
Proceedings of the 2021 Winter Simulation Conference
S. Kim, B. Feng, K. Smith, S. Masoud, Z. Zheng, C. Szabo, and M. Loper, eds.

DATA GENERATION WITH PROSPECT: A PROBABILITY SPECIFICATION TOOL

Alan Ismaiel
Ivan Ruchkin
Oleg Sokolsky

Insup Lee

Computer and Information Science Department
University of Pennsylvania

3330 Walnut St.
Philadelphia, PA 19104, UNITED STATES

Jason Shu

Department of Mathematics
University of Pennsylvania

209 S 33rd St.
Philadelphia, PA 19104, UNITED STATES

ABSTRACT

Stochastic simulations of complex systems often rely on sampling dependent discrete random variables.
Currently, their users are limited in expressing their intention about how these variables are distributed and
related to each other over time. This limitation leads the users to program complex and error-prone sampling
algorithms. This paper introduces a way to specify, declaratively and precisely, a temporal distribution over
discrete variables. Our tool PROSPECT infers and samples this distribution by solving a system of polynomial
equations. The evaluation on three simulation scenarios shows that the declarative specifications are easier
to write, 3x more succinct than imperative sampling programs, and are processed correctly by PROSPECT.

1 INTRODUCTION

Simulation experiments explore the relationship between the simulation inputs (factors) and outputs (re-
sponses). In some complex simulations, a user is interested in the statistical properties of the responses,
such as a rate of an adverse event, rather than in a systematic deterministic exploration of the factors. To
obtain a representative sample of the simulated responses, the user needs to ensure that the experiment
designs are sampled from a desired distribution of the inputs, such as configuration parameters, initial states,
and event triggers. This distribution, often discrete and temporal, needs to be sampled based on the user’s
intuition and miscellaneous information such as factor dependencies and probabilities of various events.

Unfortunately, the existing technologies do not allow users to flexibly and explicitly describe their intent
as a distribution over the simulation inputs. Copula-based time-series models (Biller 2009) require knowing
marginal probabilities and selecting a copula function, but cannot process richer probability constraints.
Stochastic optimization (Valente et al. 2008) can find an optimal distribution under uncertainty, but requires an
objective function. Probabilistic programming languages (PPLs) (Gordon et al. 2014) can be used to encode
a sampling algorithm sequentially and imperatively. These methods are difficult to use when the user’s inten-
tions concern various probability forms (joint, marginal, conditional) and dependencies (unconditional, con-
ditional, temporal). As a result, to explore a distribution of interest, the user is forced to implement a complex
sampling algorithm, omit important information, or accept the limitations of a particular time-series model.

Consider a motivating scenario: an engineering team is building a controller for an autonomous cleaning
vehicle that sweeps parking lanes in a city. Before deploying the controller, the team plans to test it in a high-
fidelity driving simulator in the situations representative of the realistic conditions, based on the following
information. A well-tested lane detector has known error rates at different times of the day. A cleaning
schedule indicates the times of the day when the vehicle will be used. Finally, the history of parking tickets

978-1-6654-3311-2/21/$31.00 ©2021 IEEE

Ismaiel, Ruchkin, Shu, Sokolsky, and Lee

for street cleaning determines how often the vehicle will have to exit the lane to avoid a parked car. So, how
should the team sample representative situations to test the controller? (We answer this question in Section 6.)

To address such data-generation problems, this paper introduces a modeling approach for discrete
distribution in the form of temporal declarative specifications. These specifications have multiple ways
to constrain the distribution, support arbitrary dependency structures, and do not require programming
the sampling. A specification implies a probability distribution, which we determine automatically and
precisely by solving a system of polynomial equations with algorithms from computational algebra. Our
approach determines when the specification is inconsistent or insufficient for a unique distribution. Once
the intended distribution is determined, its sampled data is returned to the user.

Our approach is implemented in an open-source tool PROSPECT (a Probability Specification Tool), found
at http://github.com/bisc/prospect along with this paper’s technical supplement. PROSPECT reads a textual
specification language and produces a sample sequence of requested length from the specified distribution.
The tool infers using the extensive algebraic libraries of the Wolfram Mathematica platform (Wolfram 2003).

We evaluate our approach on three realistic data-generation scenarios for simulators in different domains.
The results show that imperatively programming a data generator demands substantial efforts from the user,
both in manual probability calculations and writing non-trivial error-prone code. In contrast, PROSPECT
allows for a convenient and succinct specification and automatically generates accurate data from it.

Thus, this paper makes the following contributions: (i) a specification language for discrete distributions,
with a formal syntax and probabilistic semantics, (ii) an algebraic inference approach to determine a distri-
bution from the specifications, (iii) a software tool PROSPECT implementing the language and the inference,
and (iv) an evaluation of PROSPECT on three data-generation scenarios from different simulation domains.

The paper is organized as follows. Section 2 summarizes the preliminaries and formalizes our sampling
problems. Section 3 describes our data generation workflow. Section 4 defines our specification language,
and Section 5 details our inference. Section 6 evaluates the implementation of our PROSPECT tool. The
paper concludes with related work in Section 7 and discussion in Section 8.

2 PRELIMINARIES AND PROBLEM

This section briefly summarizes the necessary probability theory, describes our treatment of independence
and time, and, at the end, formulates three data generation problems to address.

This paper focuses on discrete random variables with finite domains, each modeled as a set of values
C = {c1 . . .c|C|}. Infinite discrete and continuous domains are beyond this paper’s scope.
Running example. A fair coin (a discrete random variable x) is tossed and lands on heads (x = T) or tails (x =
F). Then, independently, a fair dice (a discrete random variable y) is tossed, resulting in outcome from 1 to 6.

Consider a set of random variables V = {v1, . . . ,v|V|}. We define V̄ =(v1, ...,v|V |) to be a vector containing
all elements of V arranged by some ordering method (ours is described in Section 2.1). Any subset V ′ ⊆ V
corresponds to a vector V̄ ′ ordered by the same method. Each variable vi has its set of values Ci. A trial is a
random experiment that produces an outcome, or sample, represented by a vector of values. C̄ = (c1, . . . ,c|V|)
is an outcome for V̄ if ∀i ∈ [1 . . . |V|] : ci ∈Ci. A sample space Ω(V) is the set of all possible outcomes for
V̄ . In the running example, flipping a coin and rolling a dice is a trial, and (T,4) is a possible outcome.

Events are subsets of a sample space, tied to random variables as follows. For sample space Ω(V) and
some subset V ′ ⊆ V , let C̄ be an outcome for V̄ ′. By C(V̄ ′) we denote the set of all such outcomes C̄, and
so C(V̄) = Ω(V) is a set of all elementary events. Furthermore, the notation V̄ ′ = C̄ refers to the event of
each variable in V̄ ′ taking the corresponding value in C̄. Note that this event can contain different outcomes
depending on the variables whose sample space we consider. In our example, C((x,y)) is described by a
regular expression (T |F,1|2|3|4|5|6).

A probability distribution PV over sample space Ω(V) is a function from any event in Ω(V) to
the interval [0,1]. For an event e ⊆ Ω(V), its probability is PV (e). We define conditional probability
distributions by conditioning some distribution PV over Ω(V) on event e in the usual way. A conditional
probability distribution over all events V̄ ′ = C̄ (assuming V ′ ⊆ V, C̄ ∈ C(V̄ ′)) given event e ⊆ Ω(V) is

http://github.com/bisc/prospect

Ismaiel, Ruchkin, Shu, Sokolsky, and Lee

denoted as PV (V̄ ′ | e). For two disjoint subsets V1,V2 ⊆V , PV (V̄1 | V̄2) is the set of conditional probability
distributions over all V̄1 = C̄1, C̄1 ∈ C(V̄1) when conditioned on each event V̄2 = C̄2, C̄2 ∈ C(V̄2).

Independence relations are crucial to structuring V , so we formalize two concepts of set independence.
Definition 1 (Variable Set Independence) A set of variables V ′ = {v1 . . .vk}, V ′ ⊆ V is independent, denoted
as ⊥V ′, if any subset of variables in V ′ take values independently from each other:

∀ j ∈ {2, . . . ,k} : ∀a1 < · · ·< a j ∈ {1, . . . ,k} : ∀(c1, . . . ,c j) ∈C((va1 , . . . ,va j)) :

PV (va1 = c1, . . . ,va j = c j) = ∏
i∈{1,..., j}

PV (vai = ci)

In our running example, coins are tossed independently from dice rolls: ⊥{x,y}.
Definition 2 (Conditional Variable Set Independence) Given sets of variables V1,V2 ⊆ V , |V1|= k, V1 is
conditionally independent given V2, denoted as ⊥V1 | V2, if events for V1 are independent given on every
possible event V̄2 = C̄, C̄ ∈ C(V2):

∀ j ∈ {2, . . . ,k} : ∀a1 < · · ·< a j ∈ {1, . . . ,k} : ∀(c1, . . . ,c j) ∈C((va1 , . . . ,va j)) : ∀C̄ ∈ C(V̄2) :

PV (va1 = c1, . . . ,va j = c j | V̄2 = C̄) =
j

∏
i=1

PV (vai = ci | V̄2 = C̄)

Our approach also requires several basic definitions from algebra (Dummit and Foote 2004).
Definition 3 (System of Polynomial Equations) A system of polynomial equations is a finite set of
simultaneous equations F = { f1 = 0, ..., fk = 0}, where f1 . . . fk are polynomials in unknowns X = {x1, ...,xn}.
Definition 4 (Solutions of Polynomial Systems) For a system of polynomial equations F in unknowns X ,
a solution a(F) is an assignment of values to all unknowns in X s.t. all equations in F are true.
Definition 5 (Dimensionality, Feasibility of Polynomial Systems) An under-determined system has infinitely
many solutions. A well-determined system has finitely many solutions. An infeasible system has no solutions.

2.1 Temporal Assumptions and Three Sampling Problems

Now we introduce a temporal structure over V to fit our data-generation scenarios of interest. We consider a
model of discrete finite time, similar to discrete stochastic processes (Gallager 2013), in which a conceptual
mechanism (e.g., a repeated coin flip) is represented with an indexed family of random variables (e.g., the
coin flip outcome at each moment of time). We fix an arbitrary integer N ≥ 1 representing the total number
of time steps and define time by structuring variables V in two dimensions: by family and by time point.
By family, V is split into K ≥ 1 indexed families V1,∗,V2,∗, ...,VK,∗. In our running example, K = 2.

Within each family, say V1,∗, all random variables take values from C1 and are indexed by time:
v1,1,v1,2, . . . ,v1,N . Similarly, V2,∗ = {v2,1,v2,2, ...,v2,N}. Often, we index variables by the second dimension
(e.g., V∗,3 = {v1,3,v2,3, . . . ,vK,3}), referring to temporal slices through V with a meta-variable t ∈ {1 . . .N}.
For some V ′ ⊆ V , the vector V̄ ′ is sorted by ascending time and then lexicographically by variable family.
Definition 6 (State Set) For every time index t, we introduce a State Set Bt such that

1. There exists a shape vector S̄ = (s1, . . . ,sK) such that ∀i ∈ {1, . . . ,K} : si ∈ {1, . . . ,N}, and the
following holds: ∀ j ∈ {1, . . . ,K} : ∀k ∈ {N− s j, . . . ,N} : V j,k ∈ BN

2. All Bt are based on the last one, BN : ∀vi, j ∈ BN : ∀k ∈ {1 . . .N−1} : j− k > 0⇐⇒ vi, j−k ∈ Bk.

Informally, for a time index t, a state set Bt is a finite set of random variables with time index before
t that holds a given shape. All state sets maintain that same shape defined by the shape vector. In the
running example, suppose S̄ = {1,2} is the shape vector. Then BN contains three variables: xN−1,yN−1,
and yN−2. We further define a Window Set to be Dt = V∗,t ∪Bt .

Ismaiel, Ruchkin, Shu, Sokolsky, and Lee

Definition 7 (Discrete-Time Markov Chain) A Discrete-Time Markov Chain (DTMC) is a discrete stochastic
process that adheres to the Markov Property, where the conditional probability distribution of future states
of the process depend only on the present state (Meyn and Tweedie 2009).

We consider two properties in the framework of DTMCs. The first is the aforementioned Markov Prop-
erty: for a given time index t, we describe the state as the state set Bt such that PV (V̄∗,t | (V∗,1∪ ...∪V∗,t−1)) =
PV (V̄∗,t | B̄t). The second property is an optional Stationary Property, which asserts that probability dis-
tributions do not change over time. Formal definitions of these properties can be found in the supplement.

The most direct sampling solution is to consider all V at once, explicitly and exhaustively define PV ,
and sample it directly. Though possible, this is impractical: V grows multiplicatively with N and K, and the
number of elementary events in C(V̄) grows exponentially with V . Moreover, in practice, PV often has recur-
ring patterns, and considering all individual variables at once would fail to take advantage of these patterns.
Therefore, instead, we focus on the three simplifications below, which limit the variables to a small subset of V:

1. Static Case: time is irrelevant, and all sampling is i.i.d. The Markov Property and the Stationary
Property hold. In addition, the shape vector has only zeros: S̄ = 0̄.

2. Time-Invariant Case: the distribution does not change with time, and the sampling is not independent.
The Markov Property and the Stationary Property hold. The shape vector is non-zero: S̄ 6=~0.

3. Time-Variant Case: the distribution changes over time. The Markov Property holds, while the
Stationary Property does not. The shape vector is non-zero: S̄ 6=~0.

3 DATA GENERATION WORKFLOW

Our data-generation approach goes through four high-level steps, the last three of which are fully automated:

1. The user specifies a distribution in our high-level declarative language (Section 4).
2. The specification is translated into polynomial equations (Section 5.1).
3. The system of polynomial equations is solved algebraically (Section 5.2).
4. If the solution defines a unique distribution, we sample it as a DTMC (Section 3.1). This step is

described first because it determines what distributions we would want to specify.

3.1 Sampling with DTMCs and Specification Requirements

Here we show how we generate samples from distribution PV by relying solely on the Markov Assumption
for V . We achieve this by constructing and sampling a DTMC that represents PV in each of the three cases.

For each case type, we consider an Initialization Set I = V∗,1 ∪ ·· · ∪V∗,ti−1 defined by the moment
ti when Bti is the first full-sized state set: |Bti | = |BN |, and |Bti−1| < |BN |. Note that ti = max(S̄). All
three DTMCs start in a state where the variables in I are sampled, and then transition by sampling V∗,t
conditioned on their respective Bt . Let |C(Ī)| = L, |C(B̄N)| = M, C′i ∈C(B̄t), and C′′j ∈C(Ī) for i, j ∈ N.
Then, the DTMCs are constructed as seen in Figure 1.

In all three cases, conditional distributions PDt (V̄∗,t | B̄t), ∀t ∈ {1, . . . ,N} are sufficient to fully define
the DTMC. This includes defining the initialization stage: ∀C̄′′ ∈C(Ī), PV (Ī = C̄′′) is equal to a product of
probabilities from the conditional distribution PD1(V̄∗,1 | B̄1) . . .PDti

(V̄∗,ti−1 | B̄ti−1). However, for each of the
three cases, we also define fewer and smaller sufficient distributions. As a first step, knowing distributionsPDt

is sufficient to know all PDt (V̄∗,t | B̄t), obtained by its conditioning. Lemmas below show two distributions
sufficient for sampling in the simpler cases, as evident in the DTMCs and proven in the supplement.
Lemma 1 In the static case, a distribution PV∗,i determines PDt ∀t ∈ {1, . . . ,N}.
Lemma 2 In the time-invariant case, a distribution PDt j

, where |Dt j |= |DN |, determines PDt ∀t ∈ {1, . . . ,N}.
The time-variant case cannot be simplified in this way. Even with the Markov Property, no subset of

distributions PDt has sufficient information to define the rest of them. Therefore, to sample the time-variant
case, we are forced to specify multiple distributions. We choose PD1 , . . . ,PDN for this purpose.

Ismaiel, Ruchkin, Shu, Sokolsky, and Lee

Figure 1: From left to right, a sampling DTMC for the static, time-invariant, time-variant cases.

The next section develops a way to conveniently describe distributions PV∗,t , PDt j
, and {PD1 , . . . ,PDN}.

4 SPECIFYING DISTRIBUTIONS

Fundamentally, the user must specify three elements of the sampling problem: the case type, the variable
set V , and the distribution(s) of some window set(s) — and most of the specification devoted to the latter.
Below we walk through the syntax used in the PROSPECT tool and map it to our model in Section 2.

The full specification is defined as a BNF Spec with declarations, independence, and probabilities. The
declarations section determines the case, the structure of V , the desired sample count, and the random seed:

Spec ::= Decl ; Indep? ; Prob

Decl ::= ‘casetype:’ Case ;

‘variables:’ Vars ;

‘values:’ Vals ;

(‘timesteps:’ NumList ;)?

‘numsamples:’ 〈int〉 ; (‘seed:’ 〈int〉 ;)?

Case ::= ‘static’ | ‘timeinvariant’ | ‘timevariant’

Vars ::= StringList

Vals ::= ‘{’ StringList (, StringList)∗ ‘}’

NumList ::= ‘{’〈int〉(,〈int〉)∗‘}’

StringList ::= ‘{’〈string〉(,〈string〉)∗‘}’

The Decl section instantiates the model parameters: Vars lists families of variables, the length of Vars
defines K, the list inVals defines C, ‘timesteps’ define S̄ (optional in static case), and ‘numsamples’ defines N.

Variables can be referenced in three ways. In the static case, it is sufficient to use the variable’s family.
In the other two cases, the main probability specifications Prob are written for an arbitrary full-sized Bt at
time t > max(S̄). Then, x[t] refers to the variable of family x at time t. In the time-variant case, we also allow
absolute time references, such as x[1] for the variable of family x at time t = 1. Hence the reference syntax:

VarRefList ::= ‘{’VarRef (, VarRef)∗‘}’ VarRef ::= 〈string〉 | 〈string〉‘[t’(‘+’ | ‘-’)〈int〉‘]’ | 〈string〉‘[’〈int〉‘]’

The Indep section contains independence constraints forPV . Expressions IndepStmt andCondIndepStmt
are mapped to set-based constraints in Definitions 1 and 2 respectively, which subsume the pairwise notions
of independence. These constraints are applied to all times t, fixing the independence structure for PV .

Indep ::= ‘independence’‘{’ (IndepStmt | CondIndepStmt)

(, IndepStmt | , CondIndepStmt)∗ ‘}’

IndepStmt ::= ‘indep[’ VarRefList ‘]’

CondIndepStmt ::= ‘condindep[’ VarRefList,VarRefList ‘]’

The Prob section needs to impose sufficient constraints on PV to imply a single distribution. These
constraints are algebraic probability equations over probabilities of Boolean propositions over events, in
which variables take/do not take the specified values. For the static and time-invariant cases, it is sufficient to
define a distribution over single full-sized Bt , which we specify in the “main” part of Prob. The time-variant
case, however, needs PDt for all t ∈ {1, . . . ,N}, which is prohibitively difficult to do explicitly for each t.

Ismaiel, Ruchkin, Shu, Sokolsky, and Lee

Our solution here is recursive specifications: in “base”, we explicitly specify the first full Bt , and in “main”
we specify a recursive rule linking PDt to PDt−1 ,PDt−2 , etc. Thus we intentionally restrict the scope: we
will not be able to specify every possible time-variant distribution, but our specifications remain compact.

Prob ::= StaticOrTimeInvProb | TimeVarProb

StaticOrTimeInvProb ::= ‘main’ ProbLine+

TimeVarProb ::= ‘base’ ProbLine+ ; ‘main’ ProbLine+

ProbLine ::= ProbExp ‘=’ ProbExp

ProbTerm ::= ‘P[’ EventExp (| EventExp)? ‘]’

ProbExp ::= ‘(’ ProbExp (‘+’ | ‘-’ | ‘*’ | ‘/’)

ProbExp ‘)’ | ProbTerm | 〈 f loat〉 | 〈int〉
EventExp ::= ‘(’ EventExp (‘&&’ | ‘||’)

EventExp ‘)’ | ‘!(’ EventExp ‘)’ | VarVal
VarVal ::= VarRef (‘=’ | ‘ 6= ’) 〈string〉

Every EventExpmaps to some event e∈Ω(V). Every unconditionalProbTermmaps to somePV (e), and
conditional ProbTerm — to some PV (e | e′) for e′ ∈Ω(V). Thus, every ProbLine constrains some part of PV .

Our running example is illustrated in Figure 2. Here, N = 10, K = 2, |V∗,t |= 2, C = {Cx,Cy}, where
Cx = {T,F}, Cy = {1,2,3,4,5,6}. ThePV constraints include⊥{x,y} and 6 algebraic probability constraints.
Notice that P(y = 6) is not specified because those constraints are sufficient to determine PV ({x,y}).

Figure 2: Our specification for the running example.

5 INFERRING DISTRIBUTIONS

As discussed in Section 3, our approach splits the distribution into window sets Dt . Section 4 introduced a
way to specify Dt , and in this section we infer a distribution PDt from this specification. This inference is
made tractable by the simplifications of the three cases: it will be used once for the static and time-invariant
cases — and twice for the time-variant case (base and recursion).

Our inference proceeds in three steps: determining the set of distribution parameters to use, translating
the specification into constraints on parameters, and then solving the constraint problem.

5.1 Parameterizing Specifications

To encode probability statements as algebraic systems, we introduce O-parameters over the outcomes in C(V̄).
Definition 8 (O-Parameters) Given a variable vector V̄ , each outcome C̄ and the corresponding elementary
event e⊆Ω(V) is assigned an o-parameter equal to PV (e) and uniquely indexed by C̄:

∀C̄ ∈ C(V̄) : oC̄ = PV (V̄ = C̄)

Additionally, let O(V) denote the set of all O-parameters for Ω(V). In the running example, O((x,y))
contains 12 O-parameters. E.g., for outcome C̄ = (T,3), the parameter is o(T,3) = PV (x = T,y = 3).

Our strategy is to assign a set of O-parameters to every window set Dt . Then all specified constraints are
translated into equations over the O-parameters. The resulting system is solved to infer the values for all O-
parameters and, thus, identifying the distribution. We have three types of constraints to translate: probability
lines in ProbLine, which contain ProbTerm, independence statements in Indep, and Stationary Properties.

The translations are based on lemmas (proven in the supplement), starting with ProbTerm and ProbLine:
Lemma 3 Given variables V and event e⊆Ω(V), PV (e) can be expressed as a sum over O(V).
Lemma 4 Given variables V and events e1,e2⊆Ω(V), PV (e1 | e2) can be expressed algebraically over O(V).

Next, we translate independence constraints to handle IndepStmt and CondIndepStmt:
Lemma 5 Given variables V and its subset V ′ ⊆ V , an independence constraint ⊥V ′ can be equivalently
translated into a finite set of algebraic constraints over parameters O(V).

Ismaiel, Ruchkin, Shu, Sokolsky, and Lee

Lemma 6 Given variables V and its subsets V1,V2 ⊆ V , an independence constraint ⊥V1 | V2 can be
equivalently translated into a finite set of algebraic constraints over parameters O(V).

Finally, we translate the Stationary Property, which is needed only in the time-invariant case:
Lemma 7 Given a set of variables V in the time-invariant case, a Stationary Property over V can be
equivalently translated into a finite set of algebraic constraints over O(V).

The above translations are sufficient for the static and time-invariant cases. For the time-variant case,
we need a parametric way to encode a recursive dependency of PDt on PDt−1 . We observe that distribution
PDt can be recursively and conditionally defined based on PBt , which in turn follows from PDt−1 . Therefore,
we introduce another set of parameters, the Q-parameters, to encode this recursive relationship.
Definition 9 (Q-Parameters) Given a state set Bt , each outcome C̄ and corresponding elementary event e
is assigned a q-parameter equal to PBt (e) and uniquely indexed by C̄:

∀C̄ ∈ C(B̄t) : qC̄ = PBt (B̄t = C̄)

Being a special case of O-parameters, the Q-parameters adhere to all the previous lemmas regarding
O-parameters. Similarly, Q(Bt) denotes the set of all Q-parameters for Bt .
Lemma 8 Given a window set Dt and its subset Bt 6= /0 in the time-variant case, each q∈Q(Bt) is equivalent
to a unique polynomial over O-parameters in O(Dt).

While specs for the static and time-invariant cases are each translated into a set of numeric constraints
over O-parameters, the time-variant case translates into two constraint sets: one numeric for the Q-parameters
(the base case of PBt) and one symbolic for the O-parameters in terms of arbitrary Q-parameters.

We now demonstrate the conversion to O-parameters on the static specification example from the end
of Section 4, defining the distribution Pxt ,yt . The 12 O-parameters here take the form o(cx,cy) where cx ∈ Cx
and cy ∈ Cy. The specification is translated into the following system of 19 equations:{

∑i∈Cx, j∈Cy o(i, j) = 1
∀cx ∈ Cx : ∀cy ∈ Cy : o(cx,cy) = (∑i∈Cx o(i,cy))(∑ j∈Cy o(cx, j))

{
∑ j∈Cy o(T, j) = ∑ j∈Cy o(F, j)
∀cy ∈ {1, . . . ,5} : ∑i∈Cx o(i,cy) = 1/6

5.2 Solving Algebraic Equations

The previous subsection produces sets of real-valued constraints over O-parameters. These sets are equivalent
to systems of real-valued polynomial equations (defined in Definition 3) because all denominators are positive.

To algebraically solve arbitrary polynomial equations, we rely on two algorithms implemented in Math-
ematica: Buchberger’s algorithm and Cylindrical Algebraic Decomposition (CAD). Buchberger’s algorithm
generates a Gröbner basis, which can be seen as a higher-dimensional counterpart of the Gauss-Jordan
elimination for linear systems (Dummit and Foote 2004). CAD finds a sequence of projections that lower
the system’s dimensionality to a single-variable polynomial, solves it, and lifts the solution back to the
original dimensions (Jirstrand 1995). Both algorithms are guaranteed to terminate; Gröbner bases are used
to determine feasibility of the system, and CAD is guaranteed to find all real solutions, though current
implementations of CAD are subject to high computational complexity (Basu et al. 2006). Mathematica
automatically picks an appropriate algorithm for each problem and, in general, returns solutions in complex
numbers. Therefore, not every solution of an equation system is a valid set of distribution parameters:
each parameter must be a real number in interval [0,1].

Consider a polynomial equation system Fo over O-parameters O(V). Denote the set of complex solutions
of Fo as A(Fo)⊂ C|O(V)|. We restrict A(Fo) to its largest subset Ao such that Ao ⊂ [0,1]|O(V)|. If |Ao|> 1,
we say that our distribution is under-specified. If |A′o|< 1, we say that our distribution is over-specified. If
|Ao|= 1 with a single element a∈ Ao, we use a to assign a value to each O-parameter and proceed with data
generation. Our example has a well-determined system with this solution:{∀cx ∈Cx : ∀cy ∈Cy : o(cx,cy)→

1
12}.

http://reference.wolfram.com/language/tutorial/ ComplexPolynomialSystems
http://reference.wolfram.com/language/tutorial/RealPolynomialSystems

Ismaiel, Ruchkin, Shu, Sokolsky, and Lee

6 EVALUATION

The goal of our evaluation is to compare the required manual effort, the amount of code/specification, and the
accuracy of data generation between our approach and the probabilistic programming baseline in scenarios
calling for non-trivial discrete distributions. We do so over three realistic data-generation scenarios with a
unique distribution, one per each case. Note that the PPL baseline stands in for a broad range of imperative
solutions that may take different forms (e.g., custom software tools mentioned in Section 7) but are algorithmi-
cally equivalent to a probabilistic program. To support our approach, we implemented the workflow from Sec-
tion 3 in a software tool PROSPECT, the source code of which is available at http://github.com/bisc/prospect.
It is also provided as a web application at https://prospect.precise.seas.upenn.edu.

6.1 Baseline Solution

For each scenario, two data-generation programs were written in the probabilistic programming language
Pyro v1.5.1 (Bingham et al. 2018), based on Python v3.8.5. Both are sequential iterative algorithms that
were constructed to sample a distribution described in a PROSPECT specification.

The first, accurate solution correctly interprets the specification and all the assumptions, step-by-step
calculating the necessary probabilities and inferring the intended distribution. The code mirrors the flow of a
multi-step probability calculation by hand, using Bayes’ theorem, the law of total probability, and the identities
of conditioning. Note that the user has to derive the non-trivial intermediate formulas either on paper or men-
tally to be able to write the Pyro code. We consider this baseline to be sampling the true desired distribution.

The second, naive solution demonstrates the possible errors when writing the sampling code by ignoring
the implicit dependencies between variables. In the static case, it samples two variables in Dt by using
their marginal probabilities, which incorrectly assumes their independence. In the timed scenarios, it fails
to consider the dependence of a time step V∗,t on its previous step V∗,t−1.

6.2 Scenario 1: Lane Keeping, Static Case

The motivating scenario from Section 1 is shown in Figure 3, accounting for the lane detector quality (the first
four equations), the cleaning schedule (the next two equations), and the obstacle frequency (the last equation).

Figure 3: Our specification for Scenario 1.

The naive solution samples the daytime from P(time), then P(detection | time), and then,
independently and incorrectly, the lane from P(lane). The accurate solution instead derives P(lane |
detection). Our spec contains 12 informative lines. The reasoning part of the accurate (naive) baseline
contains 32 (28) informative lines, i.e., excluding input/output, error handling, comments, and whitespace.

6.3 Scenario 2: Network Latency, Time-Invariant Case

A programmer is building a synthetic dataset to test a network latency monitor (Sinha et al. 2015) that
predicts latency based on the two latest pings. This dataset is generated by a hybrid network simulator (Kiddle
et al. 2003) that has configurable latency for both individual packet delays (modeled here as ping delay)
and average network delays (modeled here as network latency). The programmer intends to simulate a
network with a generally low latency (probability 0.8), with a semi-steady ping (probability 0.65-0.7), and
a high latency that is partially observable from high ping delays (probability 0.6). We model these delays
with the spec in Figure 4, which for simplicity considers two delay levels: “low” and “high”.

http://github.com/bisc/prospect
 https://prospect.precise.seas.upenn.edu

Ismaiel, Ruchkin, Shu, Sokolsky, and Lee

Figure 4: Our specification for Scenario 2.

The naive solution starts by samplingP(latency[t]). Intermediate calculations deriveP(ping[t])
fromP(ping[t]|ping[t-1]). With Bayes’ Theorem, this derivation allows us to sampleP(ping[t]
| latency[t]), though this incorrectly ignores the value of ping[t-1]. The accurate solution, which
requires a few more intermediate computations, derives P(latency[t] | ping[t]). Our specification
for this scenario has only 10 informative lines. The accurate (naive) baseline has 31 (22) informative lines.

6.4 Scenario 3: Tool Wearing, Time-Variant Case

The gradual wear and tear of mechanical tools (e.g., for cutting, drilling, or machining) is commonly simulated
using Markov models (Zhu and Liu 2018; Mor et al. 2020) to predict a tool’s lifespan and test methods
for tool wear estimation. It is challenging to model the gradual and partially observable deterioration.This
scenario is a proper fit to our time-variant case. In the specification in Figure 5, we separate the tool’s
state (“functional” or “broken”) from the tool’s performance on a particular task (“ok” or “fail”). The
tool’s operation has a fixed marginal success chance (0.8), and it is implicitly linked to the tool’s breakage
chance, which increases over time. Initially, the tool has a high chance of remaining functional (0.9) and it
decreases slightly slower if the operation is successful (0.95 vs 0.9). Once the tool is broken, it remains so.

Figure 5: Our specification for Scenario 3.

The naive solution samples P(tool[t] | tool[t-1])and, independently and incorrectly, samples
P(op[t]). The accurate baseline derives a formula for P(op[t] | tool[t]). Our specification for
this scenario has 11 informative lines. The accurate (naive) baseline has 39 (35) informative lines.

6.5 Results

The PROSPECT specs were substantially more succinct than probabilistic programs, achieving a 2–3x reduc-
tion of the informative line count. Based on our experience, the programming of the baselines took substantial
cognitive effort, primarily because it necessitated finding a “path” through the probabilities by hand. Com-
paratively, using PROSPECT has been straightforward and only required iterations when the specification was
found to be over/under-determined (which, without PROSPECT, would have been yet another cognitive task).

To evaluate accuracy, we sampled both baselines and PROSPECT, and estimated the marginal, joint, and
conditional probabilities in Dt using Wilson’s 95% confidence intervals (CIs) for the binomial parameter. Most
probabilities turned out to be indistinguishable between the three sources, so in each scenario we highlight one
of the few discrepancies — each confirmed with Pearson’s chi-square test for homogeneity (p < 0.00001).

The probability estimates are shown in Figure 6. In all scenarios, the accurate baseline and PROSPECT
were statistically indistinguishable on the full sample (10k points). In Scenario 1, the discrepancy is in
P(detection = "detected", lane = "in"). The naive solution biased the controller testing to be
overly optimistic about lane detection. In Scenario 2, a discrepancy is in P(ping[t] = ping[t-1]).
Interestingly, the distributions within each time point were equivalent across the 3 sources, highlighting

Ismaiel, Ruchkin, Shu, Sokolsky, and Lee

the difficulty of finding bugs in time series generators. In Scenario 3, a similar discrepancy was found in
tool[t] = "func", op[t] = "fail"). Thus, PROSPECT has delivered accurate sampling data.

Confidence intervals for the probability of the following, based
on baselines (naive and accurate) and PROSPECT:

• Top-left: Out-of-lane detection in the static case, by
sample size.

• Bottom-left: Consecutive ping delays not changing in
the time-invariant case, by sample size.

• Top-right: Operation failing but the tool being func-
tional in the time-variant case, by time.

Figure 6: Confidence intervals for probabilities in the three sampling scenarios.

7 RELATED WORK

In the simulation context, design of experiments considers factors, their levels, and the responses obtained
from the simulation (Sanchez and Wan 2015). A design is a set of tuples of factor values for which the
simulation is run. Typical tasks relate factors and responses, such as finding a desired response or an area of
robustness where the responses are similar. Designs are typically deterministic and based on patterns such
as “grids” or “stars”. In our terms, factors, levels, and designs map precisely to variables, their values, and
generated datasets. However, we consider the task to elicit an appropriate distribution of responses (e.g.,
car crashes), for which we require random designs that follow a desired distribution of factors. We do not
explicitly consider responses; instead, we ensure that the design is drawn from the desired distribution.

Simulation designs can be captured by experiment specification DSLs (Schützel et al. 2014), such as
SESSL (Ewald and Uhrmacher 2014) and NEDL (Hallagan 2011). The former is a specification language
for compositional simulations, and the latter is a compact XML-based experiment description language.
Such languages build deterministic designs with pre-defined patterns and provide many utilities: defining
parameters, timeouts, exception handling, output format, and so on. In contrast, PROSPECT samples
potentially complex random designs and thus complements the current landscape of simulation DSLs.

A variety of simulators provide high-fidelity representations of application domains, recently in cyber-
physical systems: CARLA (http://carla.org) and Udacity (http://github.com/udacity/self-driving-car-sim)
for cars, X-Plane (http://x-plane.com) and AirSim (http://github.com/microsoft/AirSim) for airplanes,
Gazebo (http://github.com/microsoft/AirSim) for robots, and others. At a higher level of abstraction,
there are discrete-event simulations, e.g., for computer networks (Hu and Sarjoughian 2005), and domain-
specific DSLs, e.g., KENDRICK for epidemics (Bui Thi Mai Anh et al. 2015). Simulations at any level
of abstraction can use our approach and tool to inform the selection of random experiments.

http://carla.org
http://github.com/udacity/self-driving-car-sim
http://x-plane.com
http://github.com/microsoft/AirSim
http://github.com/microsoft/AirSim

Ismaiel, Ruchkin, Shu, Sokolsky, and Lee

Probabilistic graphical models (Markov/Bayesian nets) are the classical ways to represent a distribution
with given independence relations (Koller et al. 2009). Arbitrary independence constraints are supported in
chain graphs (Lauritzen and Richardson 2002). Graphical models require full up-front specification of the
distribution: conditional probabilities for Bayesian nets and potentials for Markov nets. These specifications
do not necessarily match the user’s intuition and do not allow the flexibility of specifying only the known as-
pects of the distribution. Some domains bridge this gap with intuitive domain-specific DSL, such as SSC (http:
//web.mit.edu/irc/ssc) for biochemical reactions that essentially specifies a DTMC. From this viewpoint, our
proposed language can be understood as a domain-agnostic way to conveniently describe a graphical model.

Related to graphical models are probabilistic programming languages (PPLs) (Gordon et al. 2014),
which describe distributions implicitly through their sampling algorithms. Popular PPLs like Pyro (Bingham
et al. 2018) emphasize learning or inferring a model given a program and a dataset. Unlike PPLs, PROSPECT
relies on an explicit declarative specification without any data, which increases the number of parameters
but shortens the descriptions of complex distributions. Although PPLs can sample these exact distributions,
they require extra effort and more lines of code, as Section 6 shows. Another related PPL is Scenic (Fremont
et al. 2019), which samples simulation inputs but only in the context of scenarios for cyber-physical systems.

Two related areas aim to determine distributions using different inputs. First, stochastic programming
optimizes objective functions over distributions and constraints. SAMPL (Valente et al. 2008) is a DSL
for declarative algebraic specification of stochastic programming problems, which differ from our problem
in two key ways: (i) they admit uncertain specifications, whereas we expect a single distribution; (ii) they
have an objective to optimize, and we do not. Second, copula-based methods estimate a joint distribution
given known marginal distributions and a copula function. The copula choice relies on expert knowledge
and samples of the joint distribution. Copula-based time-series autoregressive models — ARTA, NORTA,
VARTA (Biller 2009) — define random processes with known marginals. These models are distinct from
PROSPECT: (i) they focus on fully-known continuous marginal distributions with few parameters and do not
straightforwardly apply to exponentially-parametric discrete categorical distributions, and (ii) they require
knowledge or data to choose an appropriate copula, which is not available in our scenarios.

A discrete distribution’s parameters have been inferred by solving polynomial equations for Probabilistic
Satisfiability (PSAT) problem (Henderson et al. 2018). The authors used Newton’s method to find an approx-
imate solution to an equation system that is equivalent to PSAT constraints. In comparison, we expand such
parameterization to temporal distributions with conditional independence, create a user-facing DSL for spec-
ifying them, and use algebraic algorithms that guarantee an eventual correct answer, unlike Newton’s method.

8 DISCUSSION AND CONCLUSION

The current limitations of PROSPECT’s syntax and semantics point to promising future work directions. First,
syntax extensions can enable limited continuous distributions and mixed expressions combining probabilities
and numeric values of random variables. Second, time-invariant specifications can be extended with new pat-
terns to cover more time-variant distributions. Finally, an exciting possibility is to extend the semantics with
uncertainty in the form of compound distributions (i.e., a distribution over another distribution’s parameters)
and allow under-specification of distributions, which can be resolved with meta-models or tuned to data.

In conclusion, this paper introduced a declarative modeling approach for discrete probability distributions
based on parameterization and solving systems of polynomials. Supported by an open-source tool PROSPECT,
this approach has demonstrated its succinct, relatively low-effort, and accurate data generation. We believe
that this approach could be useful not just for simulation, but also for probabilistic reasoning, design and
analysis of systems, and other tasks requiring probability specification and inference.

ACKNOWLEDGMENTS

We thank Kaustubh Sridhar and Richard Avila for their feedback on the ideas in this paper. This research has
been sponsored in part by the Penn Undergraduate Research Mentionship Program and the Defense Advanced
Research Projects Agency as part of the Assured Autonomy program under Contract No. FA8750-18-C-0090.

http://web.mit.edu/irc/ssc
http://web.mit.edu/irc/ssc

Ismaiel, Ruchkin, Shu, Sokolsky, and Lee

REFERENCES
Basu, S. et al. 2006. Algorithms in Real Algebraic Geometry. 2 ed. Berlin Heidelberg: Springer-Verlag.
Biller, B. 2009, June. “Copula-Based Multivariate Input Models for Stochastic Simulation”. Operations Research 57(4):878–892.
Bingham, E. et al. 2018. “Pyro: Deep Universal Probabilistic Programming”. Journal of Machine Learning Research.
Bui Thi Mai Anh et al. 2015, January. “KENDRICK: A Domain Specific Language and platform for mathematical epidemiological

modelling”. In 2015 IEEE International Conference on Research, Innovation, and Vision for Future (RIVF), 132–137.
Dummit, D., and R. Foote. 2004. Abstract Algebra. 3rd ed., Chapter 9.6 Polynomials in Several Variables over a Field and

Gröbner Bases, 315–330. University of Vermont.
Ewald, R., and A. M. Uhrmacher. 2014, February. “SESSL: A domain-specific language for simulation experiments”. ACM

Transactions on Modeling and Computer Simulation 24(2):11:1–11:25.
Fremont, D. J. et al. 2019, June. “Scenic: a language for scenario specification and scene generation”. In Proceedings of ACM

Conference on Programming Language Design and Implementation, PLDI 2019, 63–78. New York, NY, USA.
Gallager, R. G. 2013. Stochastic Processes: Theory for Applications. Cambridge, UK: Cambridge University Press.
Gordon, A. et al. 2014. “Probabilistic programming”. In Future of Software Engineering, 167–181. New York, NY, USA.
Hallagan, A. 2011, January. The Design of XML-Based Model and Experiment Description Languages for Network Simulation.

Honors Thesis, Bucknell University.
Henderson, T. et al. 2018. “Probabilistic Logic for Intelligent Systems”. In The Proceedings of the 15th International Conference

on Intelligent Autonomous Systems.
Hu, W., and H. Sarjoughian. 2005. “Discrete-event simulation of network systems using distributed object computing”. In Intl.

Symp. on Performance Evaluation of Computer and Telecommunication Systems (SPECTS), Part of SummerSim, 884–893.
Jirstrand, M. 1995. “Cylindrical Algebraic Decomposition - an Introduction”. Technical Report LiTH-ISY-R-1807, Department

of Electrical Engineering, Linköping University.
Kiddle, C. et al. 2003, June. “Hybrid packet/fluid flow network simulation”. In Proceedings of the Seventeenth Workshop on

Parallel and Distributed Simulation, 143–152. ISSN: 1087-4097.
Koller, D. et al. 2009, July. Probabilistic Graphical Models: Principles and Techniques. Cambridge, MA: The MIT Press.
Lauritzen, S. L., and T. S. Richardson. 2002. “Chain graph models and their causal interpretations”. Journal of the Royal

Statistical Society: Series B (Statistical Methodology) 64(3):321–348.
Meyn, S., and R. L. Tweedie. 2009. Markov Chains and Stochastic Stability. New York: Cambridge University Press.
Mor, B. et al. 2020, May. “A Systematic Review of Hidden Markov Models and Their Applications”. Archives of Computational

Methods in Engineering.
Sanchez, S. M., and H. Wan. 2015, December. “Work smarter, not harder: A tutorial on designing and conducting simulation

experiments”. In 2015 Winter Simulation Conference (WSC), 1795–1809. ISSN: 1558-4305.
Schützel, J. et al. 2014. “Perspectives on Languages for Specifying Simulation Experiments”. In Proceedings - WSC.
Sinha, D. et al. 2015, December. “Real-time monitoring of network latency in Software Defined Networks”. In 2015 IEEE

International Conference on Advanced Networks and Telecommuncations Systems (ANTS), 1–3. ISSN: 2153-1684.
Valente, C. et al. 2008. “Extending Algebraic Modelling Languages for Stochastic Programming”. INFORMS Journal on

Computing 21(1):107–122.
Wolfram, S. 2003, August. The Mathematica Book, Fifth Edition. 5th edition ed. Champaign, Ill: Wolfram Media Inc.
Zhu, K., and T. Liu. 2018. “Online Tool Wear Monitoring Via Hidden Semi-Markov Model With Dependent Durations”. IEEE

Transactions on Industrial Informatics 14(1):69–78.

AUTHOR BIOGRAPHIES
ALAN ISMAIEL is an undergraduate junior in the Department of Computer and Information Science at the University of
Pennsylvania. His email address is aismaiel@seas.upenn.edu.

IVAN RUCHKIN is a postdoctoral researcher in the Department of Computer and Information Science at the University of
Pennsylvania. He received his Ph.D. from Carnegie Mellon University. His e-mail address is iruchkin@cis.upenn.edu.

JASON SHU is an undergraduate junior in the Department of Mathematics at the University of Pennsylvania. His email
address is jasonshu@sas.upenn.edu.

OLEG SOKOLSKY is a research professor in the Department of Computer and Information Science at the University of
Pennsylvania. He earned his Ph.D. from SUNY Stony Brook. His email address is sokolsky@cis.upenn.edu.

INSUP LEE is the Cecilia Fitler Moore professor in the Department of Computer and Information Science, at the University
of Pennsylvania. He received his Ph.D. from the University of Wisconsin, Madison. His email address is lee@cis.upenn.edu.

mailto://aismaiel@seas.upenn.edu
mailto://iruchkin@cis.upenn.edu
mailto://jasonshu@sas.upenn.edu
mailto://sokolsky@cis.upenn.edu
mailto://lee@cis.upenn.edu

	INTRODUCTION
	PRELIMINARIES AND PROBLEM
	Temporal Assumptions and Three Sampling Problems

	DATA GENERATION WORKFLOW
	Sampling with DTMCs and Specification Requirements

	SPECIFYING DISTRIBUTIONS
	INFERRING DISTRIBUTIONS
	Parameterizing Specifications
	Solving Algebraic Equations

	EVALUATION
	Baseline Solution
	Scenario 1: Lane Keeping, Static Case
	Scenario 2: Network Latency, Time-Invariant Case
	Scenario 3: Tool Wearing, Time-Variant Case
	Results

	RELATED WORK
	DISCUSSION AND CONCLUSION

