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ABSTRACT 

This paper presents a natural language understanding (NLU) approach to transition a description of a 
phenomenon towards a simulation specification. As multidisciplinary endeavors using simulations increase, 
the need for teams to better communicate and make non-modelers active participants on the process 
increases. We focus on semi-automating the model conceptualization process towards the creation of a 
specification as it is one of the most challenging steps in collaborations. The approach relies on NLU 
processing of narratives, create a model that captures concepts and relationships, and finally provide a 
specification of a simulation implementation. An initial definition set and grammatical rules are proposed 
to formalize this process. These are followed by a Design of Experiments (DoE) to test the NLU model 
accuracy and a test case that generates Agent-Based Model (ABM) conceptualizations and specifications. 
We provide a discussion on the advantages and limitations of using NLUs for model conceptualization and 
specification processes.  

1 INTRODUCTION 

 “Anyone who ventures a projection or imagines how a social dynamic . . . would unfold is 
running some model,” (Epstein 2008). Epstein here suggests that everyone is capable of not only 
constructing a mental model but also simulating it (mentally) for prediction or explanation purposes. 
However, creating a computer-based model is a complicated task. In practice, problem stakeholders or 
domain experts (non-modelers) rely on rich descriptions or concept maps to capture concepts and their 
connections. The challenge is how to transition those mental maps to computer models. We need to both 
facilitate the learning process of modeling processes and facilitate the collaboration and engagement 
between domain experts and modelers.  

There are several stages and approaches to developing models and transitioning them to simulations. 
For example, reference models are proposed as an initial stage capturing representations of a referent while 
also documenting assumptions and constraints  (Tolk et al. 2013). At a specification stage of model 
development, modeling practitioners borrow the Unified Modeling Language (UML), for instance, to 
capture and communicate a conceptual model (Guizzardi and Wagner 2012; Reinhartz-Berger 2005). Both 
approaches, we argue, fall under engineering solutions not designed to support the elicitation, expression, 
and communication of models among multi-discipline teams. Furthermore, they are difficult to develop 
(Thalheim 2009). 

Additionally, model development, and more importantly model communication, varies across domains 
and team structures. Describing models in the engineering or natural science disciplines/teams are typically 
based on observable systems/phenomena and identifiable/measurable variables grounded in quantitative 
observations or existing models. Describing a problem situation in an interdisciplinary effort  requires more 
space for nuance, with domain experts in these activities likely unfamiliar with engineering-based 
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languages and tools or engineers unfamiliar with the approaches used by domain experts on the team. 
Communicating and characterizing a problem is indeed difficult in multi-domain efforts as participants 
describe their personal view of some phenomenon. Furthermore, moving from a problem description to a 
simulation introduces many transitions where context is lost and semantics degrade due to ambiguous 
interpretations among domain and modeling experts. Lastly, efforts to show how simulation models can 
represent phenomena often get lost in technical details frustrating and limiting domain expert participation.  

The state of the art in computer modeling focuses on various stages of model development; often 
concentrating on the simulation-creation stages. The goal of this research is to start a discussion on how we 
can bridge the divide between domain experts and modelers in the process of creating simulation models. 
The approach proposes the elicitation of narratives and discussions in natural language between domain 
experts and modelers and the usage of natural language processing to identify components of a model. The 
team members will then transition to a model specification forgoing engineering-specific languages and 
tools. 

2 BACKGROUND 

Model development is an iterative process that often takes place between non-modelers (people interested 
in a modeling solution) and modelers (people providing a modeling solution). In this process, competing 
worldviews, knowledge level, and means of expression lead to ambiguous interpretations and frustrations 
among participants resulting in breaks in communication and engagement. Domain experts have diverse 
forms of expression characterized by variations in semantic depth and worldviews that compete with the 
modeling specialist’s interpretation of these expressions and methods. It is the modeling specialist that is 
required to interpret the expert’s expressed perception in order to facilitate model development. 
Unfortunately, this introduces the potential for ambiguities and inconsistencies that must be resolved in 
order to ensure models fulfill their objectives and the team is not decimated. We posit that natural language 
processing-based tools can bridge the gap by allowing non-modelers to create model conceptualizations 
and specifications. NLU/NLP models will make them active participants in a stage of the computer 
modeling process where they currently do not have the specialized training and expertise. 

Natural Language Processing (NLP) primarily deals with how patterns in a corpora “reveal the syntactic 
structure of language” (Manning and Schutze 1999). A set of algorithms that make up NLP capabilities 
convert unstructured text to structured text. NLP uses machine learning (ML) to perform a variety of 
functions such as parsing sentences into individual parts of speech, examining the root form of words, and 
identifying named entities. NLU, a subset of NLP, refers to “semantic processing” resulting in a “deeper 
representation” (Barriere 2016). This is in contrast to traditional NLP approaches as NLU enables the 
identification of relationships among concepts and capture meaning. Recent approaches have invested in 
neural networks and deep learning as a shift away from traditional statistical approaches that focus on 
modeling of word sequences in a language to learning the distribution of words and determining sequence 
probability (Torfi et al. 2020). 

Figure 1 illustrates the transitions from a description of a phenomenon to simulation specification. A 
narrative captures a description of the phenomenon. An NLU model converts the narrative to a collection 
concepts and relationships, which captures a model conceptualization. A model specification is then formed 
from this conceptualization, or from the narrative itself. 

 
Figure 1: Moving from phenomenon description to model specification. 
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3  DEFINITIONS 

To transition from narrative to conceptualization and specification, we need to define these terms. Let us 
consider that concepts and relationships are the two narrative elements required to create a model 
conceptualization. A concept is either an actor, a factor, or a mechanism that is relevant to the phenomenon 
of interest. Actors represent entities performing a function or are otherwise impacted by another object or 
entity. Factors are variables, and mechanisms represent action or an effect. Lastly, relationships are directed 
associations between concepts. A set of definitions is provided to guide the NLU annotation and model 
development process, but more importantly to explain the transition from descriptive narratives to model 
specification. It is important to note that the conceptualization and specification provided in this paper is 
focused on ABM. However, the process is extensible to other paradigms.  
 
Definition 1 Conceptualization (of a model) represents a collection of concepts and relationships. Concepts 
are categorized into actors, factors, or mechanisms. The following partial function, adapted from Diallo 
(2010), formally represents the concepts of a conceptualization. 
 

 𝐹(𝑆) = &
𝛺 if 𝑆	is an actor
Π if 𝑆	is a factor

𝛭 if 𝑆	is a mechanism
 (1) 

 
Individual concepts are defined as 𝜔 ∈ 𝛺 , 𝜋 ∈ Π , and 𝜇 ∈ 𝛭, which states that each concept is an 

element within a set of actors, factors, or mechanisms. 
 

Definition 2 If 𝑠! , 𝑠" ∈ 𝑆, then 𝐺2𝑠! , 𝑠"3 is a directed relationship between two concepts. The directed 
relationship is a non-commutative binary relation; in other words, 𝐺(𝑠#, 𝑠$) ≠ 𝐺(𝑠$, 𝑠#) . These nine 
constraints require that an actor, factor, or mechanism modify another actor, factor, or a mechanism. A 
mechanism may either be affected by an actor or have an effect on an actor, but a mechanism cannot be 
executed by an factor. Lastly, an actor may have an influence over another actor or have some other 
association or dependency. 

 

 
G(𝜔, 𝜋) G(𝜔, 𝜇) 𝐺2𝜔! , 𝜔"3
G(𝜋, 𝜔) G(𝜋, 𝜇) 𝐺2𝜋! , 𝜋"3
G(𝜇, 𝜔) G(𝜇, 𝜋) 𝐺2𝜇! , 𝜇"3

					 (2) 

 
For example, a sheep (actor) will consume (mechanism) grass (actor) resulting in an increase in energy 

(factor). The directional relationship is from sheep to consume and from consume to grass. Sheep is 
described by the factor, energy. 
 
Definition 3 A narrative contains nouns, verbs, and modifiers. ℕ represents the set of nouns; 𝕍	is the set of 
verbs; and 𝔸	is the set of modifiers, which are either adjectives and adverbs. Therefore, the set of these 
narrative elements are represented by 
 

 
𝑛 ∈ ℕ
𝑣 ∈ 𝕍
𝑎 ∈ 𝔸

. (3) 

 
Nouns that refer to entities considered performers and places are annotated as actors. Factors are 

quantitative or qualitative variables that describe, modify, or provide a value associated to an actor or 
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mechanism. Mechanisms are identified provided an action verb associated to an actor as a subject or object. 
Relationships are annotated if there is an explicit or easily inferred dependency.  

 
Definition 4 Specification (agent-based model), in the form of agents, attributes, and rules, is the 
implementation of actors, factors, and mechanisms. Agents, attributes, and rules follow the same syntactical 
rules described previously. Agents can be resolved from nouns, and attributes are either adjectives or 
adverbs as they describe a variable or characteristic of an agent. The following equations add additional 
constraints to the transition from model conceptualization to ABM components: agent, attribute, or rule. 
The intent here is to not remove concepts that fail the constraints but to facilitate completing the model 
specification.  
 
 𝜔! 	is an agent if	∃>𝑛!|𝐺2𝑛! , 𝑣"3⋁𝐺(𝑛! , 𝑎%)A (4) 

 
 𝜋! 	is an attribute if	∃>𝑎!|𝐺2𝑛" , 𝑎!3⋁𝐺(𝑣% , 𝑎!)A (5) 

 
 𝜇! 	is an rule if	∃>𝑣!|𝐺2𝑛" , 𝑣!3⋁𝐺2𝑣! , 𝑛"3⋁𝐺(𝑣! , 𝑎%)A (6) 

 
While this body of research is focused on ABM, Definition 4 can be generalized and applied to other 

modeling paradigms. Table 1 provides a non-exhaustive set of examples of how actors, factors, and 
mechanisms would be implemented in the ABM, Discrete Event Simulation (DES), and System Dynamics 
(SD) paradigms. 

Table 1: Relating concepts to paradigm-specific components. 

Concept ABM DES SD 
Actor Agent Entity Population 

Factor Attribute Rate Number 
Mechanism Rule Process Causality 

 

4 CLASSIFYING CONCEPTS FROM A NARRATIVE 

To understand how to train NLU models, and generate a conceptualization and a specification of a 
phenomenon via a narrative, we look into context-free and dependency-based grammatical structures as 
means to parse sentences. Chomsky (1956) proposed constituency grammar, or context-free grammar and 
phrase structures for parsing sentences. Constituency grammar simplifies a sentence into phrases such as 
noun phrases (NP), verb phrases (VP), adjective phrases (AdjP), and adverb phrases (AdvP) as shown in 
Figure 2. 

Figure 2: Example of a constituency grammar. 
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While efficient at providing a finite-state grammar, more nuance is needed for identifying and relating 
individual concepts. Hays (1964) proposes a dependency theory and explains impact of correspondence on 
ambiguity. His classical example phrase “they are flying planes” has two meanings. Either they correspond 
to flying planes, or they refers to a pilot flying a plane. The key determinant on deciding which connotation 
is relevant is whether are flying is a VP or flying planes is a NP.  

Dependency grammar also focuses on the relationships among terms (Nivre 2010). A directed graph 
can be formed such that an edge from node i to node j denotes wordj depends on wordi (Debusmann and 
Kuhlmann 2010), and dependency grammar’s reliance on directed associations make it well suited for 
customizing an ML model where directed relationships among concepts are desired. Constituency grammar 
offers a more layered approach and is not restrained in a one-to-one mapping, but lacks the detail and 
nuance needed. Dependency grammar is more efficient in developing structures. (Osborne 2019). An 
example of sentence parsing based on dependency grammar is shown in Figure 3. 

Figure 3: Example of a dependency grammar. 

Natural language is complex, inconsistent, and ambiguous (Chowdhary 2020). While one may be able 
to extract concepts and relationships solely on a prescriptive set of grammatical rules, ML models are able 
to do this automatically provided a model is sufficiently trained. ML, more specifically, NLU can facilitate 
the creation of a candidate knowledge graph directly from a narrative while maintaining a semantic 
commitment to the narrative. 

IBM’s Watson Knowledge Studio (WKS) is used in this body of research for training the NLU model 
in an iterative, semi-supervised approach. Even though WKS is proprietary and considered a black box, it 
was chosen given the simple user interface requiring little programming skills and rapid experiment 
execution. Figure 4 illustrates the pipeline for developing an NLU model.  

 

Figure 4: Corpus collection and NLU model development process. 

The first step in utilizing WKS is to define the types of concepts and relationships that one wishes to 
extract from a narrative. An initial corpus is then annotated manually so that an NLU model can be trained 
provided the annotated corpus and evaluated against an annotated test corpus. Once a model is trained, it 
may be used to pre-annotate additional documents reducing manual annotation. Upon using a bootstrapping 
approach, the results are manually inspected for accuracy and modified as needed following the dependency 
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grammar described previously. Additional narratives and subsequent annotations are added to the corpus 
incrementally until a desired accuracy is achieved. The model can be deployed so that it can be accessed 
and exercised outside the WKS environment through an application interface coded in Python, JAVA, etc. 

5 MODEL CONCEPTUALIZATION 

A model conceptualization, extracted from a narrative using an NLU model, is shown in Figure 5. It 
provides the computer annotated actors, factors, and mechanisms from a journal article excerpt on group 
problem solving (Carletti et al. 2020). Actors and factors are identified in addition to several types of 
relationships: hasFactor, partOf, and attenuatedBy. Capabilities is characterized by the adjective, problem-
solving, and problem-solving is qualitatively assigned and attenuated by the adverb, better. These factors 
describe actors in a qualitative sense, but factors can also include quantitative or empirical data. Other 
relationships include associations between actors and mechanisms and factors and mechanisms.  

 
Figure 5: Example actor, factor, and relationship annotations of a sentence. 

It is important to note that this conceptualization identifies actors, and corresponding factors and 
mechanisms, conceptualization and is meant to be independent of a modeling paradigm. The identification 
of concepts and relationships among concepts is the primary objective of this step. The way the relationships 
are expressed is important. For instance, from Figure 5 we can extract relationships between 
factors/mechanisms of the population. Group formation as a function of problem difficulty is one example 
of such relationship. In this case, we can infer that the more difficult the problem is the higher the likelihood 
groups are formed. In other cases, the identification of resources and waiting times would indicate a discrete 
event model. The identification of actor aggregation and/or high incidence of actors performing 
mechanisms may suggest an ABM would be most appropriate. It is important to reiterate that a model 
conceptualization is paradigm agnostic, and that in reality one or more paradigms may be utilized to 
transition a model conceptualization to model specification. In this body of research, we trained a NLU 
model to generate an ABM specification by recognizing agents, attributes, and rules. 

6 MODEL SPECIFICATION (AGENT-BASED MODEL) 

This approach extends the approach described by Padilla et al. (2019) where agents, attributes, and rules 
were extracted from a narrative, but the research did not address relationships between concepts. Further 
refinement is also achieved by following a more strict grammatical ruleset that dictates a more consistent 
corpus annotations for semi-supervised training.  

An agent is an individual unit or an aggregation of units. An attribute may describe a variable 
characteristic of an agent; it may provide an additional layer of characterization to another attribute; or it 
may describe a variable associated to a rule. Rules in ABM describe agent behaviors and interactions with 
other agents or the surrounding environment. For example, a person may be specified by their age and have 
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an affinity for other persons specified by the rule, congregation. A rule regarding reaction of a prey to a 
close predator may be specified by the speed of reaction. 

Table 2 lists several examples of each ABM component. These are simple descriptions of agents, 
attributes, and rules. By identifying and related ABM components to each other, we can arrive at a richer 
model specification. 

Table 2: Characterization of an ABM. 

ABM Component Examples 
Agent Person 

Animal 
Virus 
Environment 

Attribute Age 
Speed 
Size 

Rule Avoidance 
Cohesion 
Reaction 

  
A model specification can be represented in several ways. Upon processing a narrative and developing 

a model conceptualization, the concepts are transitioned to the appropriate paradigm. In this case, they 
become agents, attributes, and rules, these elements may be visualized as a graph of nodes and edges not 
unlike an ontology or concept map. This enables a visual check in an easy to read format and uncover 
relationship patterns that may be useful in accepting or rejecting the design. These elements can easily be 
translated to a model specification as shown in Figure 6. The example shown here is the result of a manual 
process, but it is expected this translation can be achieved via an interchange format such as JavaScript 
Object Notation (JSON) or eXtensible Markup Language (XML). It is important to note that the 
specification here is derived from the same narrative that the produced the conceptualization. However, the 
specification can be generated from the subset of concepts and relationships that have the most information 
available. 

 
Figure 6: Transitioning from knowledge graph to UML class diagram. 

7 NLU IN SUPORT OF GENERATING A MODEL SPECIFICATION 

Two Design of Experiments (DoE) were executed to assess how well the NLU model performed in 
generating ABM conceptualizations and specifications. The metrics used for evaluation are precision, 
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recall, and a combination of precision and recall. Precision is the ratio of true positives and the total of true 
positives and false positives. Recall is the ratio between true positives and the total of true positives and 
false negatives. F1 is a function of both precision and recall given by 

 
 𝐹1 = 2 × &'()!*!+,×.()/00

&'()!*!+,1.()/00
	. (7) 

 
Each DoE contained five levels of training narratives ranging from 10 to 30 in increments of five. The 

training corpus was composed of excerpts from journal articles from the Journal of Artificial Societies and 
Social Simulation (JASSS 2021) containing descriptions of ABMs. The first DoE, DoE A, testing corpus 
was also from JASSS, whereas the second DoE, DoE B, testing corpus contained descriptions of case files 
associated to insider threat activity. The DoE B was executed in order to evaluate how well the models 
would perform when tested against a corpus from an unrelated domain. The run matrix and associated test 
results from the DoE A is provided in Table 3. 

7.1 DoE to Evaluate Specification Description Performance 

For DoE A, the scores’ rate of increase diminishes after 20 documents are used for training. At this level, 
the model is correctly identifying agents and attributes, and satisfactorily identifying rules. The relationship 
scores demonstrate a similar trend, but illustrate poorer performance with the exception of the relationship 
score between an agent and an attribute.  

Table 3: Results from DoE A. 

Exp Documents Agents Attributes Rules 
ID Train Test F1 Prec. Recall F1 Prec. Recal

l 
F1 Prec. Recall 

1 10 5 0.59 0.71 0.51 0.48 0.56 0.41 0.35 0.44 0.29 
2 15 5 0.67 0.76 0.59 0.51 0.53 0.49 0.41 0.49 0.36 
3 20 5 0.70 0.83 0.60 0.60 0.65 0.56 0.50 0.59 0.43 
4 25 5 0.69 0.78 0.61 0.55 0.55 0.54 0.51 0.53 0.49 
5 30 5 0.70 0.73 0.67 0.57 0.57 0.57 0.49 0.52 0.47 
            

Exp Documents Agent-Attribute Agent-Rule Rule-Agent 
ID Train Test F1 Prec. Recall F1 Prec. Recal

l 
F1 Prec. Recall 

1 10 5 0.32 0.43 0.25 0.20 0.32 0.15 0.13 0.22 0.09 
2 15 5 0.38 0.44 0.34 0.30 0.34 0.27 0.26 0.47 0.18 
3 20 5 0.54 0.64 0.47 0.38 0.45 0.33 0.32 0.56 0.23 
4 25 5 0.45 0.47 0.44 0.36 0.36 0.37 0.33 0.45 0.26 
5 30 5 0.47 0.45 0.49 0.36 0.35 0.37 0.33 0.45 0.26 

 
An example of a poor result from the fifth experiment is shown in Figure 7. There are several absent 

and incorrect annotations in this example. Inner should have been classified as an attribute while ring should 
be an agent. This illustrates the ambiguity associated with natural language as ring can be either a noun or 
verb depending on the context. They and want to sell are not classified in the second half of the sentence, 
which is indicative of an increase in misclassifications as noted by the lower precision and recall scores. 
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Figure 7: Example result from DoE A, experiment five. 
 
In comparison, the same sentence from the third experiment, which had slightly better scores, is shown 

in Figure 8. This experiment provides a much different result; although it is still not ideal. Note that there 
are misclassifications associated with represent and market, but the model did classify want to sell. It is 
interesting that in the previous example, the who-bring relationship is correctly classified, while here, the 
bring-goods relationship is identified. The model does result in some ambiguous results, but it does perform 
well in identifying the concepts, agents, attributes, and rules. It also further validates the feasibility of the 
approach. More importantly, it enables us to make adjustments to the overall approach in subsequent 
studies. 

  

Figure 8: Example result from DoE A, experiment three. 
 

7.2 Model Specification Derived from a Non-ABM Description 

The second DoE was conducted using the same training sets but tested against five documents from an 
unrelated domain, insider threat case files. The results table is omitted here for succinctness, but DoE B 
resulted in poorer performance, which is an indication that domain-dependent NLU models may be 
required. Secondly, since the five test documents were annotated after the first experiment was completed, 
annotation bias may have led to poorer test performance.  

The NLU model was also used to extract concepts and relationships from an narrative  describing the 
refugee crisis on the Island of Lesvos (Jauhiainen and Vorobeva 2020). The following is an excerpt used to 
illustrate the ability of the NLU model to identify ABM specification elements: 

 
“To make the dispersal of the illness slower, the restaurants, hotels and other accommodation were 

closed, the camps were temporarily closed for external persons and the full lockdown of the country was 
exercised.” 

 
The excerpt details a problem situation containing several elements: political pressure, asylum seekers, 

anti-migrant beliefs, violence, events, and disease. In this short example, there are many interrelated 
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concepts that would be challenging to capture initially in a visual format without first expressing in natural 
language. This excerpt was submitted as a new document and the pre-annotator was applied to visualize 
the results, which is shown in Figure 9. There are several complex verb phrases that were correctly 
classified, such as were closed and was exercised, but the model misclassified slower as an agent. 
Additionally hotels should have a relationship with were closed. 

 
Figure 9: Example of agents, attributes, and rules from the refugee use case. 

The output from the model can be visualized as a model conceptualization and converted to a model 
specification, which is shown in Figure 10.  

 
Figure 10: Transition from Model Conceptualization to ABM specification. 

In this case, only the agents with relationships to rules and attributes are shown in the class diagram. 
Agent attributes are shown as class attributes, and agent rules are shown as operations or methods. The 
orphaned agents, attributes, and rules are shown in the graph and may be used as to identify where additional 
information is required. For example, it is likely that illness should be related to dispersal (not classified) 
and slower to quantify an infection rate. 
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8 DISCUSSION AND FUTURE WORK 

The results highlight that NLU models provide a means of facilitating modeling to non-modelers by semi-
automatically constructing a model conceptualizations and specifications from descriptions of a 
phenomenon. In this research, two separate NLU models were used to generate conceptualization and 
specifications of ABMs. Agents, attributes, and rules are derived from actors, factors, and mechanisms, 
respectively. Other modeling paradigms subscribe to different concept types such as resources, processes, 
populations, and causal loops. Furthermore, having a set of alternative NLU models spanning multiple 
knowledge domains and modeling paradigms could provide a modeling decision layer where each NLU 
model is applied to a target narrative.  

It may be desirable to have a narrative or conversational template to capture the minimal viable set of 
elements required from a phenomenon description. For example, if a narrative contains orphaned actors, 
factors, or mechanisms, a modeler (human or computer-based) would conclude that either the orphaned 
concept is superfluous or additional information is missing. If there is no indication of a factor having a 
relationship to an actor, then the modeling assistant should elicit additional detail from the subject matter 
expert or existing data repositories. A digital modeling assistant, for instance, would also elicit quantitative 
and qualitative data if data that should be associated to extracted factors, or attributes, is missing. This 
process could be completed directly by the modeler visually by manipulating a concept map, or done 
assisted through more advanced machine reasoning techniques utilizing an ontology. 

The specification up to this point relies on an object-oriented view of ABM. It is important to consider 
model formalisms such as the Discrete EVent System (DEVS) specification. Formalisms may facilitate the 
training process, for instance. Mittal et al. (2009) demonstrated populating a formal DEVS specification 
from a combination of restricted NLP, requirement specifications, and modeling language. This set of 
specifications were translated into XML to enable simulation integration along with other similarly 
developed implementations. In this research, the collection of concepts and relationships are easily exported 
in JSON format, which can be translated to formal specifications such as DEVS either directly from JSON 
or via UML as explored in existing literature (Mittal et al. 2009).  

Per WKS standards, enough documents were included in the training, diminishing returns on 
performance metrics in DoE A leads us to believe that the annotations themselves need to be adjusted and/or 
we need better algorithms to obtain the desire outcome. With regard to DoE B, it is hypothesized that 
variations in writing style, annotation biases, and possible domain confusion led to poorer performance. 
While additional validation is required, there appeared to many more instances where two nouns such as 
computer network were initially annotated as two nouns, but the model decoded the two words as an 
attribute and agent. Additional categories of concepts may be required that take into account other types of 
modifiers and part-whole relationships. For example, in this case, computer is a type of network. However, 
this also establishes the need for techniques to uncover semantics and intent, which may require a modeler 
in the loop to address cases of ambiguous terms. Another shortfall is the lack of complete phenomena 
descriptions in journal articles. Authors tend to jump directly into how the model is implemented versus 
describing the problem, which indicates the lack of fully describing the conceptualization. 

Lastly, WKS offers very little algorithm description as it applies to their implementation. Future 
implementations require the use of a more open platform so as to have more insight and control into the 
specific training methods used. The inclusion of standard dependency treebanks to support an automated 
annotation process used in conjunction with the grammatical rulesets to refine the relationships should make 
the process overall more efficient.  
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