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ABSTRACT

Many applications in the areas of finance, environments, service systems, and statistical learning require
the computation for a general function of the expected performances associated with one or many random
objects. When complicated stochastic systems are involved, such computation needs to be done by stochastic
simulation and the computational cost can be expensive. We design simulation algorithms that exploit the
common random structure shared by all random objects, referred to as stratified splitting. We discuss the
optimal simulation budget allocation problem for the proposed algorithms. A brief numerical experiment
is conducted to illustrate the performance of the proposed algorithm with various budget allocation rules.

1 INTRODUCTION

Computing a function of the expectations of many random objects finds various applications in the area of
operations research. In financial risk management, a dealer needs to evaluate the summation of the expected
risk exposures by all clients under certain market conditions. In disaster risk management, it is needed
to evaluate the overall expected losses of all households that suffer from a regional wildfire. In inventory
management with a large number of warehouses across the nation, an interest is to compute the expected
aggregated stock-out risks for a critical product from all warehouses under some market conditions, such
as the outbreak of a pandemic.

Quantitatively, this task is formulated as computing the following quantity given a number of random
objects X(1),X(2), . . . ,X(d),

α = g(µ1,µ2, . . . ,µd), (1)

where g is a deterministic function that maps Rd to R and µi , EX(i) for 1 ≤ i ≤ d. The dimension
parameter d is a positive integer that represents the number of random objects in consideration. Even
the special case where g(µ1,µ2, . . . ,µd) = ∑

d
i=1 µi already observes a number of applications. In these

applications, the random objects often involve complicated stochastic systems and the computation of
µi = EX(i) needs to be done by Monte Carlo simulation, so as the computation of α = g(µ1,µ2, . . . ,µd).
In presence of stochastic errors, to obtain an accurate enough estimate of α may need a large number of
simulation replications for all random objects. The computational task can therefore be computationally
expensive and it is beneficial to explore approaches that reduce the computational cost needed to achieve
a certain accuracy of computing α . For many applications, including the ones listed above, the random
objects in consideration share some common random structure Z.

In financial risk management, all clients are affected by the same complicated market condition. The
market condition itself is an outcome of a complicated stochastic process. In disaster risk management,
all households are affected by the path and severity of the regional wildfire, where the regional wildfire
observes complicated stochastic uncertainties. When computing the function of the expectations of the
risk of all households using simulation, the shared common random structure enables us to couple the
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simulations of all households by first simulating the common random structure (wildfire) and then simulating
the conditional expectations for each household.

Motivated by these applications, we consider settings where the random object X(i)’s are generated
conditional on some common random quantity Z. As described in Bratley et al. (1987), this computational
structure is also called “stratified splitting.” The simulation of Z, as a part of the simulation task of each X(i),
is also expensive, though shared by all random objects. In this work, we develop a simulation algorithm
to compute α = g(µ1,µ2, . . . ,µd) by first simulating Z and then simulating the conditional expectations
E(X(i)|Z)’s. The proposed algorithm naturally gives rise to a simulation budget allocation problem, in
terms of how to allocate computation resources to the simulation of Z and the simulation of each conditional
expectation. Our contribution in this work is to discuss the optimal budget allocation for the one-dimensional
case (d = 1) and the general-dimensional case (arbitrary d).

This computational task is described by Bratley, Fox, and Schrage (1987) only for the case d = 1.
However, even for d = 1, no optimal budget allocation appears to have been documented in the literature.
In the literature of nested simulation (for example, Gordy and Juneja (2010), Broadie et al. (2011), Dang
et al. (2019)), a computational task is also divided into two parts, for which they call an inner simulation
and outer simulation. Their computation target is different from ours and one of their main focus is on
the bias variance trade-off. Our work has a different computation target and there is no biased estimator
involved. Our work is also broadly connected to the concept of conditional Monte Carlo methods, where
the general idea is to strategically identify conditions so that part of the computation can be done in closed
form; see Asmussen and Glynn (2007) and Fu and Hu (2012) for reference.

The rest of this paper is organized as follows. Section 2 discusses the simulation algorithm and the
asymptotic efficiency. Section 3 discusses the optimal budget allocation that achieves the optimal asymptotic
efficiency when d = 1. Section 4 extends Section 3 to the general-dimensional case and propose a heuristic
solution for the optimal budget allocation problem. Section 5 provides a brief numerical example and
Section 6 concludes.

2 ALGORITHM AND ASYMPTOTIC EFFICIENCY

In this section we describe the simulation algorithm that is used to compute

α = g(µ1,µ2, . . . ,µd), (2)

by exploiting the common random structure Z and we then show the asymptotic efficiency of the proposed
algorithm. The algorithm is given as follows.

1. Simulate a copy of Z.
2. Conditional on Z, for each i= 1,2, . . . ,d, simulate mi independent copies of X(i) from the distribution

P(X(i) ∈ ·|Z), denoted as X1(Z, i),X2(Z, i), . . . ,Xmi(Z, i).
3. Compute the sample average

X̄mi(Z, i),
1
mi

mi

∑
j=1

X j(Z, i)

for i = 1,2, . . . ,d.
4. Repeat 1-3 for n times independently, collect n independent copies of Z as Z1,Z2, . . . ,Zn, and then

compute (1
n

n

∑
k=1

X̄m1(Zk,1),
1
n

n

∑
k=1

X̄m2(Zk,2), . . . ,
1
n

n

∑
k=1

X̄md (Zk,d)
)
.

5. Compute the estimator α̂n for α as

α̂n = g
(1

n

n

∑
k=1

X̄m1(Zk,1),
1
n

n

∑
k=1

X̄m2(Zk,2), . . . ,
1
n

n

∑
k=1

X̄md (Zk,d)
)
.
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With a given sample size n, this simulation algorithm generates an estimator α̂n. To study the efficiency
of the estimator (and the algorithm), we need to specify the computational cost of the estimator and the
variance of the estimator. We introduce the following notation.

1. Let a denote the expected time to generate a copy of Z, which is assumed to be positive and finite.
2. Let bi denote the expected time to generate a copy of X1(Z, i) for i = 1,2 . . . ,d, which is assumed

to be positive and finite.
3. Let σ2 denote the variance of ∇g(µ) · (E(X(1)|Z),E(X(2)|Z), . . . ,E(X(d)|Z))>, which is assumed

to be positive and finite.
4. Let σ2

i denote E[Var( ∂g(µ)
∂xi

X1(Z, i)|Z)] for i = 1,2 . . . ,d, which is assumed to be positive and finite.

Now, let the computation time to generate the estimator α̂n be Tn. Note that Tn can be a random variable
itself, is correlated with α̂n, and is increasing in n. Given a computer time budget c > 0, let N(c) be

N(c) = max{n≥ 0 : Tn ≤ c}.

The estimator for α that is available with computational budget c is then α̂N(c). Using the result in (Glynn
and Whitt 1992), a central limit theorem, based on the computer time budget c, is available as follows.
Proposition 1 Assume that a,bi,σ

2,σ2
i ,mi are all positive and finite for i = 1,2, . . . ,n. When c→ ∞,

c
1
2 (α̂N(c)−α)⇒ (λ−1

η
2)

1
2 N(0,1)

where

λ
−1 = a+

d

∑
i=1

mibi

η
2 = σ

2 +
d

∑
i=1

σ2
i

mi
.

With this central limit theorem in hand, we are able to construct asymptotically valid confidence
intervals for α . In particular, we denote ã as a constant such that P(−ã≤ N(0,1)≤ ã) = 0.9% (say), then
the interval [

α̂N(c)− α̃(λ−1
η

2)
1
2

1√
c
, α̂N(c)+ α̃(λ−1

η
2)

1
2

1√
c

]
is an asymptotically 90% confidence interval for α .

Moreover, the asymptotic efficiency of this estimator α̂N(c) is determined by the asymptotic variance
λ−1η2, which is controlled by the choices of integers m1,m2, . . . ,md given the model primitives. The
asymptotic efficiency is higher if the asymptotic variance is smaller. This criterion can guide the design
of the simulation algorithm and especially the budget allocation.

3 OPTIMAL BUDGET ALLOCATION FOR d = 1

In Section 2, the proposed simulation algorithm adopts the flexibility in the choices of integers m1,m2, . . . ,md .
They reflect the number of replications implemented on each random object X(i) conditional on one copy
of Z. In this section, we consider the special case of d = 1 and provide an optimal choice of m∗1 ∈ Z+ that
minimizes the asymptotic variance of the associated estimator constructed by the algorithm.

The optimization problem is given as follows.

min
m1∈Z+

f (m1), (a+bm1)
(
σ

2 +
σ2

1
m1

)
.
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Note that this optimization problem gives the best possible allocation m∗1 in terms of asymptotic variance
when all model parameters a,b,σ2,σ2

1 are known. In practice when these parameters are not known, it is
standard to develop two-stage procedures to first estimate the parameters and then commit the allocation
based on the estimated parameters. It is also of interest to develop fully adaptive procedure where the
estimate of the the parameters is adaptively updated throughout the algorithm as more simulation replications
are revealed. Such two-stage or fully adaptive procedures, of course, bring a gap compared to the optimal
procedure when all parameters are known a priori. The practical performance of two-stage and fully
adaptive procedures are deferred to a future work.

We denote m∗1 as argminm1∈Z+
f (m1), which is an arbitrary optimizer of f (·) in all positive integers.

We show the following result.
Proposition 2 The optimizing integer m∗1 as argminm1∈Z+

f (m1) satisfies

−1
2
+

√
σ2

1 a
σ2b

+
1
4
≤ m∗1 ≤

1
2
+

√
σ2

1 a
σ2b

+
1
4
.

Proof. In this one-dimensional case, it is evident that the function f (x) = (a+ bx)(σ2 + σ2
1 /x), if

extended to the domain of x ∈ (0,+∞), is a convex function of x. Therefore in order to explicitly identify
m∗1, it suffices for m∗1 to satisfy that

f (m∗1)≤ f (m∗1 +1)

f (m∗1)≤ f (m∗1−1),

assuming that m∗1 ≥ 1. This set of inequalities reduce to

(a+bm∗1)
(
σ

2 +
σ2

1
m∗1

)
≤ (a+b(m∗1 +1))

(
σ

2 +
σ2

1
m∗1 +1

)

(a+bm∗1)
(
σ

2 +
σ2

1
m∗1

)
≤ (a+b(m∗1−1))

(
σ

2 +
σ2

1
m∗1−1

),

and then to

0≤ bσ
2m∗1(m

∗
1 +1)−σ

2
1 a

0≤−bσ
2m∗1(m

∗
1−1)+σ

2
1 a.

Note that
0≤ bσ

2m∗1(m
∗
1 +1)−σ

2
1 a

implies that

0≤ bσ
2((m∗1)

2 +m∗1 +
1
4
)−σ

2
1 a− 1

4
bσ

2

and therefore √
σ2

1 a
σ2b

+
1
4
− 1

2
≤ m∗1.

Similarly, the inequality 0≤−bσ2m∗1(m
∗
1−1)+σ2

1 a implies that

m∗1 ≤
1
2
+

√
σ2

1 a
σ2b

+
1
4
.
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Hence, m∗1 is an integer that satisfies

−1
2
+

√
σ2

1 a
σ2b

+
1
4
≤ m∗1 ≤

1
2
+

√
σ2

1 a
σ2b

+
1
4
,

the range of which covers exactly a unique integer if
√

σ2
1 a

σ2b +
1
4 is not in {Z++1/2}.

4 HEURISTIC SOLUTION OF OPTIMAL BUDGET ALLOCATION FOR ARBITRARY d

In Section 3, we provided a closed-form optimal budget allocation for the case d = 1. In this section,
we discuss the optimal budget allocation for arbitrary d ∈ Z+. The optimization problem to identify the
optimal budget allocation (m∗1,m

∗
2, . . . ,m

∗
d) is given by

min f (m1,m2, . . . ,md), (a+
d

∑
i=1

bimi)
(
σ

2 +
d

∑
j=1

σ2
j

m j

)
s.t. (m1,m2, . . . ,md) ∈ Zd

+. (3)

The optimal solution among all the integer points is not straightforward to derive for the general-dimension
case. We first present a heuristic solution. This heuristic solution is given by

(m̃1, m̃2, . . . , m̃d), (bx∗1e,bx∗2e, . . . ,bx∗de)

where b·e represents the operation of taking the nearest integer, and x∗i is given by

x∗i =

√
σ2

i a
σ2bi

for i = 1,2, . . . ,d. This heuristic solution is motivated by the following result.
Proposition 3 Define a function g : Rd

+→ R as

g(x), (a+
d

∑
i=1

bixi)
(
σ

2 +
d

∑
j=1

σ2
j

x j

)
where x = (x1,x2, . . . ,xd) ∈ Rd

+. The minimum value of g(x) over x ∈ Rd
+ is achieved at the point

x∗ = (x∗1,x
∗
2, . . . ,x

∗
d) =

√ σ2
1 a

σ2b1
,

√
σ2

2 a
σ2b2

, . . . ,

√
σ2

d a
σ2bd

 .

Proof. This result can be proved by applying an extended version of Cauchy–Schwarz inequality.
Specifically,

(a+
d

∑
i=1

bixi)
(
σ

2 +
d

∑
j=1

σ2
j

x j
)≥

(√
aσ2 +

d

∑
i=1

√
bixi

σ2
i

xi

)2
=
(√

aσ2 +
d

∑
i=1

√
biσ

2
i

)2
.

The right-hand side does not depend on xi’s and the inequality binds only if

a
σ2 =

bix2
i

σ2
i
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for all i = 1,2, . . . ,d. Therefore,

x∗i =

√
σ2

i a
σ2bi

for i = 1,2, . . . ,d.

We note that the heuristic solution (m̃1, m̃2, . . . , m̃d) , (bx∗1e,bx∗2e, . . . ,bx∗de) may not be the optimal
solution of (3) and it is challenging to identify the optimal budget allocation (m∗1,m

∗
2, . . . ,m

∗
d). One key

obstacle is that the function h(x) is not guaranteed to be convex in x in general.

5 NUMERICAL EXPERIMENT

In this section, we conduct a brief numerical experiment to illustrate the performance of the proposed
algorithm with different choices of the budget allocation (m1,m2, . . . ,md). Consider the task of computing
the aggregated number of expected arrivals from d different sources that share a common baseline factor.
That is,

α = g(µ1,µ2, . . . ,µd) =
d

∑
i=1

E(X(i)),

where for i = 1,2, . . . ,d
X(i) = Ni(2−iZ),

in which (Ni(t) : t ≥ 0) is a unit-rate Poisson process that is independent of all other randomness and Z
is a random variable that is shared by the definition of all X(i)’s. Specifically, the random variable Z is
the terminal state Yt of an auto-regressive stochastic process Y = (Yi : i = 0,1,2, . . . , t) where t is a positive
integer. In this experiment, we consider the stochastic process Y defined by

Y0 = 1000,

Yi+1 =
1
2

Yi +
1
2

εi+1, i = 1,2, . . . , t−1,

where ε1,ε2, . . . ,εt is a sequence of i.i.d. random variables with probability distribution N(1000,10). We
make such stylized distribution assumptions so that the probability distribution of Yt has a closed-form
representation, but we have in mind general settings so that the generation of Yt needs to be done sequentially
period by period. For simplicity, the computational cost is taken as the number of random variables that
are needed to simulate in the generation of the associated random quantity. In this task, the computational
cost of generating a copy of Z is then given by

a = t,

and the computational cost of generating a copy of X(i) conditional on Z is given by

bi = 1

for i = 1,2, . . . ,d. In this experiment, we consider the parameters

d = 10, t = 10.

We implement three algorithms. The first algorithm uses budget allocation

(m1,m2, . . . ,md) = (1,1, . . . ,1),
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which is crude Monte carlo. The second algorithm uses budget allocation

(m1,m2, . . . ,md) = (22,22, . . . ,22).

The third algorithm uses the heuristic budget allocation proposed in Section 4, integrated with a two-stage
procedure. Specifically, given a budget c, the first

√
c budget is used to construct estimators of σ2 and σ2

i
for i = 1,2, . . . ,d. The purpose for selecting

√
c is such that it tends to infinity when c tends to infinity,

while the proportion among the entire budget tends to zero. (We note that other choices of budget that
is allocated to construct estimators may yield better performances, and we do not target on an optimal
allocation in this work.) Then, the estimated value of σ2 and σ2

i ’s are used to compute an approximation
of the heuristic solution (m̃1, m̃2, . . . , m̃d) proposed in Section 4. For the rest of the c−

√
c budget, the third

algorithm implements the estimator with the estimated heuristic solution for the budget allocation. Note
that the true heuristic solution (m̃1, m̃2, . . . , m̃d) in this setting (which is not known a priori by the third
algorithm) is given by

(m̃1, m̃2, . . . , m̃d) = (22,16,11,8,6,4,3,2,1,1).

For each algorithm, given a budget c, the estimator α̂N(c) is independently constructed 1000 times to
construct a 90% confidence interval. Figure 1 presents the results for four different choices of budget
c = 1000,2000,4000,8000. For each given budget, the three vertical lines are respectively the 90%
confidence intervals for the estimator α̂N(c) constructed by Algorithm 1 (the first algorithm), Algorithm 2
(the second algorithm), Algorithm 3 (the third algorithm), from left to right. It is clear that Algorithm 3
achieves a variance reduction compared to both Algorithm 1 and Algorithm 2 for all given choices of the
budget.

Figure 1: Estimated value with confidence intervals

6 CONCLUSION

Many applications in the areas of finance, environments, service systems and dependability systems require
the computation for a general function of the expected performances associated with one or many random
objects. When complicated stochastic systems are involved, such computation needs to be done by stochastic
simulation and the computational cost can be expensive. We design simulation algorithms that exploit the
common random structure shared by all random objects. We discuss the optimal simulation budget allocation
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for the proposed algorithms. A brief numerical experiment is conducted to illustrate the performance of
the proposed algorithm with various budget allocation rules. Future work includes designing fully adaptive
simulation algorithms and analyzing the optimality gap.
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