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ABSTRACT

In this paper, we consider the problem of efficiently estimating a conditional expectation. By formulating
the conditional expectation as a ratio of two derivatives, we can apply the generalized likelihood ratio
method to express the conditional expectation using ordinary expectations with indicator functions, which
generalizes the conditional density method. Based on an empirical distribution estimated from simulation,
we provide guidance on selecting the appropriate formulation of the derivatives to reduce the variance of
the estimator.

1 INTRODUCTION

Many real-world problems, such as energy storage (Carmona and Ludkovski 2010) and option pricing
(Merton 1973), can be modeled using stochastic processes, with parameters estimated from real-world data.
When the underlying stochastic process evolves, new observations are collected, which usually enables us
to make forecasts about the process in the future. One can interpret the forecasting problem as estimating
the expected performance of the random system in the future, conditional on information collected up to
the current period. This often involves a complicated integration. One approach to estimate the conditional
expectation is to use Monte Carlo methods, i.e., simulate a number of sample paths starting from a given
information set and calculate the sample average of the performance function as the estimator. However,
this approach would require additional simulations, which may be time-consuming. Such an approach
would be poorly suited for applications that require quick responses, such as portfolio risk management
in a rapid-changing market (Jiang et al. 2020). In this paper, we consider estimating a conditional
expectation under the setting where a collection of pre-simulated sample paths is given to the user and no
additional simulations should be performed. Many approaches have been proposed for this purpose. One
line of research employs least squares Monte Carlo (LSM) to estimate the conditional expectation from
cross-sectional information (Longstaff and Schwartz 2001). Besides LSM, Fournié et al. (2001) applied
the density method (DM) and Malliavin calculus to estimate the Greeks of European options. Daveloose
et al. (2019) further extends their results by considering a jump-diffusion setting with both the conditional
density method (CDM) and Malliavin calculus. Our focus in this paper is to generalize the CDM method
by noticing that by definition, the conditional expectation can be represented as a ratio of two derivatives
that involve indicator functions. With this formulation, we are able to employ existing stochastic gradient
estimation (SGE) techniques.

There are many well-known SGE techniques, among which the finite difference (FD) method may
be the most straightforward and easiest to implement; however, FD estimators are biased. Two widely-
used approaches for deriving an unbiased gradient estimator are infinitesimal perturbation analysis (IPA)
(Glasserman and Ho 1991) and the likelihood ratio (LR) method (Ho and Cao 1983), which is also
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known as the Score Function (SF) method (Rubinstein and Shapiro 1993). However, IPA cannot handle a
discontinuous sample performance, while LR fails if the parameters of interest appear explicitly (structural
parameters) in the sample performance. In our formulation, the performance functions in the corresponding
SGE problems are discontinuous with structural parameters. Therefore, IPA and LR are not valid for
our purpose. To overcome this shortcoming, a push-out LR technique (Rubinstein 1992) that pushes the
structural parameter into the probability measure, can be applied for some problems under appropriate
conditions. Recently, Peng et al. (2018) developed a generalized likelihood ratio (GLR) method that
extends IPA and LR, allowing discontinuities in the sample performance with the presence of structural
parameters. As shown in Peng et al. (2018), GLR is a generalization of the push-out LR method.

Our work shows that CDM is essentially equivalent to push-out LR. By applying GLR, we generalize
CDM under some assumptions, one of which requires the output function whose value is conditioned on
to be globally invertible. We address this limitation by locally isolating the stationary points of the output
function. Since our derived ratio estimator of the conditional expectation involves an indicator function,
we then propose a simple way to reduce the variance of the estimator, which is particularly effective for
rare events

The rest of this paper is organized as follows. In Section 2, we review the problem of estimating a
conditional expectation with the conditional density method under some assumptions, and introduce the
stochastic gradient estimation formulation. In Section 3, we derive a ratio representation with GLR for
two cases. In Section 4, we discuss the quality of the derived estimator. We then present some numerical
experiments in Section 5 and conclude in Section 6.

2 ESTIMATING A CONDITIONAL EXPECTATION

In this section, we review the problem of estimating the conditional expectation with the condition density
method. We then show that the conditional expectation can be expressed as a ratio of two derivatives,
which motivates the application of the generalized likelihood ratio method.

2.1 Problem Formulation

Consider the problem of estimating the conditional expectation:

E [g1(X ,Y )|g2(U,V ) = α] , (1)

where X , Y , U , V are random variables, gi : R2→ R, i = 1,2, are Borel-measurable functions, and α is a
fixed real number. Our goal is to derive an expression for (1) using ordinary expectations.

This problem has been studied by Daveloose et al. (2019) using conditional density methods (CDM).
Here, we state their major assumptions and results, and we will show later that our approach extends their
result for more complicated settings.
Assumption 1

(i) (X ,U) is independent of (Y,V );
(ii) (X ,U) has joint density fX ,U(x,u) with unbounded support;

(iii) ln fX ,U(x, ·) is differentiable for all x ∈ R;

(iv) E
[
(πX ,U(X ,U))2

]
< ∞, where πX ,U(x,u) =−∂u ln fX ,U(x,u).

Assumption 2 There exist a Borel-measurable function g∗ and a strictly increasing differentiable function
h such that g2(u,v) = h−1(u+g∗(v)).

By first rewriting (1) as

E [g1(X ,Y )δ (g2(U,V )−α)]

E [δ (g2(U,V )−α)]
,
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where δ is the Dirac delta function, and then applying the co-area formula (Kanwal 2012) and integration
by parts, Daveloose et al. (2019) derived the following representation of the conditional expectation.
Theorem 1 (Daveloose et al. 2019) Under Assumptions 1 and 2, suppose E

[
|g1(X ,Y )|2

]
< ∞, then for

any α ∈ Dom(h),

E [g1(X ,Y )|g2(U,V ) = α] =
E [g1(X ,Y )1{g2(U,V )≥ α}πX ,U(X ,U)]

E [1{g2(U,V )≥ α}πX ,U(X ,U)]
,

where 1{·} is the indicator function.
From Theorem 1, the conditional expectation (1) can be estimated by a ratio of two sample averages.

However, the existence of Assumption 2 limits the application of the above result. In the next section,
we propose an approach to overcome this limitation by applying the generalized likelihood ratio (GLR)
method (Peng et al. 2018).

2.2 Stochastic Gradient Estimation

First, we show that (1) can be expressed as a ratio of two derivatives. By the definition of conditional
expectation, under mild regularity conditions, we have

E [g1(X ,Y )|g2(U,V ) = α] = lim
ε→0

E [g1(X ,Y )|g2(U,V ) ∈ [α− ε,α− ε]]

= lim
ε→0

E [g1(X ,Y )1{g2(U,V ) ∈ [α− ε,α + ε]}]
E [1{g2(U,V ) ∈ [α− ε,α + ε]}]

=
limε→0

1
2ε
E [g1(X ,Y )1{g2(U,V ) ∈ [α− ε,α + ε]}]

limε→0
1

2ε
E [1{g2(U,V ) ∈ [α− ε,α + ε]}]

=
limε→0

1
2ε
E [g1(X ,Y )(1{g2(U,V )≤ α + ε}−1{g2(U,V )≤ α− ε})]

limε→0
1

2ε
E [1{g2(U,V )≤ α + ε}−1{g2(U,V )≤ α− ε}]

=
d

dθ
E [g1(X ,Y )1{g2(U,V )≤ θ}]

∣∣
θ=α

d
dθ
E [1{g2(U,V )≤ θ}]

∣∣
θ=α

. (2)

Using equation (2), we can employ SGE techniques to derive estimators of both the numerator and the
denominator. The finite difference (FD) method is easy to implement, but often results in large variances.
Since the performance functions in both parts are discontinuous with respect to θ , and θ appears explicitly
in the indicator functions, infinitesimal perturbation analysis (IPA) and the likelihood ratio (LR) method
are not valid. However, for a particular g2, a push-out LR technique can be applied to push θ into the
density function by a change of variable. For example, if g2 satisfies Assumption 2, 1{g2(U,V )≤ α} is
equivalent to 1{U ≤ h(α)−g∗(V )}. Letting Zθ = U

θ
, under appropriate regularity conditions, we can first

derive a single-run unbiased estimator of d
dθ
E [1{Zθ ≤ 1}]

∣∣
θ=h(α)−g∗(V )

by conditioning on V using LR
and then taking expectation w.r.t to V . As discussed before, such methodology only works when g2 enjoys
certain properties. To deal with more complicated g2, we apply the idea of generalized likelihood ratio
(GLR) method developed by Peng et al. (2018), which is shown to be a generalization of the push-out LR
when the latter can be applied.

3 MAIN RESULTS

Before we introduce the main results, we clarify some notation. When many random variables are involved
in an expectation, we use a subscript to indicate with respect to which variables the expectation is taken. If
a subscript is not present, the expectation is taken with respect to all present random variables. In addition,
we sometimes use χ(·) in place of the indicator function, i.e., χ(z) = 1{z≤ 0}.
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3.1 Globally Invertible g2

The main idea of GLR involves three ingredients (Peng et al. 2018): approximating χ(·) by a smooth
sequence, applying integration by parts, and taking limits. These steps can be justified under some regularity
conditions, as presented in Assumption 3.

To summarize, (i) guarantees that the existence of a certain smooth sequence for approximation, (ii)
justifies the application of integration by parts and the resulted surface integral vanishes from (iii), and the
convergence of the approximated sequences can be shown from (iv).

With these assumptions, a generalized result of Theorem 1 can be obtained, as shown in Theorem 2,
whose proof follows Peng et al. (2018) by additionally conditioning on the σ -algebra generated by random
variables Y and V .
Assumption 3 Let Θ(α) = [α− τ,α + τ] for some τ > 0 be the interval around α .

(i) There exists a sequence of smooth functions {χε} such that for some p ∈ [1,∞],

lim
ε→0

sup
θ∈Θ(α)

(∫
R
|χ(g2(u,V )−θ))−χε(g2(u,V )−θ))|p du

)1/p

= 0 a.s.,

and for q satisfying 1
p +

1
q = 1,

EX ,U [|g1(X ,Y )w(X ,U,V )|q]< ∞, EX ,U [|w(X ,U,V )|q]< ∞ a.s.

(ii) The function g2(u,V (ω)) is twice continuously differentiable with respect to u a.s. and
∂ug2(u,V (ω))−1 is differentiable w.r.t u ∈ R a.s.

(iii) limu→±∞ g1(x,Y (ω)))∂ug2(u,V (ω))−1 fX ,U(x,u) = 0 for all x ∈ R and θ ∈Θ(α),
limu→±∞ ∂ug2(u,V (ω))−1 fX ,U(x,u) = 0 for all x ∈ R and θ ∈Θ(α).

(iv) EX ,U

[
supθ∈Θ(α) |g1(X ,Y )χ(g2(u,V )−θ)w(X ,U,V )|

]
< ∞ a.s.,

EX ,U

[
supθ∈Θ(α) |χ(g2(u,V )−θ)w(X ,U,V )|

]
< ∞ a.s.

Theorem 2 Under Assumption 1 (i)-(iii) and Assumption 3, the conditional expectation (1) can be expressed
as

E [g1(X ,Y )|g2(U,V ) = α] =
E [g1(X ,Y )χ(g2(U,V )−α)w(X ,U,V )]

E [χ(g2(U,V )−α)w(X ,U,V )]
,

where

w(x,u,v) =− ∂ 2
u g2(u,v)

(∂ug2(u,v))
2 +

∂u ln fX ,U(x,u)
∂ug2(u,v)

. (3)

Proof. Under Assumption 1 (ii), by the definition of the conditional expectation, (1) can be formulated
as (2). Now we first consider the numerator of (2).

Let σ(Y,V ) be the σ -algebra generated by random variables Y and V and define

g̃2(u,v;θ) = g2(u,v)−θ .

By Assumption 1 (ii), we have

d
dθ

E [E [g1(X ,Y )χ(g2(U,V )−θ))|σ(Y,V )]]

=
d

dθ
E
[∫

R2
g1(x,Y )χ(g̃2(u,V ;θ)) fX ,U(x,u)dxdu

]
=E
[

d
dθ

∫
R2

g1(x,Y )χ(g̃2(u,V ;θ)) fX ,U(x,u)dxdu
]
, (4)
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The justification of the second equality will be given later in this proof. Consider the argument inside the
expectation operator in (4):

d
dθ

∫
R2

g1(x,Y )χε(g̃2(u,V ;θ)) fX ,U(x,u)dxdu

=
∫
R2

g1(x,Y )
d

dθ
χε(g̃2(u,V ;θ)) fX ,U(x,u)dxdu (5)

=−
∫
R2

g1(x,Y )∂ug̃2(u,V ;θ)−1 d
du

χε(g̃2(u,V ;θ)) fX ,U(x,u)dxdu

=
∫
R

(
−g1(x,Y )∂ug̃2(u,V ;θ)−1

χε(g̃2(u,V ;θ)) fX ,U(x,u)|∞−∞

+
∫
R

g1(x,Y )χε(g̃2(u,V ;θ))∂u
(
∂ug̃2(u,V ;θ)−1 fX ,U(x,u)

)
du
)

dx (6)

=
∫
R2

g1(x,Y )χε(g̃2(u,V ;θ))w(x,u,V ) fX ,U(x,u)dudx

=E [g1(X ,Y )χε(g̃2(U,V ;θ))w(X ,U,V )] .

The interchange of integration and differentiation will also be justified later in this proof. The
second equality is obtained by d

du χε(g̃2(u,V ;θ))= d
dz χε(z)|z=g̃2(u,V ;θ) ·∂ug̃2(u,V ;θ) and d

dθ
χε(g̃2(u,V ;θ))=

d
dz χε(z)|z=g̃2(u,V ;θ) · ∂θ g̃2(u,V ;θ) = − d

dz χε(z)|z=g̃2(u,V ;θ). The third equality is obtained by integration by
parts under Assumption 3 (ii). The last equality holds since the first term in (6) vanishes by Assumption
3 (iii). Then we prove the following uniform convergence result:

lim
ε→0

sup
θ∈Θ(α)

|EX ,U [g1(X ,Y )χ(g̃2(U,V ;θ))w(X ,U,V )]−EX ,U [g1(X ,Y )χε(g̃2(U,V ;θ))w(X ,U,V )]|

≤ lim
ε→0

sup
θ∈Θ(α)

EX ,U [|g1(X ,Y )w(X ,U,V )| |χ(g̃2(U,V ;θ))−χε(g̃2(U,V ;θ))|]

≤ lim
ε→0

sup
θ∈Θ(α)

(EX ,U [|g1(X ,Y )w(X ,U,V )|q])1/q
(∫

R
|χ(g̃2(u,V ;θ))−χε(g̃2(u,V ;θ))|p du

)1/p

≤C1 lim
ε→0

sup
θ∈Θ(α)

(∫
R
|χ(g̃2(u,V ;θ))−χε(g̃2(u,V ;θ))|p du

)1/p

= 0,

for some constant C1 ≥ 0. The second inequality is obtained by Holder’s inequality. The third inequality
and the last equality are obtained by Assumption 3 (i).

Then by Assumption 3 (iv), we have

EX ,U

[
sup

θ∈Θ(α)

|g1(X ,Y )χε(g̃2(U,V ;θ))w(X ,U,V )|
]
< ∞,

which can be used together with the mean value theorem to justify the interchange of integration and
differentiation to obtain (5).

Similarly, we have

lim
ε→0

sup
θ∈Θ(α)

|EX ,U [g1(X ,Y )χ(g̃2(U,V ;θ))]−EX ,U [g1(X ,Y )χε(g̃2(U,V ;θ))]|= 0.

Therefore, by the uniform convergence of d
dθ
EX ,U [g1(X ,Y )χε(g̃2(U,V ;θ))] and the convergence of

the expectation, we have

d
dθ

EX ,U [g1(X ,Y )χ(g̃2(U,V ;θ))] = EX ,U [g1(X ,Y )χ(g̃2(U,V ;θ))w(X ,U,V )] .
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By Assumption 3 (iv), the interchange of integration and differentiation to obtain (4) can be justified,
then

d
dθ

E [g1(X ,Y )χ(g̃2(U,V ;θ))] = E [g1(X ,Y )χ(g̃2(U,V ;θ))w(X ,U,V )] .

Repeating the above steps for the denominator in (2), we have

d
dθ

E [χ(g̃2(U,V ;θ))] = E [χ(g̃2(U,V ;θ))w(X ,U,V )] .

The proof is completed by letting θ = α .

The verification of Assumption 3 is usually not very straightforward, especially condition (i). One
possible choice of the approximated sequence of smooth functions {χε}, as suggested in Peng et al. (2018),
can be given by χε(z) = χε ∗φε(z), where ∗ stands for the convolution operator, φε is the density function
of a normal distribution N (0,ε2), and χε is defined by

χε(z) =


1 z <−ε

− 1
2ε

z+ 1
2 −ε ≤ z≤ ε

0 z > ε

.

Then condition (i) can be checked by taking the function g2 into account. In the following, we provide
some simplified conditions that can imply Assumption 3 (i), (iv), but are easier to check for some cases.

Corollary 3 Under Assumption 1 (i)-(iii) and Assumption 3 (ii)-(iii), suppose that E
[
|g1(X ,Y )|2

]
< ∞

and E
[
|w(X ,U,V )|2

]
< ∞, the representation of the conditional expectation (1) given in Theorem 2 holds.

Proof. By Holder’s inequality, we have

E [|g1(X ,Y )w(X ,U,V )|]≤
(
E
[
|g1(X ,Y )|2

])1/2(
E
[
|w(X ,U,V )|2

])1/2
< ∞.

By Jensen’s inequality, we have E [|w(X ,U,V )|]≤
(
E
[
|w(X ,U,V )|2

])1/2
<∞. Taking p=∞ and q= 1, we

can see Assumption 3 (i) holds. Assumption 3 (iv) can also be verified by noticing that χ(·) is bounded.

Comparing Corollary 3 and Theorem 1, we can clearly see that our approach is a generalization of
CDM for estimating conditional expectations since Assumption 2 is no longer required. However, to apply
our results, some integrability conditions have to be verified.

3.2 g2 with Stationary Points

One limitation of Theorem 2 is that Assumption 3 (ii) requires that (∂ug2(u,V ))−1 to be differentiable with
respect to u a.s. Generally speaking, this implies that for a fixed sample path, g2 does not have a stationary
point and is a strictly monotonic function of u, which is however weaker than Assumption 2. For instance,
g2(u,v) := euv + v, v > 0, satisfies Assumption 3 (ii), but not Assumption 2.

Next, we consider a simplified setting where random variables Y and V are not included and g2 has
stationary points, i.e., g′2(u) = 0 has real roots. The major problem in this setting is that the function
w(x,u) = ∂u

(
g′2(u)

−1
)
+g′2(u)

−1∂u ln fX ,U(x,u) defined similar to (3) may not be integrable w.r.t fX ,U(x,u).
The idea to handle this problem is to consider isolated intervals around the stationary points.

Suppose that g′2(u) = 0 has a finite number of stationary points pi, i = 1, ...,n, and p1 < p2 < · · ·< pn,
with p0 = −∞ and pn+1 = ∞. Then g2(u) = α can have at most n+ 1 roots, since it is continuous. We
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Figure 1: Plot of g2(u) with stationary points.

denote the roots by ui, i = 0, ...,k−1, where u0 < u1 < · · ·< uk−1 and k is the number of roots. We further
assume for any ui, g2(u) is locally invertible in a neighborhood around it. Then, there exist points ai and
bi, such that p j < ai ≤ ui ≤ bi < p j+1. A simple example is depicted in Figure 1.

Since the conditional expectation can be formulated as a ratio of two SGE problems, as seen in (2),
and the integration around the stationary points pi does not affect the SGE results around θ = α , it is
sufficient to consider the SGE problems for U ∈

⋃k−1
i=0 [ai,bi].

Next, we consider the SGE problems around a particular ui where g2 is locally invertible. Without loss
of generality, we assume that g2(ai)> α and g2(bi)≤ α . Here, we omit the technical details, since they
are similar to Theorem 2. By the three ingredients of GLR, under appropriate conditions, for the numerator
of the SGE formulation, we have

d
dθ

(∫
g1(x)

∫ bi

ai

1{g2(u)≤ θ} fX ,U(x,u)dudx
)
|θ=α

=− 1
g′2(bi)

∫
g1(x) fX ,U(x,bi)dx+

∫ ∫ bi

ai

g1(x)1{g2(u)≤ α}w(x,u) fX ,U(x,u)dudx

=− 1
g′2(bi)

E[g1(X)δ (U−bi)]]+E[g1(X)1{g2(U)≤ α}w(X ,U)1{ai ≤U ≤ bi}]

=− 1
g′2(bi)

E[g1(X)1{U ≤ bi}∂u ln fX ,U(X ,U)]]+E[g1(X)1{g2(U)≤ α}w(X ,U)1{ai ≤U ≤ bi}],

where the first equality is obtained by noticing that 1{g2(ai)≤ α} = 0 and 1{g2(bi)≤ α} = 1, and the
last equality is obtained by GLR again. Thus, by considering piecewise SGE problems, we can represent
the conditional expectation by ordinary expectations when g2 has stationary points.

In most cases, the application of the above results requires a rough knowledge of locations of pi,
i = 0,1, ...,n+ 1, and ui, i = 0, ...,k− 1. For the special case where g2(u) has a unique stationary point,
a simplified representation can be obtained, an example of which is given in the numerical experiment
section (Experiment 3, setting (i)).

3.3 Confidence Interval of the Ratio Estimator

Theorem 2 indicates that we can construct a ratio of two sample averages as an estimator of the conditional
expectation from N independent sample paths. Suppose the samples of the numerator and denominator are
denoted by Ai and Bi, i = 1, ...,n, respectively. The sample means µ̂A, µ̂B, the sample variances S2

A, S2
B,

and the sample covariance S2
AB can be computed correspondingly. Then, the mean and the variance of the
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ratio estimator

R =
1
N ∑

N
i=1 Ai

1
N ∑

N
i=1 Bi

,

can be estimated by the delta method (Beyene and Moineddin 2005) as

E[R]≈ r̂ =
µ̂A

µ̂B
,

V[R]≈ σ̂
2
R =

1
Nµ̂2

B

(
S2

A−2S2
ABr̂+ r̂2S2

B
)
.

For a large N, a (1−a)% confidence interval for the ratio estimator is given by[
r̂− z a

2
σ̂R, r̂+ z a

2
σ̂R

]
,

where z a
2

is the (1−a/2)% quantile of the standard normal distribution.

3.4 Variance Reduction

When formulating the associated stochastic gradient estimation problems, we can use either 1{g2(U,V )≥ θ}
or 1{g2(U,V )≤ θ}. Theoretically, they are both correct, but the sign inside the indicator function can have
a significant impact on the variance of the estimator. Suppose that P(g2(U,V ) ≤ α) is very small; then,
the event 1{(g2(U,V )≤ α)} is a rare event. Thus, if the number of independent replications is relatively
limited, it is highly possible that the variances are large. Moreover, for the finite difference method, the
denominator may be zero, which results in an invalid ratio estimator. Therefore, a preliminary estimate of
the distribution of g2(U,V ) around the given α can be used to guide the appropriate formulation.

4 SIMULATION EXPERIMENTS

In this section, we test our approach on three estimation problems. In the first experiment, we consider
a financial option problem and demonstrate the usefulness of our simple variance reduction technique. In
the second experiment, we verify our approach by applying it to a toy problem of estimating a conditional
expectation where g2 is globally invertible. In the last experiment, we consider the case where g2 is locally
invertible. We show that our approach can yield better estimations and lower variances, and can outperform
the finite difference method.

4.1 Experiment 1: Financial Option

We consider the European option pricing problem for which Daveloose et al. (2019) applied the conditional
density method to estimate the option price at maturity T given the stock price at time t, 0 < t < T < ∞:

E [ψ(ST )|St = α] , (7)

where St is the stock price at time t, t ≥ 0. St is assumed to follow the Merton model (Merton 1973), i.e.,

St = S0 exp
((

r− σ2

2

)
t +σWt + Ñt

)
,

where {Wt} is the standard Brownian motion, r > 0 is the risk-free interest rate and σ is the volatility,
Ñt = ∑

N(t)
i=1 Zi, {N(t)} is a Poisson process with arrival rate λ , and Zi are i.i.d. random variables following

N
(
−ρ2

2 , ρ2

2

)
with a constant ρ . Thus, {Ñt} is a compound Poisson process. For a put option, ψ(z) =
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e−r(T−t)(K− z)+, where K is the strike price, and the true value of (7) can be computed using an analytic
formula which is in the form of an infinite sum (Merton 1973).

Let X = βWT , U = βWt , Y = µT + ÑT , V = µt + Ñt , g1(x,y) = ψ(S0ex+y), g2(u,v) = u+ v. The joint
density fX ,U(x,u) has an analytic formula. Since the exponential function is monotonically increasing, (7)
can be rewritten as

E [g1(X ,Y )|g2(U,V ) = ln(α/S0)] .

For this problem, Assumption 2 holds, therefore, the CDM is applicable. Since the GLR method is a
generalization of CDM, both methods yield the same result:

E [ψ(ST )|St = α] =
E
[
ψ(ST )1{St ≤ α} TWt−tWT

σt(T−t)

]
E
[
1{St ≤ α} TWt−tWT

σt(T−t)

] . (8)

Daveloose et al. (2019) considered variance reduction techniques such as localization and control
variates. Here, we reduce the estimation variances by appropriately choosing the inequality sign inside the
indicator function in (8) based on the value of α , as discussed in Section 3.4.

We use the same parameter values as in Daveloose et al. (2019): S0 = 40, K = 45, r = 0.08,
σ2 = ρ2 = 0.05, λ = 5, T = 1. For CDM, we apply the localization techniques for variance reduction.
For GLR, we first estimate P(St ≤ α) using existing sample paths. If the probability exceeds 0.5, we
use 1{St ≤ α}; otherwise, we use 1{St ≥ α}. We run the experiments for α = 10 using N = 5× 106

independent runs. The numerical results are shown in Table 1, where the true values are approximated by
truncating the infinite series after 25 terms. From the results, we can see that an appropriate choice of the
inequality sign inside the indicator function can have a great impact on the estimation quality. For example,
since P(S0.1 ≤ α) is very small, if we use 1{S0.1 ≤ α} in the estimator even with the localization technique,
the estimator can have a large relative error, whereas using 1{S0.1 ≥ α} as in the GLR estimators leads to
much better results.

Table 1: Put option price estimates in Experiment 1 (σ̂R in parentheses, ε is FD perturbation).

t CDM GLR FD (ε = 0.05) TRUE
0.1 28.48(2.01) 32.14(0.98) 27.92(1.49) 31.89
0.2 31.49(0.96) 32.13(0.39) 31.47(1.30) 32.22
0.3 32.54(0.59) 32.84(0.19) 33.06(0.53) 32.56
0.4 32.45(0.37) 32.86(0.13) 32.66(0.43) 32.90
0.5 33.07(0.28) 33.44(0.08) 33.04(0.26) 33.24
0.6 33.08(0.21) 33.65(0.07) 33.49(0.19) 33.58
0.7 33.55(0.19) 33.96(0.05) 33.91(0.14) 33.93
0.8 34.06(0.17) 34.31(0.05) 34.20(0.09) 34.29
0.9 34.53(0.18) 34.66(0.05) 34.68(0.05) 34.64

4.2 Experiment 2: g2 without Explicit Inverse

Consider estimating

E [g1(X)|g2(U,V ) = α] , (9)

where U is a random variable following a Student’s t-distribution with degrees of freedom ν = 4, the
conditional distribution of X |U is N (U,1), V follows a Bernoulli distribution, which takes value 1 with
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Table 2: Estimations in Experiment 2 (σ̂R in parentheses, ε is FD perturbation).

N = 103 N = 106

method GLR FD(ε = 0.1) GLR FD(ε = 0.01) TRUE
estimation 2.45(0.42) 2.91(0.72) 2.48(0.01) 2.55(0.03) 2.50

probability 3/4 and value 2 with probability 1/4, and g1(x) = ex, g2(u,v) = euv +u. For a given α = 0,
the conditional expectation (9) can be computed exactly by applying the properties of the Dirac function.

Since g2 does not satisfy Assumption 2, we cannot directly apply the conditional density method.
Before applying our approach, we need to check the conditions. The joint density function of (X ,U) is
given by

fX ,U(x,u) =
1√
2π

e−
(x−u)2

2 · 3

8
(

1+ u2

4

)5/2 , −∞ < x,u < ∞.

It is easy to see that Assumption 1 and Assumption 3 (iii) hold. Since χ(·) is bounded and the decay
rate of joint density fX ,U(x,u) when x and u go to ±∞ suppresses g1(x) and ∂ug2(u,V )−1 for any x a.s.,
Assumption 3 (ii) holds. The other conditions in Corollary 3 can also be verified. Therefore, (9) can be
represented by

E[g1(X)1{g2(U,V )≤ α}w(X ,U,V )]

E[1{g2(U,V )≤ α}w(X ,U,V )]
,

where

w(x,u,v) =− v2euv

(veuv +1)2 +
−u+ x− 5u

u2+4

veuv +1
.

Given α = 2, the results are shown in Table 2. When the number of independent runs is small, e.g.,
N = 1000, the samples of the denominator may be all zero if using the FD method with a small perturbation
(ε = 0.01). Thus, for a small number of sample paths, FD requires a larger perturbation (ε = 0.1). The
results show that GLR yields more accurate estimations, with lower variances than FD.

4.3 Experiment 3: g2 with Stationary Points

Here, we consider the problem of estimating E [g1(X)|g2(U) = 0] where g2(u) has stationary points for
two settings: (i) g1(x) = x2e−x and g2(u) = 1− u2, (ii) g1(x) = x and g2(u) = (u− 1)(u− 2)(u− 3). In
both settings, we assume that U ∼N (2,1) and X |U ∼N (U,1), and the true values of the conditional
expectation can be computed analytically. The joint density function is given by

fX ,U(x,u) =
1

2π
e−

(x−u)2
2 − (u−2)2

2 , −∞ < x,u < ∞.

Setting (i). The associated function w(x,u) is given by w(x,u) = 1
2u2 +

2u−x−2
2u . Since 1{g2(u)≤ 0} = 0

around a small neighborhood of the unique stationary point p1 = 0 of g2(u),E [g1(X)1{g2(U)≤ 0}w(X ,U)]<
∞ and E [1{g2(U)≤ 0}w(X ,U)]< ∞. Therefore, we have

E [g1(X)|g2(U) = 0] =
E [g1(X)1{g2(U)≤ 0}w(X ,U)]

E [1{g2(U)≤ 0}w(X ,U)]
.

Setting (ii). The associated function w(x,u) is given by w(x,u) =− 6u−12
(3u2−12u+11)2 − 2u−x

3u2−12u+11 . g2(u) has
two stationary points p1 = 1.423 and p2 = 2.577 and the roots of g2(u) = 0 are u0 = 1, u1 = 2 and u3 = 3.
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Applying the method introduced in section 3.2, we obtain

E [g1(X)|g2(U) = 0]

=
E
[
g1(X)

(
(1{g2(U)≤ 0}+1{U ≤ b}−1)w(X ,U)− 1{U≤b}∂u ln fX ,U (X ,U)

g′2(b)

)]
E
[
(1{g2(U)≤ 0}+1{U ≤ b}−1)w(X ,U)− 1{U≤b}∂u ln fX ,U (X ,U)

g′2(b)

] ,

where b can be any value in (2,2.577). The numerical results for the two settings are given in Table 3,
showing that the GLR estimator is more accurate and has a smaller variance compared to the FD estimator.

Table 3: Estimation results in Experiment 3 with 106 independent runs (σ̂R in parentheses, ε is FD
perturbation, b = 2.3 for Setting (ii)).

GLR FD (ε = 0.01) TRUE
Setting (i) 1.02(0.02) 0.82(0.12) 1.00
Setting (ii) 2.00(0.004) 1.98(0.01) 2.00

5 CONCLUSION

Expressing the conditional expectation as a ratio of two derivatives, we apply the generalized likelihood
ratio method to both SGE problems (numerator and denominator). Our method generalizes the conditional
density method and thus can handle more complicated measurement functions. For the case where the
measurement function has stationary points, we consider the simplified setting without the random variable
V . However, our methodology can still work if the random variable V does not affect the locations of the
stationary points of g2(u,V ) and the roots of g2(u,V ) = α . Future work is needed for the more general
setting when this is not the case. We also provide a simple way to reduce the variance of the estimator,
which may be incorporated with jackknifing to reduce the ratio bias and importance sampling to achieve
further variance reduction.
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