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ABSTRACT

We consider simulation optimization under input uncertainty, where the unknown input parameter is
estimated from streaming data arriving in batches over time. Moreover, data may depend on the decision
of the time when they are generated. We take an online approach to jointly estimate the input parameter via
Bayesian posterior distribution and update the decision by applying stochastic gradient descent (SGD) on
the Bayesian average of the objective function. We show the convergence of our approach. In particular, our
consistency result of Bayesian posterior distribution with decision-dependent data might be of independent
interest to Bayesian estimation. We demonstrate the empirical performance of our approach on a simple
numerical example.

1 INTRODUCTION

The input model (or input distribution) of stochastic simulation is often estimated from a finite amount
of input data, resulting in uncertainty about the input model. Ignoring input uncertainty in simulation
optimization could lead to risky decisions (see, e.g., Zhou and Xie (2015), Zhou and Wu (2017)). Recent
research has made strides towards simulation optimization under input uncertainty. For example, for
simulation optimization with a discrete and finite solution space, i.e., the ranking and selection (R&S)
problem, Gao et al. (2017), Xiao and Gao (2018), Xiao et al. (2020), Fan et al. (2020) take a distributionally
robust approach to select the solution with the best performance in the worst case of input uncertainty;
Wu and Zhou (2017) extend the optimal computing budget allocation (OCBA) approach to handle input
uncertainty with the goal to select the true best solution; Corlu and Biller (2013), Corlu and Biller (2015)
develop procedures to return a subset of superior solutions with desired confidence in the presence of input
uncertainty; Song and Nelson (2019) extend the multiple comparisons with the best (MCB) framework from
Chang and Hsu (1992) to incorporate input uncertainty. For simulation optimization on a general solution
space, Zhou and Xie (2015) propose a Bayesian risk optimization (BRO) framework to reformulate the
simulation optimization problem by estimating the input uncertainty with a Bayesian posterior distribution
and imposing a risk function with respect to the posterior distribution on the objective function; later Wu
et al. (2018) show that this reformulation is consistent and robust against input uncertainty.

The aforementioned works all assume that the input data are given as one fixed batch. However,
in modern applications data are often collected over time, and the decision maker often needs to make
decisions in an online fashion given all the available data. Such streaming data have only been considered
in the simulation community until very recent. Wu and Zhou (2019) consider ranking and selection with
streaming input data, and propose a moving average estimator to aggregate simulation outputs across
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different time stages together with sequential elimination procedures to select the best solution. Song and
Shanbhag (2019) consider the simulation optimization problem with streaming input data and study the
convergence properties of stochastic approximation with the maximum likelihood estimation (MLE) of the
input parameter. On a related note, Zhou and Liu (2018) develop an online procedure for quantifying input
uncertainty with streaming input data; Wu and Zhou (2017) develop a two-stage procedure to allocate
budget between collecting input data and doing ranking and selection to balance the input uncertainty and
optimization error; Xu et al. (2020) study the problem of joint resource allocation between collecting input
data and running simulation replications.

In this paper, we consider the general simulation optimization problem where batches of data arrive
over time. We assume a parameterized input model, and thus the distribution family is known but the
true input parameter is unknown. At each time stage, our procedure consists of two steps: 1) we use the
current batch of data to update the Bayesian posterior distribution of the input parameter, and 2) we take
the Bayesian average of the objective function and apply SGD on this reformulated objective function. We
consider both cases of exogenous (decision-independent) and endogenous (decision-dependent) input data.
In the former case, data follow a fixed distribution that only involves the input parameter. In the latter
case, the data follow a time-varying distribution depending not only on the input parameter but also the
decision at the current time. This is motivated by many real-world problems where decisions can influence
the data process. For example, in the newsvendor problem, the demand rates of customers can depend
on the inventory levels decided by the retailer, who only observes data of customer demand and needs to
decide the order amount to minimize the expected cost (see Lee et al. (2012)). Due to the correlation and
non-stationarity of the data across time stages, the Bayesian estimation with decision-dependent input data
is drastically different from the classical Bayesian updating with independent and identically distributed
(i.i.d.) data, which poses a great challenge to showing the consistency of the Bayesian posterior distribution.

Our proposed approach can be viewed as an online extension of the BRO framework in Wu et al. (2018),
where the risk function is taken as the expectation and the reformulated problem is updated over time stages.
We consider the same problem as Song and Shanbhag (2019), but differ in two key aspects: first, we take
a Bayesian approach to estimate the input parameter and solve the Bayesian average problem, whereas
they estimate the input parameter by MLE and solve the problem with the plug-in MLE; second, we also
consider the case of decision-dependent input data, wheres they only consider decision-independent input
data. We note that decision-dependent input data have been studied in machine learning (e.g. Briickner
et al. (2012), Juan et al. (2020)) and stochastic optimization (e.g. Lappas and Gounaris (2018), Luo and
Mehrotra (2020) and Dmitriy and Lin (2020)). However, their problem settings are in general different
from the setting in this paper.

Our contributions are summarized as follows. First, we propose a new approach to online simulation
optimization with streaming data. Second, we show the convergence of our approach in the decision-
dependent case. Third, we show the consistency of the Bayesian posterior distribution with endogenous
data, which might be of independent interest to Bayesian estimation outside the scope of this paper. Our
theoretical results are also verified in our numerical experiments.

2 ONLINE SIMULATION OPTIMIZATION WITH DECISION-INDEPENDENT INPUT DATA
In this section, we consider simulation optimization with decision-independent input distribution, i.e.,

min H(x) 1= Eg._pe [(x,£)] )

where 2~ C R? is the decision space assumed to be hyper-rectangular, & € = C R” is a random vector
representing the randomness in the simulation, / : RY x R” — R is a function evaluated through simulation.
The expectation is taken with respect to (w.r.t.) the distribution of &, which we denote by f¢. The true
distribution f¢ is usually unknown, and hence the true problem (1) is not available and calls for reformulation.

We assume that ¢ belongs to a parameterized family of distributions {f(-;0),0 € ®}, where ® C R' is
the parameter space and 0¢ denotes the true but unknown input parameter. At each time stage ¢, we observe



Liu, Lin, and Zhou

a batch of data y; = {y; j,j =1,...,D} of size D, where {y; ;} are independent and identically distributed
(i.i.d.) with f(-;0¢). To estimate 6¢, we take a Bayesian approach by viewing the unknown parameter as
a random variable 6 and assume a prior distribution 7y on 6. Then the posterior distribution is updated
according to the Bayes rule: m,(0) = m%. With the posterior distribution summarizing all the

information contained in the data so far, we consider a Bayesian average of the original objective function:

min Eo.r, [H (x, 0)], 2
xeZ
where H(x,0) = E¢._f(.g)[h(x,§)]. To solve (2), we use the SGD algorithm for K steps within each time
stage. Note that (2) is the same as the BRO formulation in Wu et al. (2018) with the risk function taken
as the expectation. The algorithm is presented below.

Algorithm 1: Online Simulation Optimization with Decision-Independent Input Data

* At time 0, choose an initial decision xo, prior distribution 7y(6), and step size sequence {a; j,t =
1,2,...;j=0,...,K—1}.
e Attime ¢t > 1, a batch of data y; 1,---,y:.p i f(-;0°) arrives.
1. posterior update: m,(0) < m,_(6) -H?:lf(y,_,j;e).
2. SGD: take K SGD steps in x, i.e.,
2.1. set x; 0 :=x_1.
22. for j=0,--- ,K—1, draw 6, j ~ m;(0) and & j ~ f(-;6; j), and update the solution

Xtj+1:=Proj o {xj —ar jVih(x j,& ) } -

2.3 set x; :==x; g and 1 :=1+1; go to Step 2.
*  Output x7 as the final decision for some terminal time 7" or when some stopping criteria is satisfied.

In the SGD step of Algorithm 1, we use infinitesimal perturbation analysis (IPA, refer to Fu (2008)) to
estimate the gradient of the objective function in (2). We assume we can interchange the expectation and
differentiation, i.e., ViEgz [E¢ g [h(x,& )] = Egn [Egg [Vih(x,&)]]. Then Vi h(x,§) with & ~ f(- ),
where 6 ~ m,(0), is an unbiased gradient estimator of the objective function in (2). This assumption is
satisfied with bounded gradient, where the interchange is justified by the dominated convergence theorem.

3 ONLINE SIMULATION OPTIMIZATION WITH DECISION-DEPENDENT INPUT DATA

In this section, we consider simulation optimization with decision-dependent input distribution, i.e.,

)ICIElIQI}H(X, 96) = Eéwf(-;x,ef) [h<xa é)], 3
where the random variable & follows the decision-dependent input distribution f(-;x, 8¢), and other notations
are defined as in (1). In the online setting, the decision is updated at each time ¢ and denoted by x;, while the
data batch of that stage depends on x;. Specifically, at time stage  we observe datay, = {y, j,j=1,...,D}
of size D, where {y; ;}; are i.i.d. from f(-;x,,0¢). Note that data batches {y, }, are correlated and differently
distributed across stages since the decision x; is updated based on previous decision(s). Regardless of the
correlation and non-stationarity, we use the data batches to update the posterior distribution according to:

. m-1(0)f (yi;%,0)
7(0) = 1 (0)f (v, 0)d6°

Similarly as the previous section, at time stage ¢ we consider optimizing the Bayesian average of the
objective function:

Egur, [H(x,0)] =EgonEc(.x,.0) [h (%, 8)] . )
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To apply SGD on (4), we need to estimate the gradient of the objective function. Assuming we can
interchange integration and differentiation, we have

VBl (x.6)] = EaBe[V,h( &) (i, 0)]+ Bo | [ h(x. )%, (Eix.0)az]

— g V.h(x, )1 (E5x,0)] + o | [ 1008 550 1 G, 0) |
=EgEe |Vih(x, &) +h(x, é)W} :

For simplicity, we denote f;(-;x) = Egr[f(-;x,0)]. From the equation above, it is easy to see an
unbiased gradient estimator of (4) is as follows:

Vih(x, &) +h(xt,§,)w

J?z(étéxt) .

We now present our algorithm below.
Algorithm 2: Online Simulation Optimization with Decision-Dependent Input Data

* At time 0, choose an initial decision xo, prior distribution 7y(6), and step size sequence {a, j,t =
1,2,...;j=0,...,.K—1}.
* Attimet > 1, a batch of data y; 1,---,y1p £ f(5x;,0) arrives.
1. posterior update: m;(0) o< 7,1 (60) -H,D:lf(y,J;O).
2. SGD: take K SGD steps in x, i.e.,
2.1. set x; 0 := Xx;—1.
22. for j=0,---,K—1, draw 6, j ~ m(0) and & ; ~ f(-;x: j, 6; ;), and update the solution

. Vx/\ i Xt,j
X jr1 i=Proj g ¢ xj—aj | Vih (x,7j,§,7j)+h(x,7j,§,7j)M N G))
i (& jixe )

2.3 set x; :==x; g and ¢ :=1+1; go to Step 2.
*  Output x7 as the final decision for some terminal time 7 or when some stopping criteria is satisfied.

4 CONVERGENCE ANALYSIS

In this section, we focus on the decision-dependent case and theoretically study the convergence behavior
of Algorithm 2. Before proceeding to detailed analysis, we first introduce the following notations and
assumptions. Define the Bayesian prior 7y on (@, %(0)), where %(0) is the Borel c-algebra on ©.
Let % denote the data (observation) space. Define a probability space (Q,.%,P), such that P(6 € A) =
mo(A),VA€ B(O®)and P (y, € C | x;,0) = [ f (y;x:,0)dy,VC € B(¥'). Furthermore, define the o-filtration
F1 = 0 {(x¢,yr),T < t}. Without loss of generality, we assume at each time stage the data batch size D =1
and the number of SGD steps K = 1.

Assumption 1

* The parameter space O is finite, i.e.., ® = {0y,..., 6 }. Moreover, 6¢ € ©.

e The prior distribution my(6¢) > 0.

e The decision space 2 = {x | < Kl < u,Vi=1,--- ,d}, where —oo < I; < u; < o and xV is the
i" component of x.

» The observation space ¢ is bounded.
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*  h(x,y) is C-Lipschitz continuous in x and uniformly in y, i.e., ||Vih(x,y)||, <C,Vxe Z,ye ¥,
for some C > 0.
*  f(y;x,0) is continuously differentiable in x and has bounded first order derivative, i.e.,

[|V.f(y;x,0)]], < C',Vx,y, 0, for some C' > 0.
* The step size g, satisfies ) ;- | a; = oo, lim; yeoa; = 0,a, > 0,Vt > 0.

The assumptions above are regularity conditions and easy to be verified in practice. The correlated
and differently distributed data {y,} pose a great challenge to analyzing the consistency of the Bayesian
posterior distribution ;. To prove the consistency, we first show the following intermediate result.
Lemma 2 Suppose Assumption 1 holds. Recall f,(-;x) = Yo m(0)f(-;x,0), and denote f*(-;x) :=
f(5x,09), for any x € 2. At decision x4, the Kullback-Leibler (K-L) divergence between f* and
f; is defined as d;, i.e., d; := KL(f*(-;x:11)||fi(-;x:11)). Then we have

limd, =0 and

o0

dt < oo, a.s..
1

o]
=

Please refer to Appendix A.1 for detailed proof of Lemma 2. Intuitively, Lemma 2 implies that with
more observation data even at different decisions, we know more about the true parameter 6¢ and are able
to provide a more precise estimation of the density f* at the next decision. Moreover, if we know that each
0 is identifiable as rigorously defined in the following assumption, we can further prove the consistency
of m; regardless of the correlation and non-stationarity of the observation data.

Assumption 3 (Linear Independence) For any x in 27, {f(;x,6;)}*_, are linearly independent in %/, i.e.,
crfx,0)+ e f(yx,0)+ ...+ f(0;x,6) =0, We¥ = ci=cy=..=¢=0.

Assumption 3 intuitively requires that for any decision x, the observation distributions generated from
different 0’s are distinguishable. This is usually satisfied in practice and for many distributions. For
example, let f(y;x, 6;) = Bixexp(6;x) be the density function of the exponential distribution with rate 6;x.
One can verify that the Wronskian Determinant is nonzero when 6;’s are distinct, which directly implies
the linear independence of { f(y;x, 6;) };. We then have the following proposition on the strong consistency
of the posterior distribution {, }.

Proposition 4 Under Assumptions 1 and 3, m;(6) — Ogc,a.s. as t — oo.

Please refer to Appendix A.2 for detailed proof. Proposition 4 guarantees that although our observation
depends on our current decision, it can provide enough information to make sure the posterior distribution
will finally concentrate on the true parameter. The consistency of m; ensures that our gradient estimator is
accurate enough, and Algorithm 2 can converge.

We study the asymptotic behavior of Algorithm 2 by the ordinal differential equation (ODE) method
(refer to Kushner and Yin (2003)). The main idea is that SGD can be viewed as a noisy discretization
of an ODE. Under certain conditions, the noise in SGD averages out asymptotically, such that the SGD
iterates converge to the solution trajectory of an ODE. Before proceeding to our main convergence result,
we introduce some more notations. Let N(¢) be the unique n such that Z?;OI a; <t <Y ga;fort>0,and
0 for t < 0. Define the interpolated continuous process X as X (0) = xo and X (¢) = xy(,y for any ¢ > 0, and

the shifted process as X" (s) = X (s + X7~ ;) for any s > 0. We then have the following theorem.
Theorem 5 Let D?[0, ) be the space of R?-valued operators which are right continuous and have left-hand

limits for each dimension. Under Assumptions 1 and 3, for each subsequence of {X"(-)},, there exists a
further subsequence {X"(-)},, and a process X*(-) such that X"(-) = X*(-) in the weak sense as t — oo
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in the space D9[0,0), where X*(-) satisfies the following ODE:
X =-VH(X,6+z, z€ —C(X), X(0)=xo, (6)

where z is the minimum force needed to keep the trajectory of the ODE in Z". Let L4 be the set of limit
points of (6) in 2. Then there exist y, — 0 and 7, — oo such that

limP{supDist(X”(t),L%) > ﬂn} =0,
" 1<I,

where Dist(x,A) = infyc4 ||x — y||> for any set A and point x € 2.

Remark 6 The set C(X) in (6) is defined as follows. For X € 277 , the interior of 27, C(X) contains only
the zero element; for X € a.Z", the boundary of .27, let C(X) be the infinite convex cone generated by the
outer normals at X of the faces on which X lies.

Remark 7 Theorem 5 shows the weak convergence of Algorithm 2. The SGD iterates specified in (5)
approaches the solution trajectory of the ODE (6) and eventually converges to a limit point of the ODE,
which is a point x* satisfying VH (x*,0¢) = 0 if the point is in the interior of 2". Hence, such a point is a
stationary point of problem (3) and can be a local optimal solution if it is stable. The weak convergence
result implies that once the trajectory enters the domain of attraction of a local optimal solution, the chance
of escaping from it goes to O in the limit.

Now we prove Theorem 5 below.

Proof.  Recall that at time ¢ 4 1, Algorithm 2 takes the following update

Xl =X —ay (Vxh(x,,@)—i-h(xt,ft)m) + a;z,

where & ~ f(-;x,6;), 6; ~ 7 and a,z is the projection term. Note that
E[Vih(xi, &) F] = E[Vih(x:, &) xi, m] = E[E[Vih(xi, &) 6], 7]

) [/@ Vih(x:,y) f(vsx, Gr)dy\xt,m} = XG"n,(G)A/ Vih(x:, ) f(y:x:,0)dy
— /?y%:ﬂ;(e)vxh(xt,y)f(y;x,, O)dy = ]Eny,(.;x,)Vxh(xz,y)

=By p () Vah(x, ) + (Eywﬁ(.;x,)vxh(xn)’) —Ewa*(.;xt)vxh(x,,y»
= Eny*(:xl)Vxh(xta)’) + Bz,l,
where f*(;x) = f(:x,0°) for x € 27, and By =E; ;..\ Vih(x1,y) = Eyopi(n) Vih(x:,y) is the bias.

Further, we have

foAt (ét;xt) Vxﬁ(éﬁxz) >
E h.xt, t) O\t =E h.x;, t)———" | X, | = hx,, Vx 1+ (Vs Xt d
(582 u] [( &) n] [, M)V (i) dy

= [ Hos3)9r i+ ([ min) Vo in)as = [ ns)¥r Ginay )
4 4 &

- L}/h(xt,ﬁvxf* (vsxi)dy+ Br 2,
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where f;, = fgh(x,,y)vxﬁ (vsxe)dy — [ h(x,y)Vif*(y;x:)dy. Note that
l]h(x,,y)vxf* (320 )dy + By pe (1) Vit (32, y) = Vo H (x, 6°),
and we can rewrite the update as

Xe+1 =X —a;Vy H(Xn ) _atﬁt 1 —athZ —a,OM; + a7,

where M, = h(x;,&) — E[V h(x,&)|-F] is a martingale difference sequence. Suppose we can show
lim; e ;1 =0 a.s. and limy_, B2 = 0 a.s., then the rest of the update is exactly the discretization of
ODE (6). Utilizing the consistency of m;, we show the two bias terms f;; and B, vanish in the limit,
i.e., limy_ o B 1 =0 a.s. (see Lemma 8 in the Appendix A.3) and lim, ;. f;2 =0 a.s. (see Lemma 9 in the
Appendix A.4). Then Theorem 5 is proved by a straightforward application of Theorem 2.1 in Chapter 7.2
in Kushner and Yin (2003). ]

5 NUMERICAL EXPERIMENTS

We carry out numerical experiments on a simple quadratic problem: %(x,&) = (x—5)240.5Ex. In the
decision-independent case we assume & ~ .4 (6¢,072), and in the decision- dependent case & ~ A (x+
6¢,62). In both cases, 6 =4, ¢ =9, and the parameter space ® = {1,2,---,10}.

* Experiment 1. In this experiment, we demonstrate the performance of Algorithm 1 in the decision-

independent case. It is easy to check H (x,8) = x> — 5.5x+ 25, and the true optimal decision is taken

at x* =2.75. At each time ¢, the gradient estimator in Algorithm 1 is V. h(x,, &) = 2x, — 10+ 0.5&.

We use a uniform prior distribution on the parameter. We set the initial solution xo = 20, batch data

size D = 1, number of SGD steps K = 1, step size a; = t%, and the total number of time stages

= 1000. We run Algorithm 1 for 100 times on the problem. The mean and standard deviation

of the solution error |x, —x*| over time is shown in Figure 1. Figure 1 shows that with decreasing
step size, the solution sequence in Algorithm 1 converges to the true optimal solution.

Mean of Error Standard Deviation of Error

100
| :
10° =
| :
E l\ [=]
= B
", 8

h & 107!
10 W\"\NWW &

\W
0 W00 400 §00 800 1000 0 00 400 B0 800 1000
Time Stage t Time Stage t
Figure 1: Mean and standard deviation of |x; —x*| of 100 runs of Algorithm 1 with a, = ; +5, =1,K=1.

In the decision-dependent case, it is easy to verify that H(x,0) = (x —5)> +0.5(x+0)x = 1.5x*> — 5.5x +
25 and the true optimal decisionis x* = % . The gradient estimator in Algorithm 2 at each timezis V4 (x;, & ) +

h(x, &) *f’ 5‘;‘ , which can be computed as (2x; — 10+ 0.5€) + ((x; —5)? +0.5§,x,)2£:’n(1%')? }{éﬁ‘;j‘ég’),

X;+6; t — (X0 t —\ Xt r2
where f(&i,,x[,eoz L exp (- ELUE) v, p(E,6) = S exp (B ) We use a

uniform prior distribution on the parameter. We set the step size a; = zis and initial solution xy = 20. We
run Algorithm 2 for 100 times to solve the problem (2).

* Experiment 2. In this experiment, we first demonstrate the convergence of the posterior distribution
;. We set the batch data size D = 1, the number of SGD steps at each time stage as K = 1, and the
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total number of time stages T = 500. Figure 2 shows that mean of 7, (6¢), the posterior probability
mass on the true parameter 0¢, increases and converges to 1, and the 95% confidence interval of
m(0¢) goes to 0. This empirically verifies our theoretical result Lemma 4. Next, Figure 3 shows
that the mean and standard deviation of the solution error |x; —x*| over T = 2000 time stages, which
demonstrates the convergence of the solution sequence to the true optimal solution.

Posterior Probability Mass on True Parameter 8°

10 e —
W T
g ™ ==
= 08 =
z o
E o //_,—/
[
=9
5 04
I
8 o2 —— mean posterior probability mass
& | 95% confidence interval of posterior probakbility mass
0 100 200 300 400 500

Time Stage t

Figure 2: Mean and 95% confidence interval of m;(0) of 100 runs of Algorithm 2. a;, = z%s’ D=1,K=1.

Mean of Error Standard Deviation of Error
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Figure 3: Mean and standard deviation of |x, —x*| of 100 runs of Algorithm 2. a, = t%s’ D=1,K=1.

Posterior Probability Mass on True Parameter 8°
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Figure 4: Mean of m,;(6¢) of 100 runs of Algorithm 2 under different batch size D. a; = [%5, K=1.

* Experiment 3. In this experiment, we empirically study the impact of the batch size D and number
of SGD steps K on the convergence rate. Figure 4 plots m,(6¢) over T = 400 time stages under
different data batch size D. It shows that as we observe more data at each time stage, the posterior
distribution converges faster to a delta function concentrated on the true parameter 8¢. Figure 5 plots
the mean of the solution error |x; —x*| of 100 runs of Algorithm 2 under different batch size D. As
a benchmark, we replace the gradient estimator in Algorithm 2 with the gradient estimator that uses

the true parameter 6¢ (denoted by D = ), i.e., V h(x, &) +h(x, ‘g’)% where & ~ f(-;x,0°).
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Mean of Error with Different Data Batch Sizes

10t | D=2
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Figure 5: Mean of |x, —x*| of 100 runs of Algorithm 2 under different batch size D. a; = -2

m,KZI

Mean of Error with Different Number of SGD Steps
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Figure 6: Mean of |x, —x*| of 100 runs of Algorithm 2 under different number of SGD steps K. D = 1,

— 2
4 = 115"

Figure 4 and Figure 5 together show that there is no significant difference in the convergence rate
under different data batch sizes, even though the posterior distribution converges faster with larger
data batch size. It implies that the Bayesian average of the objective function (4) in this example is a
good estimate of the true objective function regardless of the inaccuracy of the posterior distribution
at the beginning time stages. Figure 6 plots the solution error of Algorithm 2 under different number
of SGD steps K in each time stage. It shows that, when we take more SGD steps at each time
stage, the algorithm converges faster in the beginning but eventually behaves similarly.
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A APPENDICES

A.1Proof of Lemma 2

Proof. Define w, = —log m;(0¢). One can easily verifies that w, > 0. Then we have

Ewi 1] = E[E[wi1|F,x11]]
5 (0°) f(Vis13%41,0°) a ”
Ft,X,
gZGWt(Q)f()’zH;szae)’ p
f()’t+1§xt+1796)
=FE|—logm (06 —E[lo
om0~ [lp Lm0

= E[w,] —E[KL(f* (sxe00) |1 /i (ix041))]-

~&[E |10

‘ft,sz”
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This implies that E[d;] = E[w;] — E[w;+1]. For any T > 0, we have

T T

;)E[dt} = ;)E[Wt] —E[W,_H] =Wy —E[WT_H] < wp < 0.

Then we have Y;2 (E[d;] < wp. Ve > 0, we have

oo oo

Y P(d, > €) < Y Eld)] < oo,
=0 € =0

By Borel-Cantelli Lemma, we know that P(d; > €,i.0) = 0, which further implies lim,_,..d; = 0,a.s..
Moreover, since d; > 0, by Tonelli’s Theorem, we have

t=0

E [id,] _ Y E[d] < wp.
=0

Since Y ;- d; has bounded expectation, it must be finite almost surely. O

A.2 Proof of Proposition 4

Proof.  Without loss of generality, we assume 6° = 6'. Recall that f*(v;x.41) = f*(y;x41,0") and
Ji(ixes1) = L m(6') f(y;xi41,0'). Then

L xeen) = fisxgn) = (1= m(60) f(y3x041,0') + Y m(0) f (v:211,0').

i>1

Note that (7;(8'),...,m,(6%)) is bounded. Take any convergence subsequence {t1,t,...} with limit
(P}, p3, -, pi)- From this subsequence, take a further subsequence {7, 7,...} such that x| converges to
x'. We can find this subsequence since 2" is bounded. Then

F xi) = fa(ixg) = (1= (p)f(3x,0") + Y pi f(3:x, 67).

i>1

Moreover, since K-L divergence dominates total variation distance between two distributions, we have

/,

From (7) and Lemma 2, we know that [, |f*(y;x,41) —f,(y;xtﬂ)‘dy — 0,a.s.. By dominant conver-
gence theorem, we have [, ‘(1 —(P))fsx*,0) +Xis1 prf(ysx", Gi)|dy =0, which implies

f*(y;xtﬂ)_ﬁ(y;xtﬂ)’dySdt- (7

(1= (P fix*, 0"+ Y pi f(yix*,07) = 0,Vy.

i>1

By linear independence, we know p} = 1,p5 = ... = p; = 0. Since every convergent subsequence of
{(m(8Y),...,m(6%))}, have the same limit, we know 7,(8) — Sge. O

A.3Lemma 8 and Proof

Lemma 8 Under Assumptions 1 and 3, lim;_,e. ff;1 =0 a.s..
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Proof. ~ We bound |f; 1| as follows.
’Bt,1| = |Ey~f;(.;x,)vxh(xta)7) - Ey~f*(~;x,)vxh(xtay)|
< max|[Vuh(e)| || 1) = fivs) | dy
< C/y 5 i) = £ )|+ | sxee) = fisxen) |+ | fi(ix) = fi (sx1) | dy.

By Lipschitz condition, |f*(y;x;) — f*(y;xe41)| < L||x — xi+1|| < LDa, and {f,(y;x,) —f,(y;xtﬂ)’ < LDa;
for some L,D > 0. Thus, given the boundedness of %, there exists some constant C” > 0, such that

/g |7 sxe) = £ (vsxen) | + ‘J?t()’;xz) —ﬁ(y;xt+1)|dy <C"q. (®)

Moreover, since K-L divergence dominates total variation distance between two distributions, we have
/@ |f*sxr41) = fr 3 x041) | dy < d. 9

Then combine (8) and (9), we know that lim; . |3 1| =0 a.s.. d

A.4Lemma 9 and Proof

Lemma 9 Under Assumptions 1 and 3, lim; .. ;2 =0 a.s..

Proof. We bound f; » as follows.
B2l = / h(x,y)Vxf; (y;Xz)dy—/ h(Xz’y)fo*(y;Xz)dy‘
7% %

= /@h(x,,y) (Vxﬁ (vsx) = Vi f* ()’§Xt)) dy’

:/@h(xz,y) Y (m(0) — 86:(0))Vif(yix,,0) | dy

6cO

gc*c’/ ldy| Y m(6)—84:(6)| — 0,
v 00

almost surely as t — oo, since % is bounded and we have the consistency of m;(6) from Proposition 4. [
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