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ABSTRACT

Sudden periods of extreme and persistent changes in the distribution of medical emergencies can trigger
resource planning inefficiencies for Emergency Medical Services, causing delayed responses and increased
waiting times. Predicting such changes and reacting adaptively can alleviate these adversarial impacts. In
this paper, we propose a simple framework to enhance historically calibrated call volume models, the latter
a focus of study in the arrival estimation literature, to give more accurate short-term prediction by refitting
their residuals into time series. We discuss some justification of our framework from the perspective of
doubly stochastic Poisson processes. We illustrate our methodology in predicting the hourly call volume to
the 911 call center during the Covid-19 pandemic in NYC, showing how it could improve the performance
of baseline historical estimators by close to 50% measured by the out-of-sample prediction error for the
next hour.

1 INTRODUCTION

During the Covid-19 pandemic, Emergency Medical Services (EMS) suffered episodes of unusual increased
demand that were severe both in magnitude and duration. EMS worldwide were overburdened to levels
beyond maximum capacity during the peak periods of the Covid-19 waves. For example, during the worst
months of the early Covid-19 pandemic in NYC, the call volume to the 911 ambulance call center was
significantly above the historical average (see Figure 1).
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Figure 1: Realized hourly call volume (red line) vs baseline historical average λ (t) for the month with
highest call volume during 2020.

During unusual periods such as those encountered in Figure 1, using solely a historical estimation
of the demand could suffer poor performances. On the other hand, much of the call volume or arrival
process literature, at least within the operations research community, has focused on historical models.
Typically, an arrival process is modeled by means of specifying an intensity function (either parametric
or non-parametric) of a Non-homogeneous Poisson process, and fitted to historical data using Maximum
Likelihood (ML). These include, for instance, piece-wise constant intensities in Morgan et al. (2016) and
linear in Glynn and Zheng (2019), and splines in Morgan et al. (2019). Taylor and Letham (2018) study
a “prophet” forecasting paradigm to estimate intensity functions by combining many popular models used
widely by practitioners. Also related is Kim and Whitt (2014) that test the Poisson process assumption of
call arrival processes with piece-wise constant or linear intensities, by dividing time into subintervals and
testing the conditional order statistic distribution using the Kolmogorov-Smirnov test. Moreover, in the
spirit of time series modeling, Ibrahim and L’Ecuyer (2013) study linear models for call center volume
prediction, and Matteson et al. (2011) use a latent variable time series model to forecast based on seasonal
covariates of medical emergency arrivals. Both of these works are similar to our approach, although we
focus on studying the effect of the estimation window length for capturing the changes of distribution, as
well as capturing the conditional changes of the arrival counts distribution. Finally, for a survey on call
center arrival modeling, see Ibrahim et al. (2016).

To handle and react to unusual patterns that deviate from the historical, in this paper we focus on
short-term prediction that corrects for the latter. In particular, we consider a simple framework to correct a
given historical estimator (which could be built from any approaches described above) in order to adapt to
recent changes in the call arrival pattern. More specifically, our framework models the residuals between
the recent observed volume and the historical model prediction via an additional layer of time series, which
gives a short-term adjustment on the historical model based on the most recent data. This allows us to make
short-term forecast that is better than using a standalone historical model or a pure autoregression-type time
series. Our framework resembles time series with seasonality (e.g., Brockwell and Davis (2016) Section
1.4), but the seasonality component can be flexibly modeled by any established historical call volume
models in the arrival estimation literature. We discuss how our framework connects to the use of doubly
stochastic Poisson processes.
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To give some motivational illustration, suppose we simply use the historical average of the same time of
the year as the historical model. Figure 2 shows that the higher call volume days of the Covid-19 pandemic
in NYC bore a sizable residual (i.e., gap) between the observed volume and the historical average very
early in the morning (the figure shows that after 3 a.m. the call volume was already outside the historical
confidence interval). If we capture the trend of the residual as a time series as in our proposed framework
early in the morning (for example at 6a.m. in Figure 2, when the residual gap was already sizable), the
hours of higher volume later in the day (after 10 a.m.) could have been forecasted, and action could have
been preemptively taken to deal with the increased demand. Indeed, the primary motivation for studying
our approach is to enhance downstream decision-making tasks including adaptive staffing and call shedding
to more accurately react to the real-time call volume trend.

03-29 00 03-29 03 03-29 06 03-29 09 03-29 12 03-29 15 03-29 18 03-29 21 03-30 00

Date

100

150

200

250

300

350

C
al

l
V

ol
um

e

Realized Call Volume Nt

Historical Average Volume lt

Figure 2: Realized hourly call volume vs historical average estimated using hourly arrivals (by hour of the
week with data from 2018-2019), for a day with previously unseen high call volume during the Covid-19
crisis.

We close this introduction by discussing a small number of works on short-term prediction for call
volumes to our knowledge. L’Ecuyer et al. (2018) specify a doubly stochastic intensity function to
characterize short lived call bursts in a call center (depending on 3 random parameters, denoting the
amplitude, decay and duration of the burst). Along the same vein, Oreshkin et al. (2016) study a doubly
stochastic intensity, specified as a deterministic intensity multiplied by a time-varying stochastic factor.
These approaches have in common the need of specifying an underlying doubly stochastic intensity to
capture the periods when the call distribution changes. Our fitting approach can also be viewed as modeling
a doubly stochastic process, but instead of fitting an explicit model for the intensity, we formulate a
data-driven time series estimation of the prediction error of a given historical prediction model which is
then related to an implicit underlying doubly stochastic intensity.

The rest of this paper is as follows. Section 2 presents our algorithm and analysis. Section 3 presents a
numerical example of our methodology to predict 911 call volume during the Covid-19 pandemic in NYC.
Section 4 gives some concluding remarks.

2 METHODOLOGY

We consider discrete time intervals of size ∆, say 1 hour. Time is indexed as ∆t = t for t ∈ Z. We set the
following notation:
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• Nt := Random arrival count in the time interval [t−1, t). Think of this as the arrival counts for a
call center.

• lt := Historical estimator for ENt . This estimator can be a seasonal historical average of the arrivals
or be associated to a calibrated intensity function λ (u) such that lt =

∫ t
t−1 λ (u)du.

• εt = Nt − lt := Residual (error) between the random unobserved volume Nt and the historically
calibrated expected volume lt .

• F(t−k):t := Information from time t−k to t, namely {N j}t
j=t−k. This is used to represent the recently

observed arrival counts.

We assume the historical model or estimator {lt} is given and is independent of the most recent
observations. We aim to model the series {εt} which is the residual between recent volume Nt and
the historical model lt . Then, suppose we want to predict Nt+1 for the next hour t + 1, we would first
compute E(ε̂t+1|F(t−k):t), i.e., the expected residual conditional on the most recent information, and then the
short-term estimator for Nt+1 is ŝt+1 := lt+1 +E(ε̂t+1|F(t−k):t). In other words, ŝt+1 corrects the historical
estimator lt+1 shifting it by the amount implied by the expected residual E(ε̂t+1|F(t−k):t). We summarize
our proposed procedure in Algorithm 1, where we use an AR-GARCH (Brockwell and Davis (2016)) to
fit the residuals. The AR component is used to model a time-varying mean of the residual εt , while the
GARCH is used to model the variance. We could choose other time series models, but the one in Algorithm
1 appears to work reasonably in our experimental tests, and we can also make some intuitive (though not
rigorous) argument to support its use, which we discuss next.

Algorithm 1: Short-term estimator with estimation window of size k at time t.
Inputs: Estimation window k, historical arrival counts {N j}t

j=t−k, given historical model {l j}t
j=t−k.

1. Compute residual series {ε j := N j− l j}t
j=t−k.

2. Fit an AR-GARCH model εt = ϕ +∑
p
i=1 ϕiεt−i +Ztσt , σ2

t = α +∑
q
j=1 α jη

2
t− j +∑

r
s=1 βsσ

2
t−s, ηt =

Ztσt , by Maximum Likelihood.
3. Output the short-term predictor ŝt+1 = lt+1 +E(ε̂t+1|F(t−k):t) = lt+1 + ϕ̂ +∑

p
i=1 ϕ̂iεt+1−i.

2.1 Intuitive Justification of AR-GARCH via Doubly Stochastic Poisson Processes

We provide some intuitive justification to using Algorithm 1, based on the perspective that the arrivals
naturally arise from a doubly stochastic Poisson process (DSPP), a model that is widely used in the arrival
modeling literature. First, supposing the arrivals follow a non-homogeneous Poisson Process (NHPP)
with deterministic intensity λ (u), then the arrival count in time interval [t − 1, t] is Poisson with rate
lt = ENt =

∫ t
t−1 λ (u)du. In this setting, the residual series εt = Nt− lt is a sequence of independent mean-

zero random variables (with variance lt). If we use Algorithm 1, then when k increases, the AR-GARCH
model would simply converge to a constant 0 mean for the residual and time dependent variance lt . In
this case, our approach does not do any enhancement to the historical model, but we also don’t harm it
materially either.

For a general DSPP, the intensity function λ is itself random, and given the intensity realization
the arrivals are Poisson like in NHPP. In this case, the ultimate arrival counts possess both the intensity
randomness and the arrival randomness. Given a realization of the intensity, suppose it remains fixed for
some amount of time (reducing the intensity randomness in the short-term) and that the realized intensity
can be approximated by an autoregressive recursion (more on this later), then, the residual is composed of a
deterministic autoregressive recursion (from the intensity) plus the randomness of the arrivals, leading to an
autoregressive process (AR) for the residual. Likewise, as the variance of the Poisson is equal to its mean,
the variance also has an autoregresive structure in the short-term, captured by the GARCH specification in
our algorithm. Thus, both the mean and variance of the residual depend in some sense on the observations
in the recent past periods. Intuitively, estimating the mean of the residual (AR part), requires accounting
(controlling) for the time-varying variance of the arrivals (GARCH) whenever present.
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2.2 Regime-Switching Models: A Simple Example

Consider the following regime-switching model with two regimes: Arrivals are generated by a doubly
stochastic Poisson intensity λ (u) = `tλ1(u)+ (1− `t)λ2(u) where `t ∈ {0,1} is an indicator fixed for a
deterministic amount of time T , and after that, it is sampled as a Bernoulli random variable with success rate p.
In this example, `t represents an unobservable random mechanism that selects one of the two intensities λ1,λ2
and fixes either for a deterministic amount of time T . Moreover, p↗ 1, meaning that with high probability
only the intensity λ1(u) is observed most of the time. Calibrating a (discrete) non-homogeneous process on
this doubly stochastic process gives lt+1 = ENt+1 =

∫ t+1
t [pλ1(u)+(1− p)λ2(u)]du≈ ∫ t+1

t λ1(u)du. In this
case, the distribution of the residual εt+1 conditional on `t+1 can be written as mixture of two independent
normals as:

εt+1|`t+1
d
= `t+1

[
(lt+1− lt+1)+Zt+1

√
lt+1

]
+(1− `t+1)

[
(st+1− lt+1)+Z′t+1

√
st+1

]
, (1)

where Zt+1,Z′t+1 are independent standard normals. st+1 :=
∫ t+1

t λ2(u)du is the Poisson mean when `t+1 = 0
(in this case the distribution is centered at st+1− lt+1 as opposed to 0 when `t+1 = 1). This expression
comes from a CLT approximation of the Poisson distribution to the normal assuming the rates lt+1,st+1
are large enough.

Without loss of generality the residual can be written as a normal with random mean µt+1 and random
variance σ2

t+1. Where the randomness is conditional on `t+1:

εt+1
d
= µt+1(`t+1)+Zt+1σt+1(`t+1). (2)

While µt+1,σt+1 are random (depending on `t+1), assume It+1 has been fixed at least for k amount of time
(with k << T ), the path defined by µt−k,σt−k · · · ,µt−1,σt−1,µt ,σt has the same intensity selected, that is,
`t−k = · · ·= `t−1 = `t = i. Thus, if µt+1,σt+1 can be written as functions f ,g of the previous k observations
µt−k,σt−k · · · ,µt ,σt , then, the distribution of εt+1 can be estimated at time t and be used to correct the bias
of the deterministic predictor lt+1. As:

εt+1
d
= µt+1(i)+Zt+1σt+1(i) = f (µt−k,σt−k · · · ,µt ,σt)+Zt+1g(µt−k,σt−k · · · ,µt ,σt), (3)

which in turn can be used to correct the prediction lt+1 as E(εt+1|F(t−k):t) is equal to E(µt+1|F(t−k):t) =
f (µt−k,σt−k · · · ,µt ,σt), that is, the expected bias (residual) of the estimator lt+1 conditional on F(t−k):t .
This follows from:

lt+1 +E(µt+1|F(t−k):t) = lt+1 +E(εt+1|F(t−k):t) = lt+1 +E(Nt+1− lt+1|F(t−k):t) = E(Nt+1|F(t−k):t). (4)

The first equality follows from the above discussion, the second one follows by definition, while for the last
one note that lt+1 is constant and Ft measurable (known). Then, denote our corrected short-term estimator
by st+1 = lt+1 +E(µt+1|F(t−k):t).

We summarize the intuition of this section in the following points:

• The residual εt+1 = Nt+1− lt+1 can be written as a normal random variable with random (time-
dependent) mean and variance µt+1,σ

2
t+1 dependent on a unobservable random variable `t+1 that

is persistent over time (meaning that the unobservable variable remains constant for some period
of time).

• If µt+1,σt+1 can be written as functions f ,g of k previous observations µt−k,σt−k · · · ,µt ,σt . Then,
the distribution of the residual εt+1 can be estimated at time t as µt−k,σt−k · · · ,µt ,σt and µt+1,σt+1
share the same unobservable driving random variable.

• With an estimator of µt+1 at time t we get a conditional prediction of the unobserved volume
E(Nt+1|F(t−k):t) given by lt+1 +E(µt+1|F(t−k):t).
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In this paper we take the functional form of f ,g as a time series model with time-varying mean/variance
(modeling the variance as a GARCH model, see Bollerslev (1986)) given by εt = ϕ +∑

p
i=1 ϕiεt−i +Ztσt

in Algorithm 1. Letting µt := ϕ +∑
p
i=1 ϕiεt−i leads to an equivalent expression to Equation (2) with

εt = µt +Ztσt . In this case, the predicted correction is given by E(εt+1|F(t−k):t) = E(µt+1|F(t−k):t) =

ϕ +∑
p
i=1 ϕiεt+1−i.

In the next subsection we generalize the unobservable mechanism to change distributions over time
beyond two distributions and a fixed amount of time to a case with countably many distributions and
random time for switching them. We show that the time series model described in Algorithm 1, while
simple, is flexible enough to accommodate cases of interest for changes of regime.

2.3 General Regime-Switching Models

For a generalization of the previous case, consider a countable collection of γ-periodic, deterministic
intensities {λi(u)}∞

i=1. As time is discrete, let st(i) :=
∫ t

t−1 λi(u)du, the periodicity of λi implies st(i) = st+γ(i)
for all t. Let I be an independent discrete random variable with support {1, . . . ,∞} sampled with probabilities
{pi}∞

i=1 denoting which regime is sampled when there is a regime change. Denote τ as a geometric random
variable with mean Eτ . Let `t be a stochastic process written as:

`t = `t−1(1−B)+ IB, (5)

where B is a Bernoulli random variable with success probability 1/Eτ . `t can be interpreted as the indicator
to select one of the intensities {λi(u)}∞

i=1 that will be set for a geometric time until `t changes (switches)
to another intensity (once B is 1 and I is sampled). That is, the arrivals are distributed Poisson conditional
on the intensity selected by `t (for a geometric amount of time) as:

Nt ∼ Poisson(st(`t)|`t). (6)

Likewise, denote lt := ENt = E[st(`t)] = ∑
∞
i=1 pist(i) and εt+1 = Nt+1− lt+1. As in the previous section the

residual can be written as εt+1
d
= µt+1 +Zt+1σt+1 with µt+1 = st+1(`t+1)− lt+1 and σt+1 =

√
st+1(`t+1).

In the previous section and in Algorithm 1 we propose an AR-GARCH F(t−k):t measurable approxi-
mation of εt+1. In general, for such approximations to be correct further assumptions are needed on the
mean of the geometric time Eτ , the functional form of the intensities {λi(u)}∞

i=1 and how concentrated
are the sampling probabilities {pi}∞

i=1. Next, we discuss some cases of interest when the mean µt+1 and
variance σt+1 can be written as time series model and estimated using our procedure in Algorithm 1. The
first, is the most common way of thinking of shifts in the trend of the residual. The second shows that
continuous and periodic intensity rates have an autoregressive structure representation that leads to a time
series model for the residual. And in the last example a totally general change in the distribution of the
arrival counts (intensity) is considered where the estimation price is that the regime changes should be
longer.

Shifted Intensities: For example, the time series model in Algorithm 1 corrects the bias of the historical
estimator lt if the intensities are just “shifted” from some baseline intensity, that is λi(u) = ci+λ (u) where
ci is the shift from the baseline intensity. Here, lt = Eci +

∫ t
t−1 λ (u)du. In this case, µt+1 is constant and

equal to (c`t −Eci)∆ while `t remains fixed (that is, for the geometric amount of time τ). Conditional that
the intensity selected remains the same, that is, `t+1 = `t = · · · . We have µt+1 could be written as a AR(1)
process with ϕ +ϕ1εt such that µt =

ϕ

1−ϕ1
= (c`t −Eci)∆ = µt+1 (recalling the mean of an AR process is

constant, then taking expected values on both sides of εt+1 = ϕ +ϕ1εt yields µt+1 = ϕ +ϕ1µt , as µt+1 = µt
implies µt = µt+1 =

ϕ

1−ϕ1
).

To see why (c`t −Eci)∆ = µt+1, conditional `t+1 note that E(Nt+1|`t+1) = ∆c`t+1 +
∫ t+1

t λ (u)du, addi-
tionally, E(εt+1|`t+1) = µt+1 = E(Nt+1− lt+1|`t+1) = E(Nt+1|`t+1)− [∆Eci +

∫ t+1
t λ (u)du]. Putting the two

expressions together yields µt+1 = (c`t+1 −Eci)∆, which as long as the intensity does not change, that is,
`t+1 = `t = · · · , the means µt+1 = µt will remain constant (for a geometric amount of time).
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On the other hand, the variance is time dependent. That is σt+1 =
√

c`t+1 +
∫ t+1

t λ (u)du, thus the need
to specify the GARCH component of the autoregressive process (with a constant intercept α = c`t+1 and a
seasonal time-varying term

∫ t+1
t λ (u)du). Estimating the model with a rolling window of k observations

(as seen later on a condition for k << Eτ , such that the intensity indicator `t remains constant with high
probability for the estimation window) allows to estimate the mean and variance of the residual using
Algorithm 1 for large enough k.

Continuous intensities/rates: As another key use case of the generality of our approach, here we
show the intuition that continuous intensities/rates (in a closed interval) can be written as autorregresive
processes specified by our Algorithm 1: By Fourier analysis it is a well known fact that any continuous
function in a compact interval can be approximated by a linear combination of sines and cosines. Then,
as the rates considered are periodic, they can be approximated as a Fourier series. Next, it can be shown
that a sine function can be written recursively as sin(t + 1) = 2cos(∆)sin(t)− sin(t− 1) (recalling time
is indexed t = ∆t. The identity follows from elementary trigonometric identities, and the same can be
done for cosines). For example, letting the rates be st(i) = sin(t)+ ci, we have that they follow an AR(2)
recursion as st+1(i) = φ +φ1st(i)− st−1(i) with φ = 2ci(1−cos∆) and φ1 = 2cos∆. As this procedure can
be done for sines and cosines with arbitrary amplitudes, by Fourier analysis this can be generalized to
approximate any continuous and periodic rate function (including lt), that is, as every sine and cosine has
an AR representation, a linear combination of them (the Fourier series) is also an AR model. In summary,
continuous and periodic rate functions have an associated AR representation.

Recall the residual is equal to εt+1 = Nt+1− lt+1
d
= (st+1(`t+1)− lt+1)+Zt+1

√
st+1(`t+1). As discussed

in the previous paragraph st+1(`t+1) has an autoregressive recursion (and so does st+1(`t+1)− lt+1, as a
difference of periodic functions is also periodic), the residual follows an AR-GARCH functional form as
in Algorithm 1 while `t+1 = `t−k, i.e. the regime has not switched. Intuitively, the mean of the residual
st+1(`t+1)− lt+1 has a different autoregressive representation than its variance st+1(`t+1), which reflects the
need to specify the GARCH component when fitting the time series model in addition to the AR component
for the mean.

General Intensities and Seasonality: Exploiting the γ-periodicity of the intensities leads to another
interesting case: Recall that the point of doing prediction in this setting amounts to find F(t−k):t measurable
approximation/estimation of µt+1 and σt+1 while the regime (intensity) does not change. As the intensities
are γ periodic, µt+1 and σt+1 could be estimated by looking at the observations {εt+1−γk}K

k=1, that, as long
as the indicator for intensities does not change, these are i.i.d. observations with the same distribution as
εt+1 which is the same as the NHPP case except in the sense that the estimation is done in a window of
size K instead of taking all history. Intuitively, this could be stated as: if the periodicity of the intensity
is daily and there has not been a change in the distribution of the arrivals, then, a good estimator of the
prediction error (residual) for the next hour is the average error of the same hour yesterday and the days
before (while the intensity has not changed). This can be stated as a seasonal time series model by:

εt+1 = α +βεt+1−γk +Zσt+1. (7)

As long as the regime has not changed interval considered (of size γK), the observations are i.i.d and the
mean and variance of the error are constant (modulo γ). In practice, the price to pay for the rolling window
estimation is that the time τ for switching the intensity distribution should be in average longer, that is,
γK << Eτ (more on this later). As long as that is the case, estimating in a rolling window of size Kγ yields
consistent estimates for the residual εt+1. Note that in this case there are no restrictions on the functional
form of the intensities nor their sampling probabilities, moreover, this regression can be estimated using
our procedure in Algorithm 1 with only an AR specification of the model (modulo γ).

Limitations: The success on the convergence of the parameters of the window estimation in Algorithm
1 (of size γK or k) hinges on the assumption that the changes of regime are not very frequent, that is,
γK << Eτ or k << Eτ , such that the distribution of the arrivals remains the same in the estimation and
forecasting window, and the mean and variance of the residual (modeled as time series) corresponds to a
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single regime. If Eτ is small, the changes of arrival distribution are frequent and the window estimation
will intuitively fail as the likelihood of having a regime change in the estimation window is equal to
1− (1−Eτ−1)k (one minus the probability there are no regime changes in k hours). For a window of size
k to have only one regime (with probability a) it should be true that Eτ is at least 1

1−a1/k (this comes from
solving (1−Eτ−1)k ≥ a). For example, for a window of size k = 100 hours for the estimation to have only
one regime (w.p. a = 95%), Eτ should be at least 2000 hours in average.

Nonetheless, the case when the regimes change too often highlights a key limitation of the window
estimation method and the need to use different methods in this case (or restricting the assumptions on the
changes of the intensities when the regime changes). In general, having larger windows is better for the
asymptotic behavior of the parameters of the time series model with the caveat the estimation is correct
(only has one regime) with probability (1−Eτ−1)k, which is a decreasing function on k and dependent on
Eτ .

3 NUMERICAL EXAMPLES

In this section we start by calibrating a piecewise constant intensity λ (t) as described in Section 2 for the
call arrivals to the FDNY’s 911 EMS call center with historical data from January 2018 to December 2019.
The calibrated intensity is plotted in Figure 3. We use this calibrated intensity as the baseline prediction
lt+1 =

∫ t+1
t λ (u)du = ENt+1. This calibrated intensity can be simply seen as the historical average weekly

incidents for every hour of the week.

0 25 50 75 100 125 150 175

t

100

150

200
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300
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Figure 3: Example of a calibrated weekly arrival intensity λ (t) for the 168 hours of the week with confidence
intervals.

For testing our model vs the baseline prediction we use the hourly call arrivals from January to December
2020. In Figure 1 we plot a period where the call volume was higher than previously seen. In particular,
the dates around April 1st showed historical highs in total call volumes at the FDNY 911 call center.

We predict the hourly call volume using Algorithm 1 using an estimation window of k = 150 hours.
That is, to predict the call volume next j-th hour t + j at time t, the previous k = 150,200,250 hours
are used to estimate the parameters of the AR-GARCH model, which are used to compute the short-term
prediction ŝt+ j = lt+ j +E(ε̂t+ j|F(t−k):t). We measure the performance by estimating the average absolute
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error, that is, E(|Nt+ j− ŝt+ j|) out of sample. As a reference benchmark we compare with the mean absolute
error of the historical prediction, that is, E(|Nt − lt |) for the same testing period. In Table (1) we report
the performance of the model. For the AR-GARCH model we use order (p = 2,q = 1,r = 1) in reference
to Algorithm 1 (this order of the model was the most numerically stable in our data. Nonetheless, testing
different order combinations is encouraged on a case by case basis).

Our short-term predictor ŝt+ j improves the performance of the long-term estimation lt+ j close to 50%
every hour when predicting the next hour ( j = 1). As the forecasting horizon j increases, the performance
deteriorates but plateaus around a mean absolute error of 20 calls per hour, which is still a 25% improvement
over the historical estimator lt . The plateau phenomenon is expected due to the mean reverting nature of
ARIMA models as time goes to infinity, making the prediction of the residual time series constant for
long prediction horizons, thus, the emphasis on the short-term prediction use of the model and the need to
re-calibrate the parameters on a rolling window. It can also be seen that changing the prediction window
k does not give a significant performance improvement (lower values of k created numerical instabilities
in the maximum likelihood estimation of the GARCH component and are omitted).

Table 1: Out-of-sample mean absolute error E(|Nt+ j− ŝt+ j|) of our short-term estimator ŝt+ j in Algorithm
1 for different estimation windows k and prediction horizons j. As a benchmark, the mean absolute error
of the historical predictor E(|Nt − lt |) is equal to 27.48 calls per hour.

Hours predicted into the future t + j
j = 1 j = 2 j = 5 j = 10 j = 24 j = 36

k = 150 14.63 16.04 18.56 19.52 18.79 19.96
k = 200 14.64 16.04 18.59 19.51 19.47 20.08
k = 250 14.64 16.04 18.58 19.56 20.01 20.46

In Figure 4 we plot our short-term predictor ŝt+1 against the long-term estimator lt+1 for the week with
highest observed volume in 2020. In Figure 5 the distribution of the error of the long-term estimator lt+1
vs our predictor ŝt+1 is plotted. Note that with our method the error is centered at 0 with less variance and
bias w.r.t. the long-term estimator, which is a desirable property.
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Figure 4: Comparison between our proposed short-term prediction ŝt+1 vs long-term prediction lt+1, actual
call arrival is the red line.
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Figure 5: Histogram of the long-term prediction error (Nt+1− lt+1 with mean -12.40 and standard deviation
34.23) compared with the error of our method (Nt+1− ŝt+1 with mean -0.04 and standard deviation 18.84).

4 CONCLUDING REMARKS

In this paper we characterized a model and an algorithm to improve a long-term historical prediction of
arrivals, that is both tractable and easy to implement. This model can be used in multiple settings to forecast
demand near real-time. Moreover, the model provides a complete distribution of the prediction error that
can be used to build confidence intervals or do robust allocation of resources based on the distribution of
the prediction error Nt+1− lt+1 = εt+1 = µt+1 +σt+1Zt+1.

An important use case of the model is the prediction of call arrivals to an EMS call center, where
such model could direct efforts in mitigating the effects of increases in the call volume and ensuring the
reliability of operations during such events (by either increasing staffing or changing the processing of calls
adaptively relative to the demand).

Further research effort is needed in finding F(t−k):t measurable approximations of µt+1,σt+1 and
characterizing the convergence of data-driven procedures in their calibration relative to the expected regime
change time Eτ , the assortment of intensities {λi} and their sampling probabilities beyond the time series
model presented.
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research interests revolve around probabilistic data analytics and physics-based modeling for civil engineering applications. Her
email address is audreyol@usc.edu.

mailto://m.elioth@columbia.edu
mailto://edward.dolan@fdny.nyc.gov
mailto://nicholas.johnson@fdny.nyc.gov
mailto://timothy.kepler@fdny.nyc.gov
mailto://khl2114@columbia.edu
mailto://enrique.lelodelarrea@columbia.edu
mailto://sm4894@columbia.edu
mailto://audreyol@usc.edu


Sanabria, Dolan, Johnson, Kepler, Lam, Lelo de Larrea, Mohammadi, Olivier, Quayyum, Sethuraman,
Smyth, and Thomson

AFSAN QUAYYUM is a Data Scientist at the Bureau of Management Analysis and Planning at the FDNY. He has an M.S.
in Mathematics and a B.S. in Mathematics with a minor concentration in Applied Physics from New York University. His
work focuses on implementing statistical learning techniques for inference and prediction to help EMS and Fire Operations.
His email address is afsan.quayyum@fdny.nyc.gov.

JAY SETHURAMAN is a Professor of Industrial Engineering and Operations Research at Columbia University. Currently, he
serves as the chair of the IEOR department at Columbia. His research interests are in discrete optimization and applications,
game theory, mechanism design, and applied probability. His email address is jay@ieor.columbia.edu.

ANDREW SMYTH is the Carleton Professor of Civil Engineering & Engineering Mechanics and also serves as the Co-Chair of
the Smart Cities Center of the Data Science Institute at Columbia University. His research focuses on infrastructure monitoring,
dynamic system identification and modeling. He received his Ph.D. in Civil Engineering from the University of Southern
California as well as an M.S. in Electrical Engineering, an M.S. from Rice University, and a Sc.B. and A.B. from Brown
University. His email address is smyth@civil.columbia.edu.

KATHLEEN THOMSON is the Assistant Commissioner for the Bureau of Management Analysis and Planning at the FDNY.
Her email address is kat.thomson@fdny.nyc.gov.

mailto://afsan.quayyum@fdny.nyc.gov
mailto://jay@ieor.columbia.edu
mailto://smyth@civil.columbia.edu
mailto://kat.thomson@fdny.nyc.gov

	INTRODUCTION
	METHODOLOGY
	Intuitive Justification of AR-GARCH via Doubly Stochastic Poisson Processes
	Regime-Switching Models: A Simple Example
	General Regime-Switching Models

	NUMERICAL EXAMPLES
	CONCLUDING REMARKS

