator) semantics to these
informally introduced formalisms.

TFSA to DEVS A Timed Finite State Automaton (TFSA) adds time to Finite State Automata.
The mapping onto an atomic DEVS is straightforward. TFSA time delays are encoded in the DEVS
time advance function. The timed transitions are translated to the DEVS internal transition function and
incoming events are translated to the DEVS external transition function.

PI-DEV to DEVS (Paredis et al. 2020) presented a translation procedure GPSS2DEVS from models
in the process interaction discrete-event (PI-DEV) language GPSS to a behaviorally equivalent model
in DEVS. As the passengerArrival process is very simple, and as the focus of this paper is the hybrid
language combining TFSA and CBD, we avoid the overhead of translation and directly build a coupled
DEVS model composed of a generator and a queue atomic DEVS model.
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Hybrid Formalisms For hybrid formalisms, to fully benefit from the simplicity of the previously
mentioned translations, a translation workflow is provided. Hence, in Figure 5, a Formalism Transformation
Graph and Process Model (FTG+PM) (Mustafiz et al. 2012) for the construction of a hybrid DEVS model
from a system description is shown. Manual activities are annotated with a “person” icon. All other activities
are automated. The System Modeling activity uses the given requirements to obtain a TFSA>ODE. This

Workflow

System Modeling

Requirements

System Model

ODE Extraction

Logic Model Dynamic
Description

CBD Modeling

CBD Encapsulation

Dynamic
Model(s)

Encapsulated
Dynamic Model(s)

Set of 
Zero Crossings

TFSA to DEVS

Coordinator

DEVS Composition 

Hybrid Model

CBD Optimization

Optimized 
Dynamic Model(s)

Free Text
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Modeling
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ODE
Extraction

TFSA Collection of
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Collection of
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TFSA 
to DEVS

CBD
Modeling

CBD
Optimization

Annotated CT-
CBD

CBD
Encapsulation

Annotated CT-
CBD

DEVS

Atomic DEVS

Coupled DEVS

DEVS
Composition

Figure 5: FTG+PM for constructing the DEVS model.

model should fully describe the required components of the system (aspect(s)) under study. In the ODE
Extraction activity, all ODE states will be converted into empty states, storing the set of equations of the
ODE state in an external, yet linked component. Additionally, the StEL description will also be extracted,
allowing it to be converted to an event. What remains is a normal TFSA, with explicit links to external
ODEs and the corresponding StEL units. This TFSA can easily be translated to an atomic DEVS model,
yielding a coordinator model. The CBD Modeling activity converts all external ODE components to CBD
models, which can be optimized and/or simplified by the CBD Optimization activity. These optimizations
can (but don’t have to) include: RK preprocessing (converts a fixed step size CBD model into an adaptive
step size model, using Runge-Kutta), constant folding, peephole optimizations...

The CBD Encapsulation activity does not translate the CBD model to a semantically equivalent DEVS
model, but rather embeds a CBD simulator in an atomic DEVS model, ensuring the StEL events can be
fired. This embedding allows debugging and traceability of the underlying CBD model, as well as state
event location.

The resulting DEVS models are combined in the DEVS Composition activity, as graphically illustrated
in Figure 6. Overlined (port) notations identify a (possibly empty) collection of signals/events. The
embedded models continuously output the set of computed variables v and send them to the coordinator.
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coordinator:
DEVScrossing1

pause1 crossing2

pause2

ODE1:
DEVS

stop

ODEn:
DEVS

stop

Figure 6: Generic structure of a DEVS model obtained
from a hybrid TFSA>(ODE+StEL) model.

In the TFSA>(ODE+StEL), a specific set
of equations was only required to be ex-
ecuted in a specific state. Hence, based
on the internal state of the coordinator,
a specific subset of all encapsulated CBD
models may be (re)started, while all others
must be stopped.

3.1 Embedding CBDs In DEVS

Instead of extracting the ODE from the
CBD and translating it to DEVS (which
is perfectly possible due to the relationship
between CBD and ODE), the choice was
made to embed (or encapsulate) the CBD
model and its corresponding simulator inside a DEVS model. While computationally less efficient, the
internal block structure is maintained and can be used for debugging purposes and traceability. Therefore,
this section describes how a CBD simulator can be embedded in an atomic DEVS model w.r.t. the original
CBD model.

The generic structure of a CBD block, compared to a DEVS model is mostly similar. Both have a set
of in- and output ports and an internal state. For CBDs, this state is at least the current iteration index k,
(a copy of) the original CBD model (executed up to k) and the corresponding simulation unit.

For CBDs, all iterations k take a certain time hk to execute. Because of the high correlation with DEVS’
ta function, it is useful to ensure ta matches hk. However, every iteration can be split into three stages.
The waiting stage introduces the required delay hk into the system, whereas the computation stage does
the actual computation of the CBD simulation at iteration k. Here it becomes clear the CBD simulator will
be embedded as a whole in a single atomic DEVS. Finally, there is the output stage that has to follow the
computation stage, because it outputs the computed values. Within CBDs, this separation is not entirely
necessary, however the DEVS semantics dictate λ to happen before δint . Hence, the encompassing atomic
DEVS needs to sequentially iterate through these stages for every iteration. Therefore, ta becomes 0 for
the computation and the output stage, but it equals hk in the waiting stage. This stage information will
also be added to the state of the encapsulating DEVS model.

A major difference between CBD and DEVS is that CBD makes use of signals, but DEVS uses events.
Signals exist in the continuous world and are indicative of a data flow. Events, however, are a discrete
notification to another unit of the system. While in a different world, the zero-order hold principle allows
for a semantic adaptation between the discrete world and the continuous world. This makes the logic for
the outputs Y simple: whenever the DEVS model is in the output stage, Y equals the last computation of
the output signals of the CBD model. In all other stages, λ will not output anything.

The inputs X require more effort. Since the hk will mostly be hidden for external DEVS models, it
is impossible to pinpoint whenever the encompassing DEVS model requires an input. By changing the
input ports in the CBD model to Constant Blocks (i.e., blocks that output a constant value), the inputs
can also follow the zero-order hold logic. If an event is now received by the encompassing DEVS model,
the values of these Constant Blocks will be changed to the new values.

Unfortunately, this technique does not work if the input represents an initial condition for the CBD
model. Receiving such a value should terminate the simulation and restart it with the new initial values.
Luckily, when the input is not an initial condition, the stop/restart logic can still be applied, under the
assumption that the simulation clock will be given a (new) start time. Hence, when firing δext , the CBD
simulation will be terminated, all values of the Constant Blocks will be altered (w.r.t. X) and the simulation
will be restarted from the current time.
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To validly (re)start a CBD simulation, it is therefore pertinent for the coordinator to send a valid set
of initial conditions. They can be sent to a specific CBD model, or to all CBD models at once. However,
because this information is sent through multiple connections per model (one for each initial condition),
it is perfectly viable to only alter a subset of the required initial conditions.

3.1.1 State Event Location

The heart and soul of hybrid modeling is State Event Location (or zero-crossing detection). A StEL of
f (u) through y can be written in the TFSA>(ODE+StEL) as f (u) ↗ y or f (u) ↘ y. By adding an output
z for f (u) to the CBD model, the encompassing DEVS model only needs to keep track of a crossing for
z through y. Multiple algorithms and numerical techniques exist to obtain the exact point of crossing tc.
When this point is found, the system should rewind to tc.

The DEVS formalism does not allow ta < 0, hence the problem should be solved within the CBD
simulator. While hk may be negative, this does not undo the values stored in memory blocks (e.g., a delayed
signal). Hence, the CBD simulator is given an undo operation that also rewinds all memory values. The
problem has looped back onto itself: the encompassing DEVS model needs to apply the undo operation
when the CBD model has experienced a crossing in the past.

The three stages mentioned before can happen in two ways:

Falling Edge indicates the order waiting stage, computation stage, output stage.
Rising Edge indicates the order computation stage, waiting stage, output stage.

While the Falling Edge order is the usual sequence in CBD contexts, both are semantically equivalent
(due to the output stage being executed at the same time). When the Rising Edge stage order is used, the
encapsulating DEVS model has information of the future signal before the DEVS clock has advanced.
This allows the prediction of a future zero-crossing. Therefore, at time tk, in the waiting stage, ta becomes
min(hk, tc− tk). Additionally, the internal CBD clock also needs to use tc− tk if a crossing happened. This
was done by altering the original model, such that min(hk, tc− tk) is also used as to compute the new hk.

When multiple signals y1,y2,y3... experience a crossing, respectively at tc,1, tc,2, tc,3..., a conservative
approach can be used, i.e., the smallest tc,i-value is used as tc. This ensures the system to raise an event
for all crossings.

In Figure 6, whenever a state event z (∈ z) occurs, this signal will therefore also be sent to the coordinator,
who will output the last obtained v as new initial conditions u.

3.2 Framework

A CBD simulator (and framework) has been created in Python, based on some of the provided features
available in Python(P)DEVS (Van Tendeloo and Vangheluwe 2015). It provides (soft) real-time simulation,
as-fast-as possible simulation, interaction with a user-defined gameloop and coordination w.r.t. the tkinter
mainloop. CBD models can be constructed using the www.diagrams.net graphical interface, flattened,
simplified (e.g., constant folding, peephole optimizations...) and converted to (and from) textual equations
(i.e., LATEX, including a step-by-step solution for educational purposes). Additionally, a set of widely used
building blocks is included, as well as a converter that implements the proposed embedding of CBD models
in Python(P)DEVS.

3.2.1 Adaptive Step Size

To allow for full flexibility, adaptive step size will be implemented by preprocessing the original CBD model
and transforming it into a semantically equivalent CBD model. Internally, the required set of formulas
will be constructed. Specifically for the Runge-Kutta algorithm, it is required to evaluate a function f

www.diagrams.net
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at a specific time tn and (set of) value(s) (yn). By identifying and constructing a reusable f block from
the source CBD model, the function can be obtained. It computes the result of the IVP at tn and yn.

adaptedModel: CBD

🕐
h

deltaOUT1

D
OUT1 IC

IN1

OUT1

Figure 7: Generic top-level CBD
model after Runge-Kutta preprocess-
ing.

Hence, the model will be pre-processed and converted to
a structure that is shown generically in Figure 7. The RK
block is the implementation of the Runge-Kutta formulas, for
a given Butcher Tableau, using the f block. Equations 1-3 that
provide the results for the RK block, will also be computed using
CBD. Due to space constraints, their graphical representations
were excluded from this paper. The preprocessed CBD model
provides an q-th order approximation of the initial model and
alters the CBD clock to allow for adaptive step sizes.

ỹn+1 = ỹn +
s

∑
i=1

biki (1)

ks = h · f

(
tn + cs ·h,yn +

s−1

∑
i=1

as,iki

)
(2)

hnew = h · clamp

S ·

(
ε ·h

|ỹ(q+1)
n+1 − ỹ(q)n+1|

)1
q
,0.1,4.0

 (3)

3.3 PRT Example

Returning to the PRT rail car example, the previously described techniques can be used to obtain a coupled
DEVS model, shown in Figure 8. The simulation traces obtained on that model using our Python(P)DEVS
simulator were shown in Figure 1.
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Figure 8: The resulting DEVS model. Distance detection is not shown for readability.
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4 RELATED WORK

This paper applies Multi-Paradigm Modeling (Mosterman and Vangheluwe 2004), which advocates explicitly
modeling all relevant parts and aspects of a system at the most appropriate level(s) of abstraction, using
the most appropriate modeling language(s).

In (Borland and Vangheluwe 2003) and in (Shaikh and Vangheluwe 2011), a translation from Stat-
eCharts onto DEVS has been attempted. Similarly, in (Paredis, Van Mierlo, and Vangheluwe 2020) a
mapping from GPSS onto DEVS was proposed. All these built on the same concept of DEVS being a
“common denominator” for numerous modeling languages (Vangheluwe 2000), to which this paper also
contributes.

PowerDEVS (Bergero and Kofman 2011) was created to support hybrid system modeling in DEVS.
(D’Abreu and Wainer 2005), introduces M/CD++ for modeling and simulating continuous/hybrid systems,
based on DEVS and Modelica by using quantization. A similar technique is used in (Bergero et al. 2013)
in the discussion of DEVS parallelization of hybrid systems.

MECSYCO (Camus et al. 2018) is a co-simulation middleware that can be used to co-simulate CBD
models using DEVS. They also use an embedding technique for mapping onto DEVS, however focusing
on co-simulation and not on hybrid system modeling.

Furthermore, in (Nilsson et al. 2003), non-causal hybrid models are discussed within the context of
functional modeling.

5 CONCLUSION AND FUTURE WORK

This paper has shown, starting from a representative rail car example, how Multi-Paradigm Modeling
leads to the need to combine formalisms. To give these formalisms a precise semantics and to make them
executable, we choose to map them all onto behaviorally equivalent (modulo some level of approximation
in the case of continuous formalisms) DEVS models. Our focus and main contribution is the principled
combination TFSA>(CBD+StEL) of Timed Finite State Automata and Causal Block Diagrams using a
State Event Location “glue” formalism StEL and their mapping onto DEVS.

In the future, we plan to apply optimizations, in particular through symbolic manipulation of the CBD
models and their discretization. In our current work, we have focused on switching between continuous
models. In the future, we will combine this with interleaving, through co-simulation, of continuous models.
We will also allow for the generation and inclusion of FMI 2.0-compliant Functional Mockup Units (FMUs).
Finally, we plan to replace TFSA by the more expressive Statecharts formalism, also mapping the latter
onto DEVS.
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