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ABSTRACT

We consider a problem of selecting a subset of a finite number of competing alternatives via Monte Carlo
simulation, where the subset contains the top-m alternatives. Under the Bayesian framework, we develop
a dynamic sampling policy to efficiently learn and select the top-m alternatives. The proposed sampling
policy is proved to be consistent, i.e., the selected alternatives will be the true top-m alternatives as the
number of simulation budget goes to infinity. Numerical results show that the proposed sampling policy
outperforms the existing ones.

1 INTRODUCTION

The ranking and selection (R&S) problem has been actively studied in simulation and optimization (see Bech-
hofer 1995; Chen and Lee 2011; Powell and Ryzhov 2012), which aims to find the single best alternative
from a finite set of k alternatives with unknown means. The best alternative is defined as the one with the
largest mean, i.e., 〈1〉 ∆

=argmaxi=1,2,··· ,kµi, where µi, i = 1,2, · · · ,k is the unknown mean of each alternative
that can only be estimated by Monte Carlo simulation. A more general problem than R&S is to select
alternatives with top-m largest means from a finite set of k alternatives (1≤ m < k,m,k ∈ N+). We aim
to efficiently allocate simulation budget to alternatives so that the probability of correct selection (PCS)
of top-m alternatives can be maximized. Instead of focusing on the best alternative, the subset selection
problem provides more choices for decision makers, and more choices sometimes can lead to better out-
come. For example, in an emergency evacuation problem, different evacuation routes can be regarded as
alternatives, and in response to stampedes and disasters, evacuating evacuees by several well-chosen routes
could reduce the evacuation time compared with evacuating evacuees via a single best route (Zhang et al.
2018).

There are two different ways to categorize R&S procedures. In terms of methodologies, there are
frequentist and Bayesian branches. In terms of goals, there are fixed-precision and fixed-budget procedures.
See Kim and Nelson (2006), Chick (2006) and Hong et al. (2020) for overviews. Fixed-precision procedures
(e.g., Rinott 1978; Kim and Nelson 2001; Frazier 2014) allocate simulation replications to guarantee a
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pre-specified PCS level, whereas fixed-budget procedures (e.g., Chen et al. 2000; Frazier et al. 2009; Chick
et al. 2010) allocate simulation replications to maximize the PCS or minimize the expected opportunity
cost (EOC) under a given simulation budget. A representative Bayesian procedure is optimal computing
budget allocation (OCBA) (Chen et al. 2000; Chen and Lee 2011), which is derived in a static optimization
framework. The OCBA is originally a two-stage method and then is implemented in a sequential manner by
combining with some heuristic rules. It has been widely observed that the sequential sampling procedures
that incrementally allocate simulation replications perform better than the two-stage procedures (Chen and
Lee 2011). Peng et al. (2018) propose a stochastic control framework to formulate the sequential sampling
policy under the Bayesian framework, and develop an efficient sampling procedure that maximizes a value
function approximation (VFA) one-step look ahead.

We briefly review the existing literature for selecting top-m alternatives. Koenig and Law (1985) adopt
an indifference zone paradigm in the frequentist branch and propose a two-stage procedure. Chen et al.
(2008) generalize the OCBA sampling procedure in Chen et al. (2000) to subset selection problem. Gao
and Chen (2015a) and Gao and Chen (2015b) propose sequential allocation procedures for selecting top-
m alternatives to asymptotically minimize approximation of EOC and maximize approximation of PCS,
respectively. Zhang et al. (2015) improve the sampling procedure in Chen et al. (2008) with a better
approximation of PCS. Gao and Chen (2016) further extend the results in Gao and Chen (2015b) to general
sampling distributions by using a large deviations principle and Bonferroni inequality to approximate PCS.
We caution that the approximation of PCS derived by Bonferroni inequality could be loose when the
simulation budget is small. Particularly, it could even lead to a negative lower bound for PCS which is
a probability. The sequential sampling procedures in Gao and Chen (2015b) and Gao and Chen (2016)
are developed to achieve certain asymptotic optimality conditions, however, recent studies show that the
asymptotic property is inadequate to capture the finite-sample behavior of sequential sampling policies
(see Peng et al. 2018; Wu and Zhou 2018; Zhang et al. 2020; Shin et al. 2021; Shi et al. 2021).

In our work, we formulate the sequential sampling decision for selecting top-m alternatives as a stochastic
dynamic programming problem under the Bayesian framework. We develop a sequential sampling policy
that maximizes a value function approximation one-step look ahead. The proposed sampling policy is
proved to be consistent and is demonstrated to perform well empirically.

The rest of the paper is organised as follows. Section 2 formulates the proposed problem. The value
function approximation and dynamic allocation scheme are proposed in Section 3. Section 4 provides
numerical results. The last section concludes the paper.

2 PROBLEM FORMULATION

Suppose there are k alternatives and the performance of each alternative is measured by unknown mean
µi, i = 1,2, · · · ,k. We assume that the performance of each alternative can be distinguished, i.e., µi 6= µ j,

i, j = 1,2, · · · ,k, i 6= j. The set of true top-m alternatives is denoted as F m ∆
={〈1〉 ,〈2〉 , · · · ,〈m〉}, where

〈i〉, i = 1,2, · · · ,k are indices ranked by system performances such that µ〈1〉 > µ〈2〉 > · · ·> µ〈m〉 > µ〈m+1〉 >
· · ·> µ〈k〉. µi, i = 1,2, · · · ,k can be estimated by sampling independent and identically (i.i.d.) simulation
replications Xi,t , t ≤ T , t ∈ Z+, i = 1,2, · · · ,k, where T < ∞ is the number of total simulation replications.

Suppose (X1,t ,X2,t , · · · ,Xk,t) follows a joint distribution Q(·;θ) with density function (or probability
mass function) q(·;θ), where θ contains all unknown parameters in the sampling distribution, including the
unknown means, i.e., µ ∈ θ . To quantify the uncertainty of parameter θ , under the Bayesian framework,
we suppose that θ follows a prior distribution F (·;ξ0) that reflects the prior knowledge on the unknown
parameters, where ξ0 contains all hyper-parameters. The sampling policy is a sequence of mappings

AT (·)
∆
=(A1 (·) ,A2 (·) , · · ·AT (·)) with At (·) ∈ {1,2, · · · ,k} that sequentially allocates each replication to an

alternative based on collected information Et−1 throughout (t−1) steps. Let Et
∆
={ζ0,X

(t)
1 ,X (t)

2 , · · ·X (t)
k } be

a collected information set throughout t steps, and X (t)
i

∆
=(Xi,1,Xi,2, · · ·Xi,ti), i = 1,2, · · · ,k be the sample
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observations of alternative i throughout t steps, where ti
∆
=∑

t
`=1 Ai,`(E`−1)with Ai,` (E`−1)

∆
=1(A` (E`−1) = i),

i = 1,2, · · · ,k be the number of simulation replications allocated to alternative i throughout t steps, and
1(·) is an indicator function that equals to 1 when the event in the bracket is true and equals to 0
otherwise. The set of estimated top-m alternatives after allocating t simulation replications is denoted

as F̂ m
t

∆
={〈1〉t ,〈2〉t , · · · ,〈m〉t}, where 〈i〉t , i = 1,2, · · · ,k are indices ranked by posterior means such that

µ〈1〉t > µ〈2〉t > · · · > µ〈m〉t > µ〈m+1〉t > · · · > µ〈k〉t . If the allocation procedure stops at t-th step, a correct

selection occurs when F̂ m
t = F m. The posterior PCS for selecting top-m alternatives can be expressed as

PCSt = Pr{F̂ m
t = F m|Et}= Pr{∩m

i=1∩k
j=m+1

(
µ〈i〉t > µ〈 j〉t

)
|Et} . (1)

We aim to find an efficient sequential sampling policy such that the posterior PCS for selecting the
top-m alternatives can be maximized. In this work, we propose a sequential sampling policy At (·) to
maximize the posterior PCS (1) looking one-step ahead: maxAt(·) Pr

{
µ〈i〉t > µ〈 j〉t

∣∣Et−1
}

, i = 1,2, · · · ,m,
j = m+1,m+2, · · · ,k. The sequential sampling policy is captured by a stochastic dynamic programming
problem. The expected payoff for a sequential sampling policy AT (·) can be defined recursively by

VT (ET ;AT (·))
∆
=Pr

{
µ〈i〉T > µ〈 j〉T , i = 1,2, · · · ,m, j = m+1,m+2, · · · ,k

∣∣ET
}

, (2)

which is the posterior integrated PCS (IPCS), and for 0≤ t < T ,

Vt (Et ;AT (·))
∆
=E

[
Vt+1

(
Et ∪

{
Xi,ti+1

}
;AT (·)

)∣∣Et
]∣∣

i=At+1(Et)
,

where Xi,ti+1 is the (ti +1)-th simulation replication for the allocated alternative i, i = At+1 (Et). Then the

optimal sequential sampling policy is well defined by A ∗
T (·) ∆

=argmaxAT (·)V0 (ζ0;AT (·)).
The stochastic dynamic programming problem is a Markov decision process (MDP) with (T +1)

stages, where ζ0 is the state at stage 0 and the information set Et is the state at stage t, 0 < t ≤ T . The

action is At+1 and transition Et → Et+1
∆
= {Et ∪{Xi,ti+1}}|i=At+1

, 0 ≤ t < T . The only nonzero reward is
the final reward VT (ET ). Note that the dimension of state space grows as the step grows. We have the

Bellman equation: VT (ET )
∆
=Pr

{
µ〈i〉T > µ〈 j〉T , i = 1,2, · · · ,m, j = m+1,m+2, · · · ,k

∣∣ET
}

, and for 0≤ t <

T , Vt (Et)
∆
= E [Vt+1 (Et ∪{Xi,ti+1})|Et ]|i=A∗t+1(Et)

, where A∗t+1 (Et) = arg max
i=1,2,··· ,k

E [Vt+1 (Et ∪{Xi,ti+1})|Et ].

The backward induction can be used to solve the stochastic dynamic programming problem, however, it
suffers from curse-of-dimensionality when solving R&S problem (Peng et al. 2018). To derive a dynamic
sampling policy with an analytical form, we adopt an approximate dynamic programming (ADP) paradigm
which makes dynamic decision based on a VFA and keeps learning the VFA with decisions moving forward.

A common assumption is that simulation replications of different alternatives are independent, i.e.,
Q(·;θ) = ∏

k
i=1 Qi (·;θi), where θi comprises all unknown parameters in the marginal distribution Qi,

i= 1,2, · · · ,k. We assume that for each alternative, the simulation replications are i.i.d. normally distributed,
i.e., Xi,t ∼ N

(
µi,σ

2
i
)
, i = 1,2, · · · ,k. The variance σ2

i in the sampling distribution is assumed to be known
in this work and sample variance is used as a plug-in for the true variance in practice. The posterior
and predictive distribution can be calculated by Bayes rule. If the prior distribution is a conjugate prior
of the sampling distribution, the posterior distribution F (·;ξt) lies in the parametric family of the prior
distribution, and then Et can be completely summarized by posterior hyper-parameters ξt . Suppose the prior
distribution of µi is N(µ

(0)
i ,(σ

(0)
i )2), which is the conjugate prior for the normal distribution with unknown

mean and known variance. The posterior distribution of µi is N(µ
(t)
i ,(σ

(t)
i )2) with posterior variance

(σ
(t)
i )2=1

/(
1

(σ
(0)
i )2

+ ti
σ2

i

)
and posterior mean µ

(t)
i = (σ

(t)
i )2

(
µ
(0)
i

(σ
(0)
i )2

+
tim

(t)
i

σ2
i

)
, where m(t)

i = ∑
ti
`=1 Xi,`

/
ti is
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the sample mean, and the predictive distribution of Xi,ti+1 is N(µ
(t)
i ,σ2

i +(σ
(t)
i )2), i = 1,2, · · · ,k. Note that

if σ
(0)
i → ∞, then µ

(t)
i = m(t)

i and (σ
(t)
i )2 = σ2

i
/

ti, i = 1,2, · · · ,k, which only includes sample information
without any hyper-parameters, and such a case is called uninformative. Then we have the information set
Et = {µ(t)

1 ,µ
(t)
2 , · · · ,µ(t)

k ,(σ
(t)
1 )2,(σ

(t)
2 )2, · · · ,(σ (t)

k )2,E0}. For a normal distribution with unknown variance,
there is a normal-gamma conjugate prior (DeGroot 2005), and the corresponding analysis is left for future
research.

3 DYNAMIC SAMPLING POLICY

Conditioned on Et , µi follows a normal distribution with mean µ
(t)
i and variance (σ (t)

i )2, i= 1,2, · · · ,k. Then,
the joint distribution of vector (µ〈1〉t −µ〈m+1〉t , · · ·µ〈1〉t −µ〈k〉t , · · · ,µ〈m〉t −µ〈m+1〉t , · · ·µ〈m〉t −µ〈k〉t ) follows a

joint normal distribution with mean vector (µ(t)
〈1〉t
−µ

(t)
〈m+1〉t

, · · ·µ(t)
〈1〉t
−µ

(t)
〈k〉t

, · · · ,µ(t)
〈m〉t
−µ

(t)
〈m+1〉t

, · · ·µ(t)
〈m〉t
−µ

(t)
〈k〉t

),

and covariance matrix Σ = Γ′ΛΓ, where ′ denotes the transpose operation of the matrix, Λ ∈ Rk×k,

Λ
∆
=diag((σ (t)

〈1〉t
)2,(σ

(t)
〈2〉t

)2, · · · ,(σ (t)
〈m〉t

)2,(σ
(t)
〈m+1〉t

)2,(σ
(t)
〈m+2〉t

)2, · · · ,(σ (t)
〈k〉t

)2) is a diagonal matrix, and Γ ∈
Rk×[m×(k−m)] is a block matrix,

Γ
∆
=

(
R1 R2 · · · Rm

S1 S2 · · · Sm

)
k×[m×(k−m)]

,

where Ri ∈ Rm×(k−m), i = 1,2, · · · ,m is a matrix in which i-th row is 1 and the remaining rows are 0, and
Si ∈ R(k−m)×(k−m), i = 1,2, · · · ,m is a diagonal matrix, i.e.,

Ri
∆
=



0 0 · · · 0
0 0 · · · 0
...

...
. . .

...
1 1 · · · 1
...

...
. . .

...
0 0 · · · 0

 → ith row ,
Si

∆
=


−1 0 · · · 0
0 −1 · · · 0
...

...
. . .

...
0 0 · · · −1


(k−m)×(k−m)

.

With Cholesky decomposition of the covariance matrix Σ=Γ′ΛΓ=U ′U , whereU ∈R[m×(k−m)]×[m×(k−m)]

is an upper triangular matrix with elements ui j, i.e., ui j = 0 if i > j, i, j = 1,2, · · · ,m× (k−m), the value

function (2) can be rewritten as 1

(
√

2π)
m×(k−m) ×

∫
∑

q
`=1 u`,qz`≥µ

(t)
〈 j〉t
−µ

(t)
〈i〉t

∏
m×(k−m)
h=1 exp

(
− z2

h
2

)
dz1 · · ·dzm×(k−m). A

VFA one-step look ahead is an integral of the multivariate standard normal density over an area cov-
ered by [m× (k−m)]-dimensional hyper-planes: ∑

q
`=1 u`,qz` = µ

(t)
〈 j〉t −µ

(t)
〈i〉t , i = 1,2, · · · ,m, j = m+1,m+

2, · · · ,k, q = 1,2, · · · ,m× (k−m), and in the case with k = 3 and m = 2, the area is the shaded area in
Figure 1. Since the standard normal density decays at an exponential pace with respect to the distance
from the origin, the VFA can be further simplified as the integral over the area of the largest internal
ball encompassed by the hyper-planes, i.e., the circle in Figure 1 for the case of k = 3 and m = 2. It
can be shown that the error of the integral of the [m× (k−m)]-dimensional standard normal density over
the largest internal ball as an approximation of Pr

{
µ〈i〉t > µ〈 j〉t , i = 1,2, · · · ,m, j = m+1,m+2, · · · ,k

∣∣Et
}

decreases to 0 in an exponential rate as t goes to infinity. Owing to symmetry of normal density, maxi-
mizing the integral over the largest internal ball is equivalent to maximizing the size of the circle, which

yields an analytical form for the solution to the stochastic dynamic programming. Let d (Et)
∆
=min

i, j
di j (Et),

i = 1,2, · · · ,m, j = m+ 1,m+ 2, · · · ,k be the radius of the largest internal ball of the integration region,

where di j (Et) =
(

µ
(t)
〈i〉t
−µ

(t)
〈 j〉t

)/√(
σ
(t)
〈i〉t

)2
+
(

σ
(t)
〈 j〉t

)2
, i ∈ {1,2, · · · ,m}, j ∈ {m+1,m+2, · · · ,k} is the
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distance from the origin to each hyper-plane, and then the VFA is given by Ṽt (Et)
∆
=d2 (Et). At any step

t, we treat the (t +1)-th step as the last step, and then an approximation of the value function looking one
step ahead at step t by allocating a replication to the alternative i, i = 1,2, · · · ,k can be given as

Ṽt (Et ; i)
∆
=E[Ṽt+1 (Et ∪{Xi,ti+1})|Et ] . (3)

Figure 1: Area of integration for approximation is the ball, where dominant values of integrand
exp
(
−
(
z2

1 + z2
2
)
/2
)

are captured.

Further, since the expectation is computationally expensive to calculate, the certainty equivalence (Bert-
sekas 2005) is used as an approximation of (3), that is, replacing stochastic quantities by their expected
values, which can be expressed as E[Ṽt+1 (Et ∪{Xi,ti+1})|Et ] = Ṽt+1 (Et ∪E [Xi,ti+1|Et ]). Then the VFA
looking one-step ahead can be calculated, i.e., for i,h = 1,2, · · · ,m and j, `= m+1,m+2, · · · ,k,

V̂t (Et ; i)
∆
=Ṽt+1 (Et ∪E [Xi,ti+1|Et ]) = min

min
j

(µ
(t)
〈i〉t
−µ

(t)
〈 j〉t

)2

(σ
(t+1)
〈i〉t

)2 +(σ
(t)
〈 j〉t

)2
,min

h6=i
j

(µ
(t)
〈h〉t
−µ

(t)
〈 j〉t

)2

(σ
(t)
〈h〉t

)2 +(σ
(t)
〈 j〉t

)2

 ,

and

V̂t (Et ; j)
∆
=Ṽt+1

(
Et ∪E

[
X j,t j+1|Et

])
= min

min
i

(µ
(t)
〈i〉t
−µ

(t)
〈 j〉t

)2

(σ
(t)
〈i〉t

)2 +(σ
(t+1)
〈 j〉t

)2
,min
6̀= j
i

(µ
(t)
〈i〉t
−µ

(t)
〈`〉t

)2

(σ
(t)
〈i〉t

)2 +(σ
(t)
〈`〉t

)2

 ,

where (σ
(t+1)
〈`〉t

)2 = 1/(1/(σ (0)
〈`〉 )

2 +(t`+1)/σ2
〈`〉), `= 1,2, · · · ,k.

A dynamic sampling policy for selecting top-m alternatives (DSSm) that optimizes the VFA looking
one-step ahead is given by

Ât+1 (Et) = arg max
i=1,2,··· ,k

V̂t (Et ; i) . (4)

The proposed sequential DSSm (4) uses the information on the posterior means and posterior variances of
the estimated unknown performances of alternatives. Note that (µ(t)

〈i〉t
−µ

(t)
〈 j〉t

)2 and (σ
(t)
〈i〉t

)2 +(σ
(t)
〈 j〉t

)2 are the
squared mean and variance of the posterior distribution of the difference in performances of alternatives i and
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j, respectively, i = 1,2, · · · ,m, j = m+1,m+2, · · · ,k, and then the VFA can be rewritten as min
i, j

1
/

c2
v (i, j),

where cv (i, j) is the posterior noise-signal ratio (coefficient of variation) of µ〈i〉t − µ〈 j〉t , i = 1,2, · · · ,m,
j = m+1,m+2, · · · ,k. DSSm (4) minimizes the maximum of cv (i, j), which is reasonable since the larger
is the value of cv (i, j), the higher the difficulty in comparing µ〈i〉t and µ〈 j〉t from posterior information. At
each step, DSSm (4) sequentially allocates a replication to an alternative to reduce the noise-signal ratio,
focusing on the alternatives that are most difficult in comparison based on posterior information. DSSm
(4) is proved to be consistent in the following theorem, i.e., as t → ∞, the top-m estimated set F

(t)
m will

be the true top-m set Fm .

Theorem 1 The proposed sequential DSSm (4) is strongly consistent, i.e., lim
t→∞

F̂
(t)
m = Fm, a.s..

Proof. We only need to prove that every alternative will be sampled infinitely often almost surely, i.e.,
limt→∞ ti = ∞ for each i = 1,2, · · · ,k. Following DSSm (4), the consistency will follow by the law of large
numbers (LLN).

Define I
∆
={i∈ {1,2, . . . ,k} : alternative 〈i〉 is sampled infinitely often a.s.}. If {1,2, · · · ,m}∩I = /0

and {m+1,m+2, . . . ,k}∩I 6= /0, then ∀ i ∈ {1,2, · · · ,m}, lim
t→∞

(σ
(t)
〈i〉 )

2 > 0, lim
t→∞

[(σ
(t)
〈i〉 )

2− (σ
(t+1)
〈i〉 )2] > 0.

∃ h ∈ {1,2, · · · ,m} such that lim
t→∞

[V̂t (Et ;h)−Ṽt (Et)] > 0, a.s. and ∃ j ∈ {m+1,m+2, · · · ,k} such that

lim
t→∞

(σ
(t)
〈 j〉)

2 = 0, lim
t→∞

[(σ
(t)
〈 j〉)

2− (σ
(t+1)
〈 j〉 )2] = 0, and lim

t→∞
[V̂t (Et ; j)−Ṽt (Et)] = 0, a.s., which leads to an

contradiction to the sampling rule (4). Therefore, {1,2, · · · ,m}∩I 6= /0.
If {m+1,m+2, . . . ,k}∩I = /0, then ∀ j ∈ {m+1, · · · ,k}, lim

t→∞
(σ

(t)
〈 j〉)

2 > 0, lim
t→∞

[(σ
(t)
〈 j〉)

2− (σ
(t+1)
〈 j〉 )2]>

0. ∃ j ∈ {m+1,m+2, . . . ,k} such that lim
t→∞

[V̂t (Et ; j)−Ṽt (Et)] > 0, a.s., and for i ∈ I ∩{1,2, · · · ,m},

lim
t→∞

[V̂t (Et ; i)−Ṽt (Et)] = 0, a.s., which leads to an contradiction to the sampling rule (4). Therefore,

{m+1,m+2, . . . ,k}∩I 6= /0.
In addition, if {m+1,m+2, . . . ,k}\I 6= /0, where \ denotes the set minus, then for i∈{1,2, · · · ,m}∩I ,

j ∈ {m+1,m+2, . . . ,k}∩I , and `∈ {m+1,m+2, . . . ,k}\I , lim
t→∞

di j(Et) = ∞ and lim
t→∞

di`(Et)< ∞. Thus,

for j ∈ {m+1,m+2, . . . ,k}∩I ,lim
t→∞

[V̂t (Et ; j)−Ṽt (Et)] = 0, a.s., and ∃ q∈ {m+1,m+2, . . . ,k}\I such

that lim
t→∞

[V̂t (Et ;q)−Ṽt (Et)]> 0, a.s., which leads to an contradiction to the sampling rule (4). Therefore,

{m+1,m+2, . . . ,k} ⊂I .
Finally, if {1,2, . . . ,m}\I 6= /0, then for j ∈ {m+1, . . . ,k}, i∈ {1,2, · · · ,m}∩I , h∈ {1,2, . . . ,m}\I ,

lim
t→∞

di j(Et) = ∞, and lim
t→∞

dh j(Et)< ∞.

Thus, for i ∈ {1,2, . . . ,m}∩I , lim
t→∞

[V̂t (Et ; i)−Ṽt (Et)] = 0, a.s., and ∃ h ∈ {1,2, . . . ,m}\I such that

lim
t→∞

[V̂t (Et ;h)−Ṽt (Et)] > 0, a.s., which leads to an contradiction to the sampling rule (4). Therefore,

{1,2, . . . ,m} ⊂I . Summarizing the above, the theorem is proved.

Some existing works (see Chen et al. (2008), Zhang et al. (2015), Gao and Chen (2015b), Gao and
Chen (2016)) formulate the sampling decision for selecting top-m alternatives as the solution to a static
optimization problem:

max
r1,r2,··· ,rk

Pr
{

X̄〈i〉 (riT )> X̄〈 j〉 (r jT ) , i = 1,2, · · · ,m, j = m+1,m+2, · · · ,k
∣∣θ} (5)

s.t. ∑
k
i=1 ri = 1 ,

where ri
∆
= ti
/

T , ∑
k
i=1 ri = 1 is the sampling ratio, riT , i = 1,2, · · · ,k is the number of simulation replications

allocated to alternative i, and for i = 1,2, · · · ,k, X̄〈i〉 (riT )
∆
=∑

riT
`=1 X〈i〉,`

/
(riT ), where a technicality that the



Zhang, Peng, Zhang, and Zhou

number of simulation replications needs to be integer is ignored. Such a static optimization problem is
difficult to solve, to reduce the complexity of solving (5), based on the large deviations theory for classical
R&S problem (Glynn and Juneja 2004), a surrogate problem is to maximize the large deviations rate of
the PFS:

max
r1,r2,··· ,rk

lim
T→∞
− 1

T
log
(
1−Pr

{
X̄〈i〉 (riT )> X̄〈 j〉 (r jT ) , i = 1,2, · · · ,m, j = m+1,m+2, · · · ,k

∣∣θ}) (6)

s.t. ∑
k
i=1 ri = 1 ,

In the case of normal sampling distributions, the objective function in optimization problem (6) is

equivalent to max
r1,r2,··· ,rk

min
i=1,2,··· ,m

j=m+1,m+2,··· ,k

Gi j (ri,r j;θ), where Gi j (ri,r j;θ)=
(µ〈i〉−µ〈 j〉)

2

2
(

σ2
〈i〉

/
ri+σ2

〈 j〉

/
r j

) , i= 1,2, · · · ,m, j =

m+1,m+2, · · · ,k. Solve the optimization problem (6) with normal underlying distributions, we have the
optimal convergence rate of the large deviations of the PFS for selecting top-m alternatives satisfies, for
i,h = 1,2, · · · ,m, j, `= m+1,m+2, · · · ,k,

min
j=m+1,m+2,··· ,k

(
µ〈h〉−µ〈 j〉

)2

σ2
〈h〉

/
r∗h +σ2

〈 j〉

/
r∗j

= min
i=1,2,··· ,m

(
µ〈i〉−µ〈`〉

)2

σ2
〈i〉

/
r∗i +σ2

〈`〉

/
r∗`

, (7)

m

∑
i=1

(r∗i )
2

σ2
〈i〉

=
k

∑
j=m+1

(r∗j )
2

σ2
〈 j〉

, (8)

where ∑
k
`=1 r∗` = 1, r∗` > 0, ` = 1,2, · · · ,k. Then we can investigate the asymptotic optimality of the

sampling ratios of the proposed sequential DSSm (4), that is, as t → ∞, the sampling ratio of each
alternative sequentially achieves the optimal decreasing rate of the large deviations of PFS, i.e.,

lim
t→∞

r(t)i = r∗i , a.s., i = 1,2, · · · ,k , (9)

where r(t)i = ti
/

t, ∑
k
i=1 r∗i = 1, r∗i ≥ 0, i = 1,2, · · · ,k, and r∗ =

(
r∗1,r

∗
2, · · · ,r∗k

)
satisfies (7) and (8). We leave

the proof of (7), (8) and (9) to future work.

4 NUMERICAL EXPERIMENTS

In this section, we conduct numerical experiments to test the performances of different allocation procedures
for selecting top-m alternatives. The proposed sequential DSSm procedure is compared with the Equal
Allocation (EA); Optimal Computing Budget Allocation for selecting top-m alternatives (OCBAm) in Chen
et al. (2008); Improved Optimal Computing Budget Allocation for selecting top-m alternatives (OCBAm+)
in Zhang et al. (2015); Optimal Computing Budget Allocation for subset selection (OCBAss) in Gao and
Chen (2015b) and Improved Optimal Computing Budget Allocation for Subset Selection (OCBASS) in Gao
and Chen (2016):

• EA: The procedure allocates the same number of simulation replications to each alternative, i.e.,
ti =

⌈
T
/

k
⌉
, i = 1,2, · · · ,k, where d·e is a ceiling function.

• OCBAm: The procedure needs to determine a separating parameter c. At each step, it allocates ∆

simulation replications to alternatives according to ri
r j
=
(

σ〈i〉
/

δi

σ〈 j〉
/

δ j

)2
, where i, j = 1,2, · · · ,k, i 6= j,

and δ` = µ〈`〉−c, `= 1,2, · · · ,k. The suggested choice of parameter c in Chen et al. (2008) depends
on the number of allocated simulation replications ti, i = 1,2, · · · ,k, i.e.,

c =
σ̄〈m+1〉µ〈m〉+ σ̄〈m〉µ〈m+1〉

σ̄〈m〉+ σ̄〈m+1〉
, (10)
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where σ̄〈i〉 = σ〈i〉
/√

ti, i = 1,2, · · · ,k. In Experiment 1, we show that such a parameter c could not
lead to a good performance when sequentially implementing the OCBAm sampling rule. In the
Experiment 2-4, we choose

c =
σ2
〈m+1〉µ〈m〉+σ2

〈m〉µ〈m+1〉

σ2
〈m〉+σ2

〈m+1〉
, (11)

for the OCBAm sampling rule, which could lead to a better performance than (10) as shown in
Experiment 1. The allocated alternative is chosen by the “most starving” sequential rule in Chen
and Lee (2011), At+1 (Et) = arg max

i=1,2,··· ,k
{(t +1)r(t)i − ti}.

• OCBAm+: At each step, the procedure allocates a replication according to an asymptotic sampling
ratios.

• OCBAss: At each step, the procedure allocates ∆ simulation replications to an alternative i∗ in order
to balance (7) and (8). However, Gao and Chen (2015b) approximate the objective function in the
static optimization problem (5) with Bonferroni inequality and derive (7) and (8) by approximately
maximizing the approximated PCS, which do not have a rigorous definition of the optimal large
deviations rate of PFS for selecting top-m alternatives.

• OCBASS: The procedure allocates ∆ simulation replications to an alternative i∗ in order to balance
(7). However, there are two alternatives that can be chosen as the allocated alternative according
to the OCBASS sampling rule. We randomly choose an alternative among the two alternatives as
the allocated alternative in the numerical experiments.

Experiment 1.1 and Experiment 1.2 have deterministic performance of the alternatives, and the perfor-
mance of different allocation procedure is measured by the classical PCS. In Experiment 2 to Experiment 4,
we set ∆ = 1 for OCBAm, OCBAss and OCBASS procedures. The initial number of simulation replications
is n0 = 10. In each macro experiment, the performance of each alternative is randomly generated from the
normal conjugate prior. The statistical efficiency of each allocation procedure is measured by the IPCS,

i.e., IPCST
∆
=E[E[1{F̂ m

T = F m}|ET ,µ]] estimated based on 100,000 independent macro experiments. The
IPCS is reported as a function of the sampling budget T in each experiment.

Experiment 1: Comparisons of the choice of parameter c in OCBAm procedure. In this experiment,
we compare the DSSm procedure with: EA; sequential OCBAm with parameter c in (10) (denoted
by OCBAm(sequential)); sequential OCBAm with parameter c in (11) (denoted by OCBAm); two-stage
OCBAm with parameter c in (10) (denoted by OCBAm(two-stage)) where the initial simulation replications
are equally allocated to estimate unknown parameters and the rest simulation replications are allocated
according to OCBAm rule. The initial number of simulation replications is n0 = 20. IPCSs are estimated
based on 100,000 independent macro experiments. Two numerical settings are tested in Experiment 1:

Experiment 1.1 We aim to select top-3 alternatives from 10 competing alternatives with distributions
N
(
i, i2
)
, i = 1,2, · · · ,10. The total simulation budget is T = 4000 and the first 200 simulation replications

are equally allocated to each alternative. Figure 2 (a) shows the performances of different allocation
procedures.

Experiment 1.2 We aim to select top-3 alternatives from 10 competing alternatives with distributions
N
(
i,(11− i)2

)
, i = 1,2, · · · ,10. The total simulation budget is T = 4000 and the first 200 simulation

replications are equally allocated to each alternative. Figure 2 (b) shows the performances of different
allocation procedures.

From Figure 2 (a), we can see that the PCS of OCBAm(sequential) flattens as the simulation budget
grows large. The PCS of EA surpasses the PCS of OCBAm(two-stage) when the simulation budget
reaches around 1900. The PCS of OCBAm increases at a fast pace, and the performance of OCBAm
is significantly better than the performance of OCBAm(sequential). DSSm performs the best among all
allocation procedures. From Figure 2 (b), we can see that the PCS of OCBAm(sequential) increases at a
fast pace at the beginning and flattens as the simulation budget grows large. The PCS of OCBAm and
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(a) PCS for Experiment 1.1
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(b) PCS for Experiment 1.2

Figure 2: Comparison of PCSs for 5 allocation procedures in Experiment 1. (a) The distribution for
each alternative is N

(
i,(11− i)2

)
, i = 1,2, · · · ,10. (b) The distribution for each alternative is N

(
i, i2
)
,

i = 1,2, · · · ,10. The number of initial simulation replications is n0 = 20 for each alternative. PCSs are
estimated by 105 macro replications.

the PCS of EA surpasses the PCS of OCBAm(two-stage) when the simulation budget reaches around
470 and 1560, respectively. The performance of OCBAm is significantly better than the performance of
OCBAm(sequential). DSSm performs the best among all allocation procedures. Numerical results show that
the performance of sequential OCBAm with parameter c in (11) is significantly better than the performance
of sequential OCBAm with parameter c in (10), which implies that the suggested choice of parameter c
in Chen et al. (2008) could not lead to a good performance when sequentially implementing the OCBAm
sampling rule.

Experiment 2: 10 alternatives with equal variances. We aim to select top-3 alternatives from 10
competing alternatives. In each macro experiment, µi, i= 1,2, · · · .10 are generated from the normal conjugate
priors with hyper-parameters given by µ

(0)
i = 0, σ

(0)
i = 1. True variances are σ2

i = 1, i = 1,2, · · · ,10. The
total simulation budget is T = 800 and the first 100 simulation replications are equally allocated to each
alternative. Figure 3 (a) shows the performances of different allocation procedures.

From Figure 3 (a), we can see that EA performs the worst among all allocation procedures. The IPCS
of OCBAm increases at a faster pace than the IPCS of EA. OCBAss and OCBASS have a comparable
performance at the beginning, and the former increases at a faster pace than the latter when the simulation
budget reaches around 130. The IPCS of OCBAm+ increases at a slow pace at the beginning, and it
surpasses the IPCS of OCBAm, OCBASS and OCBAss when the simulation budget reaches around 125,
255 and 410, respectively. DSSm performs the best among all allocation procedures at the beginning, and
it has a comparable performance with OCBAm+ as the simulation budget grows that has a slight edge over
the OCBAss.

Experiment 3: 10 alternatives with decreasing variances. We aim to select top-3 alternatives from 10
competing alternatives. In each macro experiment, µi, i= 1,2, · · · ,10 are generated from the normal conjugate
priors with hyper-parameters given by µ

(0)
i = i, σ

(0)
i = (11− i)

/√
20. True variances are σ2

i = (11− i)2,
i = 1,2, · · · ,10. The total simulation budget is T = 800 and the first 100 simulation replications are equally
allocated to each alternative. Figure 3 (b) shows the performances of different allocation procedures.

From Figure 3 (b), we can see that EA becomes the worst as the simulation budget grows. The
IPCS of OCBAss is the lowest at the beginning, and it surpasses EA, OCBAm and OCBASS when
the simulation budget reaches around 135, 160 and 220, respectively. OCBAm+ and OCBASS have a
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(a) IPCS for Experiment 2
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Figure 3: Comparison of IPCSs for 6 allocation procedures in Experiment 2 and Experiment 3. (a) Prior
parameters are µ

(0)
i = 0 and σ

(0)
i = 1. True parameters are σ2

i = 1, i = 1,2, · · · ,10. (b) Prior parameters
are µ

(0)
i = i and σ

(0)
i = (11− i)/

√
20. True parameters are σ2

i = (11− i)2, i = 1,2, · · · ,50. The number of
initial simulation replications is n0 = 10 for each alternative. IPCSs are estimated by 105 macro replications.

comparable performance at the beginning, and the former surpasses the latter that is better than OCBAm
when the simulation budget reaches around 230. OCBAm+ has a slight edge over OCBAss as the simulation
budget grows. DSSm performs the best among all allocation procedures.

Experiment 4: 10 alternatives with increasing variances. We aim to select top-3 alternatives from
10 competing alternatives. In each macro experiment, µi, i = 1,2, · · · ,10 are generated from the normal
conjugate priors with hyper-parameters given by µ

(0)
i = i, σ

(0)
i = i

/
10. True variances are σ2

i = i2,
i = 1,2, · · · ,10. The total simulation budget is T = 1500 and the first 100 simulation replications are
equally allocated to each alternative. Figure 4 shows the performances of different allocation procedures.
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Figure 4: Comparison of IPCSs for 6 allocation procedures in Experiment 4. Prior parameters are µ
(0)
i = i

and σ
(0)
i = i/10. True parameters are σ2

i = i2, i = 1,2, · · · ,10. The number of initial simulation replications
is n0 = 10 for each alternative. IPCSs are estimated by 105 macro replications.



Zhang, Peng, Zhang, and Zhou

From Figure 4, we can see that the IPCSs of OCBAm, OCBAm+, OCBAss and OCBASS decrease
slightly at the beginning, and then quickly catch up with the IPCS of EA and surpass the latter when the
simulation budget reaches around 240, which could be attributed to the reason that the information of the
induced correlations is ignored or not taken fully into account by those allocation procedures in such a
low-confidence scenario (i.e., variances of competing alternatives are large relative to the differences in
means and the sample size) (Peng et al. 2015). OCBAm+ has an edge over OCBAm as the simulation
budget grows. The IPCS of OCBAss surpasses the IPCS of OCBASS when the simulation budget reaches
around 650 and the former has a slight edge over the latter as the simulation budget increases. DSSm
performs the best among all allocation procedures.

5 CONCLUSIONS

The paper studies the dynamic sampling allocation problem for subset selection. We formulate the dynamic
sampling decision as a stochastic dynamic programming problem. Under the Bayesian framework, we
propose an efficient sampling procedure named as DSSm, which maximizes the VFA one-step look ahead
and is proved to be consistent. Numerical experiments demonstrate that DSSm is more efficient than other
tested allocation procedures. Future research includes the asymptotic analysis for the sampling ratios of
the proposed sequential sampling procedure. The optimal decreasing rate of the large deviations of the
PFS for subset selection could also be a future work.
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