
Proceedings of the 2021 Winter Simulation Conference
S. Kim, B. Feng, K. Smith, S. Masoud, Z. Zheng, C. Szabo, and M. Loper, eds.

DATA-DRIVEN TWO-STAGE STOCHASTIC PROGRAMMING WITH MARGINAL DATA

Ke Ren
Hoda Bidkhori

Department of Industrial Engineering
University of Pittsburgh

3700 O’Hara Street
Pittsburgh, PA 15261, USA

ABSTRACT

We present new methodologies to solve data-driven two-stage stochastic optimization when only the
marginal data are available. We propose a novel data-driven distributionally robust framework that only
uses the available marginal data. The proposed model is distinguished from the traditional techniques of
solving missing data in that it conducts an integrated analysis of missing data and optimization problems,
whereas classical methods conduct separate analyses by first recovering the missing data and then finding
the optimal solutions. On the theoretical side, we show that our model produces risk-averse solutions and
guarantees finite sample performance. Empirical experiments are conducted on two applications based on
synthetic data and real-world data. We validate the proposed finite sample guarantee and show that the
proposed approach achieves better out-of-sample performance and higher reliability than the classical data
imputation-based approach.

1 INTRODUCTION

This paper proposes a risk-averse framework for data-driven two-stage stochastic optimization when only
the marginal data are available. Two-stage stochastic programming (Dantzig 1955) is quite common in
many real-world applications, such as network designs (Liu, Fan, and Ordóñez 2009), supply chain (Dillon,
Oliveira, and Abbasi 2017), portfolio management (Gülten and Ruszczyński 2015), social networks (Wu
and Küçükyavuz 2018) and health care (Denton, Miller, Balasubramanian, and Huschka 2010). Its objective
is to minimize the total expected costs associated with both first-stage (here-and-now) and second-stage
(wait-and-see) decisions, where the first-stage decisions have to be made before the realizations of the
uncertainties in the second stage.

We denote the uncertainties of the second-stage problem as a random variable ξ . In most existing
works, the distribution of ξ is assumed to be known in advance, which is often not true in practice. Recently,
data-driven approaches have been proposed (Hanasusanto and Kuhn 2018; Zhao and Guan 2018; Jiang and
Guan 2018; Chen, Sim, and Xiong 2020) to solve the two-stage stochastic programming. These methods
work well if well-conditioned historical data for ξ are available. However, if ξ is multidimensional, the
joint data of ξ are often hard to obtain in the real-world complex data environment.

For example, consider a supply chain optimization problem where ξ represents the demand scenarios
at all retailers. Each dimension ξi represents the demand scenarios at the i-th retailer. In practice, the
joint data of ξ are very few compared to the available marginal data. One other application is portfolio
optimization, where missing data is a common problem (Rădulescu and Rădulescu 2013; Taylor 2006).

The existing data-driven two-stage stochastic programming models cannot address the issue of missing
joint data as they rely on well-conditioned data. In this study, we propose a risk-averse, data-driven
two-stage stochastic programming model that uses only the marginal data at each ξi. The model first
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proposes an ambiguity set P containing the possible joint distributions of ξ through the available marginal
data and possible correlations. We then propose distributionally robust optimization (DRO) techniques to
solve the original two-stage stochastic programming with respect to the worst-case joint distributions inside
this ambiguity set. We further provide theoretical guarantees, tractable reformulations, and computational
evaluations of the proposed methods based on synthetic and real-world data.

The proposed model uses DRO, which is a popular approach to optimization under uncertainty, with
applications in reinforcement learning (Smirnova, Dohmatob, and Mary 2019), semi-supervised learning
(Blanchet and Kang 2020), and classification (Abadeh, Esfahani, and Kuhn 2015). More introductions are
provided in Section 3.

Our contributions. The proposed DRO model provides a new and robust way to solve data-driven
two-stage stochastic optimization with marginal data. The classical approach based on data imputation
(Lakshminarayan, Harp, Goldman, Samad, et al. 1996) follows a “estimate-then-optimize” paradigm, where
it first imputes the missing data and then solves the optimization problem. The proposed model conducts
an integrated analysis by combining the distribution estimation from missing data into the optimization
problem. Our model outperforms the “estimate-then-optimize” paradigm in that it produces more robust
decisions by considering the potential risks generated by the missing data estimations. The proposed model
works in situations where the joint data are totally unavailable.

We evaluate the performance of the proposed model, both theoretically and numerically. We derive a
probabilistic upper bound to the out-of-sample performance of the proposed model under a finite number
of data. We further provide a reformulation of the proposed model, which can be applied to solve a wide
range of problems efficiently. We conduct two numerical studies based on two applications: a risk-averse
lot-sizing problem (Tarim and Kingsman 2004) and portfolio optimization (Alexander, Coleman, and Li
2006). In the first numerical study, we simulate 100 different joint distributions and validate the proposed
theoretical upper bound. In the second numerical study, we apply our methods to 57 pairs of the training sets
and test sets. These sets were obtained from real-world historical returns of exchange-traded funds (ETFs),
and the US central bank (FED) rate of return from 2006 to 2016 (Boyd 2019). We justify the conclusion
that the proposed model consistently yields better out-of-sample performance and higher reliability than
the data imputation-based method.

2 PRELIMINARY

Assumptions and Notations Throughout this paper, we use the following notations and assumptions. A
general two-stage stochastic programming can be formulated as

min
x

f (x)+E[Q(x,ξ )], (1)

where f (x) is a first-stage cost and Q(x,ξ ) is the optimal value of the second-stage problem depending on
the random variable ξ and the first-stage decision x. If ξ has an infinite number of possible realizations,
(1) signifies a hard problem and is difficult to solve even approximately in general (Hanasusanto, Kuhn,
and Wiesemann 2016). One common solution in the literature, called scenario construction (Shapiro,
Dentcheva, and Ruszczyński 2014), is to select some representative scenarios. Therefore, in this paper, we
assume the support of the random variable ξ is known and finite.

In addition, we assume that the second-stage problem is always bounded and feasible, which is a
common assumption (Shapiro and Nemirovski 2005; Zhao and Guan 2018). Without loss of generality, we
assume that each ξi (i = 1, · · · , I) can take values of {ξi(1), · · · ,ξi(J)}. In addition, we use a I-dimensional
vector s, si ∈ {1, · · · ,J}, as an index to denote one joint possible realization of ξ for simplicity. We call s
scenario throughout the rest of the paper. The si = j indicates ξi = ξi( j). The set containing all indexes
of the scenarios is denoted as S . The scenario s happens with probability Pr(s), which is not known but
the historical data of each ξi(1 6 i 6 I) are available. We denote the n-th data for ξi as ξ̂in, n = 1, · · · ,Ni.
Finally, for each ξi, we use pi, j to denote the true unknown marginal probability of ξi = ξi( j), or si = j
equivalently.
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3 RELATED WORK

The proposed study is related to two main areas: missing data and data-driven two-stage stochastic
programming. In what follows, we provide a brief review of each topic.

Missing data. Missing data is a challenging factor in machine learning and statistics (Garcı́a-Laencina,
Sancho-Gómez, and Figueiras-Vidal 2010; Goodfellow, Bengio, and Courville 2016) because most models
in the literature rely on complete data. One of the most natural options is to discard any data that include
missing values. However, this approach may lead to biased results (Little and Rubin 2019) or result in the
loss of information. Another common way is data imputation, which includes (Barnard and Meng 1999;
Yoon, Jordon, and Schaar 2018; Śmieja, Struski, Tabor, Zieliński, and Spurek 2018). Data imputation
approaches recover the incomplete data set by estimating missing values based on the observed data.

In this study, we adopt a novel, robust approach to tackle the problems when the joint data are unavailable
or very rare. Instead of recovering the joint data through data imputation, we propose an integrated model
to find optimal decisions based on the information of marginal distributions. Former works have considered
of using only marginal distributions for decision-making. Researchers (Gao and Kleywegt 2017) assume
the marginal distributions are known. The goal is to infer the unknown joint distribution based on the
available data so as to solve the corresponding stochastic programming. To this goal, they build ambiguity
set to capture possible dependence structures based on the Wasserstein distance. Another work (Chen, Ma,
Natarajan, Simchi-Levi, and Yan 2018) also studies a related problem, where they focus on evaluating the
bound of the inner maximization problem of a DRO problem with specified marginal distributions. Although
this bound is shown to be NP-hard to compute, a sufficient condition for polynomial time solvability along
with instances are identified. In our problem, the marginal distribution is also unknown. We build our
model directly through marginal data.

Data-driven two-stage stochastic programming. The first data-driven two-stage stochastic program-
ming approach signifies sample average approximation (SAA), which was first studied by (Shapiro and
Homem-de Mello 1998; Kleywegt, Shapiro, and Homem-de Mello 2002). SAA approximates the unknown
distribution in the second stage through empirical distributions. If the data samples of future true unknown
distributions can be generated efficiently, the optimal solution of SAA converges to the true optimal with
probability 1. If only a small number of samples are available, the performance of the obtained solution
is not good. To overcome the challenges stemming from the finite or small sample size, researchers
have proposed risk-averse two-stage stochastic programming models (Hanasusanto and Kuhn 2018; Zhao
and Guan 2018). We are adopting ideas from distributionally robust optimization, which optimizes the
worst-case expectations with respect to all distributions P inside the ambiguity set P . The ambiguity set is
defined as a family of distributions containing the true unknown distribution with high confidence. Choosing
some well-constructed ambiguity set (Delage and Ye 2010) guarantees the out-of-sample performance of
the model.

All the approaches discussed thus far use the complete joint data of ξ . However, in this paper, we build
our model from the incomplete data set (when only marginal data are available) and solve the problem by
considering possible correlations between components, which has been shown to be important in stochastic
optimization (Agrawal, Ding, Saberi, and Ye 2012).

4 PROBLEM FORMULATION

In this section, we develop a risk-averse two-stage stochastic programming model, in which the distribution
of ξ is not known, but the historical data of each component ξi are available. The main model is
formulated and presented in Section 4.1. In this formulation, the unknown distribution of ξ is captured
by an ambiguity set P , which is introduced in Section 4.2. We further justify the performance of this
framework theoretically and prove the finite sample guarantee in Section 4.3. Finally, we provide a simple
closed-form reformulation in Section 4.4.
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4.1 DRO model

The proposed model is formulated in (2), where the second-stage optimal cost Q(x,ξ ) is explicitly denoted
as miny∈Y (x,s) h(x,y,s), with Y (x,s) being the feasible region for the second-stage decision y (although
sometimes we use Y to denote it for convenience). We assume the dimensions of x and y are m1 and m2,
x ∈ Rm1 and y ∈ Rm2 . We do not restrict the forms of f (x) or h(x,y,s). Furthermore, we only assume
X ⊆Rm1 and Y ⊆Rm2 here. We will discuss the tractability of the proposed model under different classes
of functions and sets in Section 4.4.

min
x∈X

f (x)+ max
{Pr(s),∀s∈S }∈P

∑
s∈S

Pr(s)[min
y∈Y

h(x,y,s)] (2)

The objective function of (2) minimizes the expectation of the second-stage cost with respect to a
worst-case distribution inside the ambiguity set P .

4.1.1 Benefits of using Formulation (2)

Compared to the traditional approaches of solving missing data problems, model (2) is unique in that
it combines the estimation step of {Pr(s),∀s ∈S } and the derivation step of x ∈X . Classical method
relies on data imputation, which first estimates {Pr(s),∀s ∈ S } and then derives the optimal x. The
joint distribution inferred from model (2) will change according to f (x) and h(x,y,s) even if the data
set remains the same. Further, by considering a worst-case distribution, specifically, the obtained optimal
decision is risk-averse, which brings benefits in many real-world applications. We will illustrate this point
in computational studies.

4.2 Ambiguity set P

In this section, we propose an ambiguity set that uses only the marginal historical data. The main idea is
to learn the unknown marginal distributions from the data and then consider the worst-case correlations
among all components to obtain the joint distribution. The motivation of P is as follows. First of all, the
true marginal probability pi, j is not known to the decision-makers. However, by the law of large numbers,

the value of pi, j should be close to the empirical value p̂i, j =
∑

Ni
n=1 1(ξ̂in = ξi( j))

Ni
, where 1() is an indicator

function. Therefore, we model the true pi, j by pi, j = p̂i, j + di, j, where di, j represents a small deviation.
The ambiguity set P is defined as follows and we explain it line by line.

P =

{Pr(s),∀s ∈S } :

∑{s|si= j}Pr(s) = p̂i, j +di, j,∀i, j,
∑

J
j=1 di, j = 0,∀i,

∑
J
j=1 |di, j|6 τi,∀i,

∑s∈S Pr(s) = 1,
Pr(s)> 0, ∀s ∈S .

 . (3)

The first line restricts the marginal distributions for ξi deviate from the empirical distributions by a
small quantity. The second line ensures that the marginal distribution is valid because for any i, there is
∑

J
j=1 p̂i, j = 1. The third line restricts the total magnitude of the deviations in i-th component to be less than

τi. Later, we will show that the robustness of the model can be tuned by adjusting τi. The last two lines
ensure that all joint distributions of ξ satisfying the corresponding constraints on marginal distributions
are included in the ambiguity set.

4.3 Finite sample guarantee

In this section, we provide the finite sample guarantee (Esfahani and Kuhn 2018) of DRO frameworks for
(2) by showing that the optimal objective value of (2) is a probabilistic upper bound of the objective value
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in case the true distribution is known. The main results are summarized in Proposition 1 and we use the
following lemma to prove it.
Lemma 1 (Bretagnolle-Huber-Carol inequality) (Bellet and Habrard 2015) If the random vector (v1, · · · ,va)
is multinomially distributed with parameters N and (p1, · · · , pa), then for any c > 0,

Pr(
a

∑
i=1
|vi−N pi|> 2

√
Nc)6 2ae−2c2

.

We obtain the following Proposition 1 by setting τi =
2c√

N
with some well-chosen c.

Proposition 1 Let Ni be the number of the data for ξi, 0 < αi < 1 for i = 1, · · · , I and τi =

√
2ln 2J

αi

Ni
. Then

with probability at least 1−αi all the true pi, j, j = 1, · · · ,J, are contained in the feasible region of (2).
Suppose the optimal solution of (2) is x̂∗ with objective value Ô. With probability at least ∏

I
i=1(1−αi),

we have

f (x̂∗)+ ∑
s∈S

Pr∗(s)[min
y∈Y

h(x̂∗,y,s)]6 Ô,

where Pr∗(s) denotes the true probability for the s-th scenario in the future.

Proof. We provide a brief proof sketch here due to the limited space. Bretagnolle-Huber-Carol inequality
is equivalent to

Pr(
a

∑
i=1
|vi

N
− pi|>

2√
N

c)6 2ae−2c2
.

We view pi as the true distribution and vi
N as the empirical distribution. According to (3), the difference

between the true distribution and the empirical distribution is less than τi. Therefore, if we set τi =
2√
N

c,

then 2ae−2c2
(a = J) represents an upper bound of the violation probability αi. Correspondingly, solving

the obtained two equalities τi =
2√
N

c, 2ae−2c2
= αi gives us the result.

Therefore, we can control the conservativenes of the proposed model by adjusting the values of τi
defined in P . For a fixed confidence level αi, the total deviation τi decreases at a rate of 1√

Ni
. In general,

an increase in τi will reduce the violation probability. Correspondingly, the true costs will have a higher
probability to be bounded by the costs of the optimal solution of the proposed model. However, similar
to other DRO frameworks (Delage and Ye 2010; Esfahani and Kuhn 2018), we recommend to use cross-
validations to choose an appropriate τi in practice for better performances because this bound is often too
conservative.

4.4 Worst-case reformulation

We provide a reformulation of (2) and discuss its tractability. The main idea is to replace the worst-case
second-stage problem with its dual problem. The results are summarized in Theorem 1.
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Theorem 1 Optimization (2) is equivalent to the following optimization problem:

min
(···)

f (x)+ γ +
I

∑
i=1

J

∑
j=1

λi, j p̂i, j +
I

∑
i=1

ρiτi

s.t. h(x,ys,s)6 ∑
{i, j|si= j}

λi, j− γ,∀s ∈S ,

ys ∈ Y (x,s),∀s ∈S ,

βi−θi, j +λi, j +πi, j = 0,∀i, j,

θi, j +πi, j−ρi = 0,∀i, j,

x ∈X ,

(4)

where we use (· · ·) to indicate {x,λi, j,γ,βi,ρi > 0,θi, j > 0,πi, j > 0} and ys ∈ Rm2 .

Proof. Problem (2) is equivalent to:

min
x∈X

f (x)+ max
Pr(s),di, j,zi, j

∑
s∈S

Pr(s)[min
y∈Y

h(x,y,s)]

s.t. ∑
{s|si= j}

Pr(s) = p̂i, j +di, j, ∀i, j,

J

∑
j=1

di, j = 0,
J

∑
j=1

zi, j 6 τi, ∀i,

zi, j > di, j,zi, j >−di, j, ∀i, j,

∑
s∈S

Pr(s) = 1,Pr(s)> 0, ∀s ∈S .

(5)

The Lagrangian of the second-stage maximization problem is:

max
Pr(s)>0,di, j,zi, j

min
(···)

∑
s∈S

Pr(s)[min
y∈Y

h(x,y,s)]−
I

∑
i=1

J

∑
j=1

λi, j( ∑
{s|si= j}

Pr(s)− p̂i, j−di, j)

− γ(∑
s∈S

Pr(s)−1)+
I

∑
i=1

βi ∑
j

di, j−
I

∑
i=1

ρi(∑
j

zi, j− τi)

+
I

∑
i=1

J

∑
j=1

θi, j(zi, j−di, j)+
I

∑
i=1

J

∑
j=1

πi, j(zi, j +di, j)

(6)

Due to the space issue, we use (· · ·) to indicate {λi, j,γ,βi,ρi > 0,θi, j > 0,πi, j > 0}. Problem (6) is linear
with respect to Pr(s), ddd, and zzz when the Lagrangian multipliers are fixed and is also linear with respect to
the Lagrangian multipliers when Pr(s),ddd,zzz are fixed. Therefore, following the minimax theorem, we can
switch the min and max. Therefore, (6) is equivalent to:

min
(···)

max
Pr(s)>0,di, j,zi, j

∑
s∈S

Pr(s)[min
y∈Y

h(x,y,s)− ∑
{i, j|si= j}

λi, j− γ]−
I

∑
i=1

J

∑
j=1

λi, j(−p̂i, j)− γ(−1)

+
I

∑
i=1

J

∑
j=1

di, j(βi−θi, j +λi, j +πi, j)−
I

∑
i=1

ρi(−τi)+
I

∑
i=1

J

∑
j=1

zi, j(θi, j +πi, j−ρk)

(7)
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The primal problem is always feasible based on the assumption made in the introduction, which indicates
the following constraints for (7).

min
y∈Y

h(x,y,s)− ∑
{i, j|si= j}

λi, j− γ 6 0,

βi−θi, j +λi, j +πi, j = 0,∀i, j,

θi, j +πi, j−ρi = 0,∀i, j.

Correspondingly, (7) is equivalent to:

min
(···)

γ +
I

∑
i=1

J

∑
j=1

λi, j p̂i, j +
I

∑
i=1

ρiτi

s.t. min
y∈Y

h(x,y,s)− ∑
{i, j|si= j}

λi, j− γ 6 0,∀s ∈S ,

βi−θi, j +λi, j +πi, j = 0,∀i, j,

θi, j +πi, j−ρi = 0,∀i, j.

(8)

Notice that the minimization in the first set of constraints appears on the smaller side of the inequality.
Therefore, the minimization can be eliminated by introducing auxiliary variables ys.

min
y∈Y

h(x,y,s)6 ∑
{i, j|si= j}

λi, j + γ ⇒ h(x,ys,s)6 ∑
{i, j|si= j}

λi, j + γ,ys ∈ Y (x,s).

Finally, we add the first stage problem back, which completes the proof.

4.4.1 Tractability

In a classical two-stage stochastic programming, there is h(x,y,s) = q(s)T y and Y = T (s)x+W (s)y 6 r(s),
where q(s) ∈ Rm1 , T (s) ∈ Rm3×m1 , W (s) ∈ Rm3×m2 , and r(s) ∈ Rm3 . Then, Optimization (4) is a simple
linear programming. In general, if f (x) and h(x,y,s) are convex with respect to x and y, and X , Y are
convex sets or mixed-integer linear sets (Conforti, Cornuéjols, and Zambelli 2014). Appropriate methods
can be applied to solve (4).

4.5 Applications in risk-averse lot-sizing problem

We apply the proposed model to the risk-averse lot-sizing problem. The settings used are mostly adopted
from (Jiang and Guan 2018). This problem optimizes the total costs of supplying the demand ξ in T
periods. Before the realization of the demand ξ , decision-makers need to decide which periods require
production setup. After the realization of the demand ξ , the decision-makers schedule the production plan
to meet the demand at the cheapest costs, where the production can only happen during the periods chosen
before.

4.5.1 Problem setup

This problem is defined as follows. A decision-maker schedules production in a finite operational interval
{1, · · · ,T}. In each period t ∈ {1, · · · ,T}, production amount can be made up to a capacity Ct at a setup
cost ct and a unit production cost qt . A random demand ξt needs to be fulfilled at the beginning of each
time period t. The demand can be satisfied by either immediate production or inventory left from previous
periods, or outsourcing (buying from other suppliers). Positive inventory at the end of period t is charged
with a unit holding cost ht , while each outsourcing incurs a unit cost Mt .
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The first-stage cost is the setup cost and the first-stage decision x ∈ {0,1}T signifies whether or not
to produce at time period t, t = 1, · · · ,T . The second-stage cost signifies the cost of meeting the demand,
where the decisions y,p ∈ RT represent the production quantity and outsourcing quantity respectively in
T time periods. The random demand ξ ∈ RT is a T -dimensional variable. Therefore, the total expected
costs for lot-sizing problems are:

min
x

T

∑
t=1

ctxt +E[Q(x,ξ )]. (9)

The second-stage costs depend on the random demands ξ during T periods. We define a variable
v ∈RT+1 to denote the inventory levels at time period t. Then, the second-stage optimal cost is formulated
as

Q(x,ξ ) = min
y,p

T

∑
t=1

qtyt(ξ )+
T

∑
t=1

Mt pt(ξ )+
T

∑
t=1

htvt(ξ )

s.t. vt−1(ξ )+ yt(ξ )+ pt(ξ )

= ξt + vt(ξ ), t = 1, · · · ,T,
yt(ξ )6Ctxt , t = 1, · · · ,T,
v0(ξ ) = vT (ξ ) = 0,

yt(ξ ), pt(ξ ),vt(ξ )> 0,∀t.

(10)

The first series of constraints in (10) characterize the relationship between the inventory levels at time
t and t−1. The second series of constraints restrict the production quantity to be less than the production
capacity. Accordingly, the risk-averse lot-sizing problem is modeled as

min
x

T

∑
t=1

ctxt +max
P∈P

EP[Q(x,ξ )],

where we denote P as the distribution of ξ .

4.5.2 Experimental settings

Suppose the optimal objective value of the proposed model under marginal data is Ô, and the realized cost
under the true joint distribution is O∗. In the experiments, we want to evaluate the finite sample guarantee
Pr(Ô > O∗). In addition, we are interested in determining if Ô can effectively approximate O∗ by using
only the marginal distributions. To this goal, we randomly simulate a joint distribution P and collect the
marginal data from it. Then we solve the proposed model based on the marginal data and evaluate its
performance through the distribution P. The detailed procedure for one experiment is described as follows:
1) We randomly generate a joint distribution P for ξ , then we simulate 20 marginal data for each ξt . 2)
We solve model discussed in Section 4.5.1 based on the available marginal data to obtain the optimal x
with objective value Ô. 3) We evaluate the out-of-sample performance of x by using P and denote the cost
as O∗.

The rest of the parameter settings are as follows. We set T = 20, unit holding cost ht = $1, setup
cost ct = $300, outsourcing cost Mt = $12, and unit production cost qt = $3 for each t ∈ {1, · · · ,T}. The
random demand at each time period has three scenarios, ξt = 10,20,30. We simulate the true joint demand
distribution by randomly sampling ten joint scenarios and assigning them with equal probabilities, which
gives random correlations between all components. This joint demand distribution is unknown to the
proposed approach.

4.5.3 Results

We report the simulation results in this subsection. We record the probability p = Pr(Ô > O∗) under
different radius τi of ambiguity set P defined in (3). Because the number of marginal data is the same for
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each component, we set τ1 = · · ·= τT = τ and vary τ accordingly. Each p is calculated via 100 experiments
with different joint demand distributions and marginal data. The results are summarized in Table 1. We
also plot the two graphs of the values of Ô and O∗ when τ = 0.1 and 0.3 in Figure 1. The horizontal axis
represents the index of demand distribution.

Table 1 shows that the robustness of the proposed model increases as τ in the ambiguity set increases.
This validates the results discussed in Section 4.3. In addition, from the Figure 1, we observe the curves
of Ô and O∗ are pretty close when τ is small and deviate from each other when τ becomes large. For both
cases, the shapes of the two curves are very similar. Therefore, the proposed model approximates the true
costs effectively by using only the marginal data. Additionally, as shown in Table 1, when τ is very small
(< 0.25), the finite sample guarantee p increases rapidly with respect to the increases in τ . However, it
slows down after τ becomes large (> 0.3). Therefore, a good choice of τ will be between 0.25 and 0.3,
which achieves a balance between risks and conservativeness.

Table 1: Probability p = Pr(Ô > O∗) under different values of τ .

τ 0.05 0.1 0.15 0.2 0.25
p 56% 66% 74% 88% 92%
τ 0.3 0.35 0.4 0.45
p 96% 96% 100% 100%

Figure 1: The red lines represent O∗ and the blue lines represent Ô. The left figure and the right figure
represent the values of Ô and O∗ for 100 different demand distributions for τ = 0.1 and τ = 0.3, respectively.

4.6 Applications in portfolio optimization

We demonstrate the benefits of the proposed approach by simulations on one real-world application:
portfolio optimization, where missing data is a common problem (Rădulescu and Rădulescu 2013; Taylor
2006). In the subsequent numerical experiments, we show that the proposed approach outperforms the data
imputation-based method on the real-world historical returns of ETFs.

4.6.1 Problem setup

Mean-risk portfolio optimization (Alexander, Coleman, and Li 2006) considers m assets with returns
captured by the random vector ξ = [ξ1, · · · ,ξm]. A portfolio is denoted by a vector x = [x1, · · · ,xm], where
x ∈X = {x ∈ Rm

+|∑m
i=1 xi = 1}. Each xi represents the percentage of the investment in asset i for each

1 6 i 6 m. The objective function aims to minimize a weighted sum of the mean of negative returns and
the conditional value-at-risk as shown in (11).

min
x∈X

EP
[
〈−ξ ,x〉

]
+ρCVaRα(〈−ξ ,x〉) (11)

where ρ > 0, and P represents the distribution of ξ .
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Replacing the CVaR in (11) with its definition (Rockafellar, Uryasev, et al. 2000), the corresponding
DRO model is equivalent to (12). It can be viewed as a two-stage problem with the first-stage cost being
equal to zero.

min
x∈X ,d∈R

max
P∈P

EP(〈−ξ ,x〉)+ρ

[
d +

1
α

EP(〈−ξ ,x〉−d)+
]
. (12)

4.6.2 Results

We first explain the way to generate the training set, which is assumed to be known to decision-makers, and
the test set, which is unknown to decision-makers and is used to evaluate the out-of-sample performance,
as follows. We approximate the support S of the returns ξ with the first 300 data. We iteratively use
the data from day [301+30× (i−1)] to day (300+30× i) (approximately one month) as the training set,
1 6 i 6 57. The rest of the data are used as the test set. Therefore, we obtain 57 pairs of the training set
and test set. We present the experiments results in the following.

Figure 2: Out-of-sample performance and reliability under different values of τ .

Table 2: Out-of-sample performance (×0.001)
under different values of τ .

τ DRO Data imputation
1.17 28.23±0.45 30.84±5.10
1.18 28.19±0.44 30.81±4.69
1.19 28.16±0.41 31.08±5.31
1.20 28.08±0.26 31.45±5.60
1.21 28.08±0.26 31.14±5.29
1.22 28.10±0.22 30.80±5.46
1.23 28.11±0.22 30.94±4.91
1.24 28.09±0.23 31.11±5.53
1.25 28.10±0.22 30.99±5.90
1.26 28.09±0.27 30.88±5.25

Table 3: Reliability Pr(Ô>O∗) under different
values of τ .

τ DRO Data imputation
1.17 100% 51.58%
1.18 100% 52.46%
1.19 100% 51.75%
1.20 100% 47.72%
1.21 100% 45.79%
1.22 100% 50.18%
1.23 100% 49.47%
1.24 100% 49.47%
1.25 100% 47.37%
1.26 100% 47.72%

We use the first m = 5 assets during the experiments. Therefore, the data set used in the experiments
contains 5 assets with 2020 daily returns each. To model the marginal data, we assume each data in the
training set has only one dimension observed, and we restrict each dimension has the same size of observed
data for convenience. The data imputation approach uses nearest neighbor imputation first to recover the
incomplete data set; then it solves model (11) through the empirical distribution to obtain the final decisions.
In the first step, because the support of S is known, we impute each incomplete data to the nearest support
with respect to L1 norm. Besides, random support is used if several supports achieve the smallest distance
at the same time. We conclude the main numerical results based on marginal data in this section, where
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the proposed DRO model achieves better out-of-sample performance and higher reliability than the data
imputation approach.

We conducted 10 groups of experiments under different values of τ . We set all τt as the same value τ

because the sizes of the marginal data at each dimension are the same. Notice that the feasible region can
be empty for the ambiguity set defined in (3) when the sample size and τ are both extremely small. This
is because the observed data are highly missed making the nominal marginal distribution highly biased.
Therefore, we test the τ starting from the smallest τ that makes the problem feasible during the experiments.
Each group of experiments contains 57 experiments as discussed in Section 4.5.2.

We repeat each experiments for 10 times to obtain the standard deviation. The results are concluded in
Table 2 and Figure 2. The proposed DRO model outperforms the data imputation approach consistently by
achieving lower values in (12) and smaller standard deviations. The standard deviations of the DRO model
slightly decrease as the increase of τ . The reliability is defined as the probability Pr(Ô > O∗). We conclude
results in Table 3 and Figure 2. The proposed DRO model achieves much higher reliability than the data
imputation approach. Because we consider the worst-case correlation for the marginal distributions, the
reliability of the DRO model stays at 100% in this problem.

5 CONCLUSION

In this paper, we develop a novel integrated approach to solve data-driven stochastic optimization when
only marginal data are available. We first construct an ambiguity set of possible joint distributions from
the available marginal data. Then we formulate our model based on a distributionally robust optimization
framework. Numerical experiments are conducted based on both synthetic data and real-world data.
The proposed approach achieves promising results as it demonstrates that the risk-averse property of the
proposed model can be tuned by adjusting the parameters defined in the ambiguity set and produces better
out-of-sample performance than the classical estimate-then-optimize approach.
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