
Proceedings of the 2021 Winter Simulation Conference
S. Kim, B. Feng, K. Smith, S. Masoud, Z. Zheng, C. Szabo, and M. Loper, eds.

NON-PARAMETRIC UNCERTAINTY BIAS AND VARIANCE ESTIMATION
VIA NESTED BOOTSTRAPPING AND INFLUENCE FUNCTIONS

Kimia Vahdat
Sara Shashaani

Edward P. Fitts Department of Industrial and Systems Engineering
North Carolina State University

915 Partners Way,
Raleigh, NC 27607, USA

ABSTRACT

In using limited datasets, modeling the uncertainty via non-parametric methods arguably provides more
robust estimators of the unknown value of interest. We propose a novel nested bootstrap method that
accounts for the uncertainty from various sources (input data, model, and estimation) more robustly. The
nested bootstrap is particularly apt to the more nuanced conditional settings in constructing prediction rules
but is easily generalizable. We utilize influence functions to estimate the bias due to input uncertainty and
devise a procedure to correct the estimators’ bias in a simulation optimization routine. Implementations in
the context of feature selection via simulation optimization on two simulated datasets prove a significant
improvement in robustness and accuracy.

1 INTRODUCTION

In a data-driven simulation, there are three primary sources of uncertainty: stochastic error (intrinsic error),
input model risk (extrinsic error), and learning model discrepancy error (Song and Nelson 2019). The
finiteness of simulation runs and data points cause the first two error types, respectively. Intrinsic error is
well studied in the literature; for an extensive survey on quantification of extrinsic errors, see (Lam 2016).
The third error type refers to the logic model’s misrepresentations of the underlying system, which is often
neglected. While simulation runs can be increased in principle to reduce the intrinsic error, reducing the
extrinsic error by collecting more data points may not be possible in many practical problems. Nevertheless,
quantifying the effect and contribution of each error type in the performance estimation is worthwhile.
When estimating an estimator’s confidence intervals (CI), especially in optimization, not considering all
sources of the errors causes under-coverage of the CI and misleads the search. In particular, the bias induced
by these errors can shift the estimators’ location substantially. This paper aims to introduce an estimator
that considers all sources of uncertainty and attempts debiasing estimates of the desired objective.

Despite a rise in the literature of input model risk quantification over the recent years (Barton et al. 2018;
Corlu and Biller 2015), fewer studies concentrate on non-parametric input distributions (Lam and Zhou
2017; Barton et al. 2018; Vahdat and Shashaani 2020) and detecting input model induced bias (Morgan
et al. 2019). In this paper, we characterize the bias due to the extrinsic error in non-parametric settings
that do not limit the analysis to any family of distributions. With a novel formulation, we specifically
emphasize the extrinsic error bias in data-driven prediction rules through the lens of simulation optimization
(SO). Evaluating prediction rules is particularly challenging as it requires careful sampling schemes to
reduce the optimism bias, which occurs when the same data used for building a model is also used for
evaluating it. A frequent assumption is that estimators in a simulation problem are unbiased to use the law
of large numbers. However, with low availability of data, estimators can have a high bias. Our two main
contributions in this paper seek to improve prediction rules’ accuracy and robustness to make them more
reliable. First, we review the existing bootstrapping and cross-validation sampling schemes, and propose

978-1-6654-3311-2/21/$31.00 ©2021 IEEE

Vahdat and Shashaani

a nested bootstrapping method that results in a prediction error with low variance and small bias. Second,
employing von-Mises expansion (Fernholz 2012) for the true and estimated distributions, we introduce an
approach to debias the error estimates.

1.1 Notation

In this paper, small letters and capital letters denote deterministic and stochastic values, respectively. Bold
letters represent vectors and script letters are used for a collection of vectors. We represent a given data
point by z that consists of d covariates in a X d space and a (real) response variable, hence z ∈ X d × IR.
Our decision variable is x ∈ Sd in the space of interest, S, and we define q(z0,x, z) as the `2 norm of the
loss that is the difference between the true response of point z0 and its predicted response using a model
trained by a set of data z and using parameters x (in this paper we use linear regression and the parameters
are the features included in the training, i.e., S = {0, 1}). We let M∗ :=

(
M1,M2, · · · ,M b′

)ᵀ
be a

collection of random vectors, each M b ∈ Zn+ recording the number of draws of point i for a bootstrap
following the Mult(n,pa) (multinomial) distribution, with pa = (1

n , · · · ,
1
n) ∈ IRn. We denote the cdf

of pa with F a, and the correct and unknown cdf of the dataset on hand with F c. Lastly, we denote
M∗∗ :=

(
[M1,1,M1,2, · · · ,M1,r′], · · · , [M b′,1,M b′,2, · · · ,M b′,r′]

)ᵀ
as a collection of random vectors,

with each M b,r ∈ Zn+ recording the number of draws of point i for bootstrap r that follows the Mult(n,P b)

distribution, with P b = (
Mb

1
n , · · · ,

Mb
n
n) ∈ IRn, and F b its cdf.

1.2 Problem Statement: Robustly Calibrating Prediction Rules

Let us consider the loss function of a predictive rule with a fixed learning structure (e.g., linear regression)
for a given set of hyper-parameters x. Following the notation introduced, the true objective function is

min
x
θ(x|F c) = EZ [EZ0 [q(Z0,x,Z)|Z ∼ F c]] , (1)

where the inner expectation is with respect to the unseen data with both train and test sets following the
true distribution F c. Note, the outer expectation is over training sets and the inner expectation is over
test points. This is one complication of such problems. Additionally, without access to F c, the desired
objective function (1) is adjusted by employing the empirical distribution of the data,

min
x
θ(x|F) = EZ [EZ0

[
q(Z0,x,Z)|Z ∼ F (0)

]
]. (2)

In the above Z ∼ F (0) implies that each point in the training set Z is drawn from the empirical cdf that
excludes the point Z0 to avoid overfitting; see expression (6) in (Efron and Tibshirani 1997). This is the
second complication of calibrating prediction rules. Typically the empirical cdf of the whole data, i.e.,
F = F a and F (0) = F a,(0) is used to compute (2). We extend this formulation by taking an expectation
over all possible F from the available data and defining

min
x
θ(x) := EF [θ(x|F)], (3)

where the outcome is defined by integrating over empirical distribution itself. We can view the integration as
the average loss under slight differences in the dataset available to us. The result is three nested expectations
(from innermost to outer: on a single point, a set of points, and a distribution) instead of two, adding
another layer of complication that resembles the nested simulation framework by Sun, Apley, and Staum
(2011). We expect this new objective to be more resilient to the changes in the data leading to optimal
choices for the prediction rule that are more robust. In Section 2 we survey existing estimations for each
objective and propose a new nested bootstrap scheme that exhibits more promise in comparison.

Vahdat and Shashaani

1.3 Why do we care about robustness?

Having a robust design is to maintain a low bias and variance in the solutions and designs. Sanchez and
Sanchez (2020) discuss different designs and highlight the merits of robust designs. In real-world problems,
we may not always keep both bias and variance low, and often settle for a compromise between the two.
One can evaluate robustness from two standpoints in an SO problem. The first is the estimator’s stability,
also referred to as robust statistics. The second is the robustness of the SO algorithm’s solutions. In this
paper, we focus on both evaluations as we compare different estimators.

One core component of robust statistics is the notion of influence functions (IF). IF’s or nonparametric
delta methods have recently gained a lot of attention in the machine learning communities, because of
their nonparametric settings and ease of inference (Fisher and Kennedy 2020). Since IF based estimators
are consistent with respect to small changes in the data or the model, they are considered doubly robust
estimators. Using IF’s provides a way to debias any estimator that is smooth with respect to changes in
the data which we will describe in details in Section 3. In a numerical experimentation in Section 4 we
test the effectiveness of our solution method focusing on estimation (the solver is a Genetic Algorithm that
is suitable for our binary space search). We implement the methodology for feature selection problems on
high-dimensional datasets that we simulate knowing the true contributing features.

2 SURVEY OF PREDICTION RULES’ PERFORMANCE ESTIMATION

Evaluating a prediction rule on the same dataset that it is trained on will result in an “optimistic” estimate
of the model performance, which is often called the apparent error or in-sample error. In-sample error
or err(x) := ÊZ [ÊZ0 [q(Z0,x,Z)|Z ∼ F]] is not a good performance estimator for predictive models
in machine learning and can be highly biased. This bias, θ(x|F c) − err(x), is called the overfit or the
optimism bias. The overfit bias is due to the fact that the data points on which we wish to make predictions
are not accessible in the modeling phase. There are many sampling solutions to this problem in the
literature that attempt to split the data in a way to get an almost unbiased estimate without sacrificing the
robustness. Some of the well known sampling methods are k−fold cross validation, .632 bootstrapping,
and leave-one-out bootstrap (Efron and Tibshirani 1997; Efron 1983), which we briefly describe in this
section. k−fold cross validation (CVk) is one of the resampling methods that is widely used in practice.
In CVk, the data is divided into k′ non-overlapping folds. Setting each fold aside, a model is trained
on the remaining k − 1 folds, and then evaluated on the excluded fold. Hence, only one prediction is
made for each observation. Its estimator can be achieved by θ̂CVk(x) = 1

k

∑k
j=1

1
n/k

∑n/k
i=1 q(zji ,x,Z

(j))

where yji refers to point i in fold j, and Z(j) denotes all data excluding the j-th fold. Leave-one-out-
CV (LOOCV) estimator, θ̂LOOCV(x) = 1

n

∑n
j=1 q(zj ,x,Z

(j)), is a special case of CVk where k = n,
with less bias since each training set contain n − 1 points. Bengio and Grandvalet (2005) show that
Var(θ̂CVk(x)) = σ2(x)/n + ω(x)n/k−1n + γ(x)n−n/kn , where ω and γ are the covariances between two
predicted values in the same fold and different folds, respectively, and σ2(x) is the variance of each
observation. They also prove that there is no unbiased estimator for this quantity. In their experimental
analysis, they show that as k increases, all variance terms decrease, therefore the total variance also
decreases. Since the training sets in LOOCV are very similar to each other, with n−2 mutual observations
out of n− 1 points in each fold, the variance of the estimator will be close to σ2/n+ γ. To further reduce
the variability of CVk, repeated CV was introduced which simply repeats the whole procedure multiple
times and reports the overall average.

Bootstrapping (Efron 1979) is another resampling method that can be used for the evaluation of
prediction rules. Bootstrapping was introduced as a way to evaluate estimators’ variance and obtain
narrower confidence intervals. In each of the b = 1, · · · , b′ bootstraps, a model is built on n samples with
replacement from the training data, Zb, and evaluated on the remaining points. Letting I(b)i = I(zi 6∈ Zb)

represent the points not in the training data and Ji =
∑b′

b=1 I
(b)
i represent the number of unique predictions

Vahdat and Shashaani

for point i, which equals the number of bootstraps that exclude point i, we summarize the calculation as

θ̂Boot(x) =
1

n

n∑
i=1

1

max{1, Ji}

b′∑
b=1

I
(b)
i q(zi,x,Z

b), (4)

where I(b)i discounts the function value for points inside the training data. The maximum operator is to avoid
dividing by 0 if a point does not have any predictions at all. In (4) the two averages are estimators for the first
and second expectation in (2), where the inner and outer averages estimate the outer and inner expectations,
respectively. In the bootstrapping method, since we sample the training sets independently from each other,
the correlation between their predictions is much smaller than one and therefore they provide a small variance
estimator. In a more in-depth analysis and numerical experiments for variations of bootstrapping and cross
validation, Efron (1983) shows that CVk and bootstrap both converge with the rate O(1/n2). However, the
bootstrap has additional terms in its estimator causing a downward bias, which can be partially overcome
with Leave One Out Bootstrap (LOOBoot) or jackknife estimator. LOOBoot estimator is computed as
θ̂LOOBoot(x) = 1

n

∑n
i=1

1
b′
∑b′

b=1 q(zi,x,Z
b
(i)), where Zb

(i) is the b-th bootstrap from the training set that

excludes the i−th data point. This estimation is more costly than θ̂Boot(x) as each point will have b′ unique
predictions. The downward bias in bootstrapping methods motivated the 632Boot estimator that measures a
weighted average between the in-sample and the LOOBoot error with weights computed using asymptotic
analysis. We write the 632Boot estimator as, θ̂632Boot(x) = 0.368× err(x) + 0.632× θ̂LOOBoot(x).

To further reduce the downward bias of bootstrapping methods, Leave-k-Out-Bootstrap (LkOBoot)
(Efron and Tibshirani 1997), a smoothed version of CVk, divides the data into k folds. Then in each of
k replications one fold is set aside and from the remaining folds b′ bootstrap samples are drawn. Next
a model is built on the bootstrap samples and their average performance on the left out fold is reported.
The LkOBoot estimator is computed by θ̂LkOBoot(x) = 1

nb′
∑n

i=1

∑k
j=1

∑b′

b=1 I
j,b
i q(zi,x,Z

(j),b), where

Ij,bi = I{zi ∈ Zj,b}, and Z(j),b denotes b-th bootstrap from the data that excludes the j-th fold. Note, each
point still receives exactly b′ predictions but the number of models reduces from n× b′ to k × b′.

Vahdat and Shashaani (2020) introduced a sampling method which combines the bootstrapping and
cross validation characteristics. We refer to their method as LBootOBoot, short for leave bootstrap out
bootstrap. LBootOBoot first takes b′ bootstrap resamples to form the training sets, Zb. Then from the Z(b),
or those data points that do not appear in Zb, r′ test sets are bootstrapped denoted by Z(b),r, r = 1, 2, · · · , r′.
The novelty of this estimator is in having multiple test and train resamples simultaneously, to reduce the
variability. This is the first estimator that uses train and test pairs that do not add up to the whole data and
therefore there is a nonzero probability that not all points get predicted. We summarize this estimator as,

θ̂LBootOBoot(x) =
1∑n
i=1 Ii

n∑
i=1

1

max{1, Ji}

b′∑
b=1

∑r′

r=1 I
(b),r
i q(zi,x,Z

b)

max{1,
∑r′

r=1 I
(b),r
i }

, (5)

where I(b),ri = I{zi ∈ Z(b),r}, Ji =
∑b′

b=1 I(
∑r′

r=1 I
(b),r
i > 0) is the number of bootstraps with prediction

for point i, and Ii = I(Ji > 0) specifies whether there is any prediction for point i. Observe that it is
possible that

∑n
i=1 Ii 6= n and plausible that Ji 6= b′ for any i and

∑r′

r=1 I
(b),r
i 6= r′ for any i and b.

Otherwise (5) would simplify to θ̂LBootOBoot(x) = (nb′r′)−1
∑n

i=1

∑b′

b=1

∑r′

r=1 I
(b),r
i q(zi,x,Z

b).

2.1 Comparing Estimators

We compare the above estimators in terms of number of predictions per observation, number of models
built, average squared bias, and variance. The number of models shows how time efficient the estimator is,
as modeling takes up more time than predicting a data point. As the number of predictions per observation

Vahdat and Shashaani

increases, the estimator becomes more stable. The bias and variance are evaluated over a simulated data
with known true distribution and underlying relationship between the response and the predictors. Let
y = g(x) + err be the true generating formula. Then the bias is defined as ĝ(x)− g(x) and the variance is
the var(ĝ(x)). Table 1 and Figure 1(a) summarize the comparisons with our proposed estimator, NestBoot,
which we describe in the next subsection.

Table 1: We compare the estimators with bias and variance estimated over 100 macro-replications using
common random numbers on a simulated dataset. The mean ± standard deviation of the squared bias and
variance represent the spread of each estimator’s reported measurement within 100 experiments; it is not
the confidence interval. The repeated CV has 10 folds and 5 repeats, in the Boot method b′ = 50 while
b′ = 10 in the other methods to keep roughly the same computation time across estimators.

Estimator First Samples ... Avg # Predictions # Models Avg Bias2 Avg Variance

Boot training set E[
∑

i,b I
b
i] ≈ 0.37× b′n b′ 852 ± 526 3,691 ± 1,009

LkOBoot training set b′n b′k 879 ± 518 3,708 ± 1,000
repeated CVk training set rep× n rep× k 856 ± 535 3,805 ± 1,082
LBootOBoot training set E[

∑
i,b,r I

(b),r
i] b′ 881 ± 516 3,724 ± 1,015

NestBoot test set E[
∑

i,b,rM
b,r
i] = nb′r′ b′r′ 609 ± 408 3,611 ± 970

The Boot estimator requires a larger b′ to perform well because its number of models equals the number
of bootstraps. All estimators except for Boot and LBootOBoot have more models than bootstraps. The
number of models for each estimator is always deterministic, but the number of predictions is stochastic for
some of them. Boot, LBootOBoot, and NestBoot have a random number of predictions for each data point.
We could not compute a closed-form expression for the average number of predictions for LBootOBoot
but expect that to be less than nb′r′. In cross validation, we only have one prediction for each data point
leading to high variance. On the other hand, bootstrap produces on average (1−0.632)× b′ predictions for
each data point, which results in more stability, as seen in the standard deviation of the squared bias and
variance. We emphasize that Table 1 exhibits the distribution of the measurements that signals into how
stable they can be. One can compute the half-widths with the given information. Doing so, e.g., for the
squared biases, confirms that there is a statistically significant difference between NestBoot and the existing
estimators. The common scheme in all the existing estimators is that a training set is selected first and then
its model is evaluated on a test set. Our proposed estimator (NestBoot) reverses this process, successfully
improving the stability and robustness while reducing the bias. As illustrated in Figure 1(b), there is less
overlap between the training sets that are fewer data points drawn from different data bootstraps.

2.2 Proposed Sampling Scheme: Nested Bootstrap Method

Our proposed estimator uses two nested levels of bootstrapping. It first samples modeling sets with
replacements and then samples pairs of test and training sets. Bootstraps provide estimates of the empirical
distribution withF b for b = 1, · · · , b′ via sampling with replacement fromF a. In another view, bootstrapping
can be considered as a simulation that generates scenarios from the empirical distribution and evaluate
the desired functional over each scenario. We explain the details of the proposed sampling method in this
section and in the following section we show ways to estimate its bias and variance. Define M b,r

i as the
number of times data point i appears in bootstrap r that is resampled from bootstrap b, on which it appears
M b
i number of times. Therefore,

θ̂NestBoot(x) =
1∑n
i Ii

n∑
i

1

max{1, Ji}

b′∑
b

∑r′

r M
b,r
i q(zi,x,Z

b,(r))

max{1,
∑r′

r=1M
b,r
i }

, (6)

Vahdat and Shashaani

(a) bias and variance ratio in comparison with other methods. (b) an example of NestBoot with b′ = r′ = 3 and n = 4.

Figure 1: NestBoot sampling scheme is the new proposed estimation method.

where Ji =
∑b′

b=1 I(
∑r′

r=1M
b,r
i > 0) represents the number of first-level bootstraps that contain data point

i in at least one of their nested bootstraps, Ii = I(Ji > 0) specifying whether there is any prediction for
point i, Zb is the b-th bootstrapped dataset, and Zb,r is the r-th dataset bootstrapped from Zb. Specifically,
Zb,r is the test set and Zb,(r) is the training set containing all data points in Zb that were not at all selected
for Zb,r. Each of the three averages in (6) estimates a corresponding expectation in (3). Figure 1(b)
illustrates the NestBoot process, also summarized below:

• For b = 1, · · · , b′:
- Sample M b randomly from F a and create Zb.
- For r = 1, · · · , r′:
∗ Sample M b,r|M b randomly from F b, and create Zb,r and Zb,(r).
∗ Build model on Zb,(r) and evaluate on Zb,r.

In the next two theorems we show that first sampling the test sets instead of the training sets increases the
chance of having at least one prediction for each point.
Theorem 1 The NestBoot estimator makes the likelihood of a point being evaluated in the test set larger
than its likelihood of being used in a training set to build a learner.

Proof. Given a data point zi and an arbitrary b and r for the two-level-bootstraps,

Pr{zi ∈ Zb,r} = Pr{M b,r
i > 0}

=

n∑
m=1

Pr{M b,r
i > 0|M b

i = m}Pr{M b
i = m} =

n∑
m=1

(1− (1−m/n)n) Pr{M b
i = m}

= E[1− (1−M b
i /n)n] −−−→

n→∞
1− ee−1−1 ≈ 0.47, (7)

where we have used limn→∞(1 + k/n)n = ek. However, following the same steps for Pr{zi ∈ Zb,(r)} =∑n
m=1 Pr{M b,r

i = 0|M b
i = m}Pr{M b

i = m}, we observe that the last line of (7)’s counterpart becomes

E[(1−M b
i /n)n]− (1− 1/n)n −−−→

n→∞
ee
−1−1 − e−1 ≈ 0.16.

Next we show that by letting b′r′ →∞, the likelihood of having at least one prediction for each point
converges to 1. The convergence rate in this case is faster than the case with only one layer of bootstrapping,
as it depends on the magnitude of b′r′ instead of b′.

Vahdat and Shashaani

Theorem 2 The likelihood of generating predictions for every point with the NestBoot estimator converges
to 1 as the number of first level estimators b′ tends to infinity.

Proof. First, we note Pr{
∑n

i=1 Ii = n} = 1− Pr{
∑b′

b=1

∑r′

r=1M
b,r
i = 0 for at least one i}. We now

suppose that there exists an i for which
∑b′

b=1

∑r′

r=1M
b,r
i = 0 and show that the likelihood of this events

drops off to zero with b′ increasing. (For ease in readability, we simplify the summations’ notations.) The
proof is then complete since

Pr

{∑
b

∑
r

M b,r
i = 0

}
= Pr

{∑
r

M1,r
i = 0, · · · ,

∑
r

M b′,r
i = 0

}

=

(
Pr

{∑
r

M1,r
i = 0

})b′
=
(

Pr
{
M1,1
i = 0

})b′r′
−−−−−→
b′r′→∞

0, (8)

due to non-negativity of M b,r
i and independence of first level estimators.

Additionally, the average number of predictions for one point, knowing M b ∼ Mult(n,pa) and
E[M b

i] = 1, can easily be computed as

E

[∑
b

∑
r

M b,r
i

]
= b′r′

n∑
m=0

E
[
M b,r
i |M

b
i = m

]
Pr
{
M b
i = m

}
= b′r′

n∑
m=0

n
m

n
Pr
{
M b
i = m

}
= b′r′.

Recall that the main goal is to estimate θ(x|F c). Following Sun et al. (2011) and knowing (3), we
can decompose each output as

qb,ri (x)M b,r
i = θ(x|F c) + (θ(x)− θ(x|F c)) + τ b(x) + δb,r(x) + εb,ri (x), (9)

where qb,ri (x) = q(zi,x,Z
b,(r)). Next we define the random variablesN(x) = EZ0 [q(Z0,x,Z)|Z ∼ F (0)]

and L(x) = EZ

[
EZ0

[
q(Z0,x,Z)|Z ∼ F (0)

]]
(with F uncertain). Knowing these, the error terms become

τ b(x) = Lb(x)− θ(x), δb,r(x) = N b,r(x)− Lb(x), εb,ri (x) = W b,r
i (x)−N b,r(x), (10)

where W b,r
i (x) = qb,ri (x)M b,r

i for simplicity. We consider each output of the nested bootstrap to be
qb,ri (x)M b,r

i . Bootstrapping shuffles the density over all points and reassign probabilities to data points.
This shuffling is one of the reasons for bootstrap’s success in providing a stable and robust estimate of any
desired statistic. Here we attempt to maintain the reassigns weights by multiplying qb,ri (x) by the number of
its repetition as our final output. Each error term introduced in (10) has mean zero and a constant variance
and represents different sources of variabilities. The ε, δ, and τ denote the errors coming from estimation,
modeling, and input data, respectively, and consequently their variances quantifies the variability of each
source of uncertainty. We will discuss how to use the ANOVA (analysis of variance) method to estimate
each of their variance, in the following section. The bias term can be written as θ(x)− θ(x|F c). Based
on the bootstrap theorem (Efron 1979), we know that limb′→∞ θ(x)− θ(x|F c) = 0, if n is large enough.
However with limited simulation budget (b′) and data points the bias can be quite significant. In section 3.2,
we use von-Mises expansion (Fernholz 2012) with non-parametric probability distribution assumption to
estimate the bias.

3 ANALYSIS OF VARIANCE AND BIAS IN NESTED BOOTSTRAPS

This section discusses the details of the proposed estimator along with its variance and bias estimation.

Vahdat and Shashaani

3.1 Analysis of Variance

Based on the previous section, one output of the NestBoot method is W b,r
i (x), and is defined in (9),

where all error terms have zero means and estimable variances. Additionally, we assume each draw
from L(x) and N(x) are i.i.d., and E

[
τ b(x)δb,r(x)

]
= E

[
τ b(x)

]
E
[
δb,r(x)

]
= E

[
εb,ri (x)τ b(x)

]
=

E
[
εb,ri (x)

]
E
[
τ b(x)

]
= E

[
εb,ri (x)δb,r(x)

]
= E

[
εb,ri (x)

]
E
[
δb,r(x)

]
= 0 which implies that all the

covariance terms are zero. We use ANOVA to estimate the variance of our estimator. In the ANOVA, one
need to first define sum of squares and find the relationship between them which then help in estimating
the true variances. Taking averages from (9) with respect to points, test sets and data distributions we get

W b,r(x) =
n∑
i=1

W b,r
i (x)/n = θ(x|F c) + (θ(x)− θ(x|F c)) + τ b(x) + δb,r(x) + εb,r(x),

W b(x) =
r′∑
r=1

W b,r(x)/r′ = θ(x|F c) + (θ(x)− θ(x|F c)) + τ b(x) + δb(x) + εb(x),

W̄ (x) =

b′∑
b=1

W b(x)/b′ = θ(x|F c) + (θ(x)− θ(x|F c)) + τ̄(x) + δ̄(x) + ε̄(x),

where εb,r(x) =
∑n

i=1 ε
b,r
i (x)/n, εb(x) =

∑r′

r=1 ε
b,r(x)/r′, ε̄(x) =

∑b′

b=1 ε
b(x)/b′, and similarly

δb(x) =
∑r′

r=1 δ
b,r(x)/r′, δ̄(x) =

∑b′

b=1 δ
b(x)/b′, τ̄(x) =

∑b′

b=1 τ
b(x)/b′. Having these we can

now find the expected values for the proposed sum squares. So the desired sum squares can be de-
fined as SSτ (x) =

∑b′

b=1(W
b(x) − W̄ (x))2, SSδ(x) =

∑b′

b=1

∑r′

r=1(W
b,r(x) −W b(x))2, SSε(x) =∑b′

b=1

∑r′

r=1

∑n
i=1(W

b,r
i (x)−W b,r(x))2. Starting from SSε(x) we can define its expectation as,

E [SSε(x)] =
b′∑
b=1

r′∑
r=1

n∑
i=1

E
[
(W b,r

i (x)−W b,r(x))2
]

=
b′∑
b=1

r′∑
r=1

n∑
i=1

E
[
(εb,ri (x)− εb,r(x))2

]
= nb′r′

(
σ2ε (x) + σ2ε (x)/n− 2σ2ε (x)/n

)
= b′r′(n− 1)σ2ε (x).

Similarly, the sum of squared errors at the modeling level (mid-level) can be achieved with,

E [SSδ(x)] =

b′∑
b=1

r′∑
r=1

E
[
(W b,r(x)−W b(x))2

]
=

b′∑
b=1

r′∑
r=1

E
[
((N b,r(x)−N b(x)) + (εb,r(x)− εb(x)))2

]

=
b′∑
b=1

r′∑
r=1

(σ2N (x)− σ2N (x)/r′) + (
σ2ε (x)

n
− σ2ε (x)

nr′
) = b′(r′ − 1)σ2N (x) +

b′(r′ − 1)

n
σ2ε (x).

Lastly, the expectation of the outer-level is similarly calculated as,

E [SSτ (x)] =

b′∑
b=1

E
[
(W b(x)− W̄ (x))2

]
= (b′ − 1)σ2L(x) +

b′ − 1

r′
σ2N (x) +

b′ − 1

nr′
σ2ε (x).

Hence we can estimate the variances as,

σ̂2ε (x) =
SSε(x)

b′r′(n− 1)
, σ̂2N (x) =

SSδ(x)− b′(r′ − 1)σ̂2ε (x)/n

b′(r′ − 1)
=

SSδ(x)

b′(r′ − 1)
− SSε(x)

nb′r′(n− 1)
,

σ̂2L(x) =
SSτ (x)

b′ − 1
−
σ̂2N (x)

r′
− σ̂2ε (x)

nr′
=
SSτ (x)

b′ − 1
− SSδ(x)

b′r′(r′ − 1)
. (11)

Vahdat and Shashaani

Note that the variance of the desired estimator is equivalent to σ2L(x), and based on (11) is independent
of estimation error. An interesting application of the variance estimates can be estimating the optimal b′

and r′, which we leave for the future research.

3.2 Bias Estimation Using Influence Functions

In practice, F c is unknown so the bias term, i.e., θ̂NestBoot(x) − θ(x|F c) is not directly computable and
needs to be estimated. We know using von-Mises expansion, which is similar to Taylor expansion but with
the notion of Gateaux derivatives that

θ(x|F c) = θ(x|F b) +

∫
IF(z, F b)d(F b(z)− F c(z)) +R2(F

b, F c), (12)

where IF(z, F b) is what is called the influence function and R2(F
b, F c) is the second order approximation

error between the two distributions, hence R2(F
b, F c) = O(‖F b − F c‖22). Influence functions measures

how much θ changes as the density of each point is slightly but properly (keeping the whole density in
tact) upweighted. More precisely, IF(z, F b) = ∂θ(x|F b+ε(δz−F b))

∂ε |ε=0.
Let b0 = nn and Fn denote the path containing all b0 possible distributions corresponding to the

combinations ofM∗. Based on the bootstrap theory (Efron 1979), we claim that θ̂NestBoot(x)−θ(x|Fn)→
θ(x|Fn)−θ(x|F c), as n→∞ and b′ → b0. Note that θ(x|Fn) is no longer random as it is the expectation
over all possible F b’s. For the remainder of this paper we assume θ̂NestBoot(x) is smooth around the Fn,
since it is an average of b′ bootstraps of the independent draws from the the ideal bootstrap or Fn (Efron
2014). Note that by “around the ideal distribution” we mean the pairwise distance between the two random
vectors. Hence, the problem is reduced to estimating ∆(F a,Fn), and we can write

∆(x, F a,Fn) = θ̂NestBoot(x)− θ(x|Fn) =
∂

∂ζ
θ(x|Fζ)

∣∣∣∣
ζ=0

+
1

2

∂2

∂ζ2
θ(x|Fζ)

∣∣∣∣
ζ=0

+O(ζ3)

=φ(1)(x) +
1

2
φ(2)(x) +O(ζ3), (13)

where φ(l)(x) is the l−th order IF for Fζ = Fn + ζ(F a −Fn) at ζ = 0. Since ζ is between 0 and 1, the
third term in (13) is negligible and can be omitted. Efron (2014) provides estimates of the first and the
second order IF’s for a simple estimation problem, where the estimator is a smooth functional of data. He
suggests smoothing any estimator by taking an average over b′ bootstraps of the available data. We build
on his derivation to find an unbiased estimator for a prediction rule performance evaluation which is new
in this paper.

Following Efron (2014), we can expand the expectations in θ̂NestBoot as summations over all possible
pairs of M b and M b,r (b′ = r′ = nn), θNestBoot = 1

b′r′
∑

b

∑
r ω

b,rW b,r(x), where

ωb,r = b′r′P{M b,r = mb,r|M b = mb}P{M b = mb} =
n∏
i=1

(
mb
i

n

)mb,r
i

nm
b,r
i p

mb
i

i nm
b
i .

Hence for a slight perturbation at point j, we define the resulting pmf as pj(ζ) = 1/n + ζ(ej − 1/n),
where ej is a unit vector. Then

ωb,r(pj(ζ)) =

n∏
i=1

(mb
i)
mb,r

i (n(1/n+ ζ(ej − 1/n)))m
b
i ≈

n∏
i=1

(n‖pj(ζ)ei‖)m
b,r
i (n‖pj(ζ)ei‖)m

b
i

=

 n∏
i=1,i 6=j

(1− ζ)m
b,r
i (1− ζ)m

b
i

 (1 + (n− 1)ζ)m
b,r
j +mb

j ≈ 1 + nζ(mb
j +mb,r

j − 2), (14)

Vahdat and Shashaani

where the fourth approximation is due to the binomial expansion. Note that pj(ζ) is a valid pmf, since
‖pj(ζ)‖ = 1 with positive elements between 0 and 1 (assuming ζ < 1). Redefining our estimator under
the perturbed distribution Fj(ζ) corresponding to pj(ζ),

θ̂(x|Fj(ζ)) =
1

b′r′

∑
b

∑
r

(1 + nζ(mb
j +mb,r

j − 2))(W b,r(x)− θ(x) + θ(x))

= θ(x) +
∑
b

∑
r

(nζ(mb
j +mb,r

j − 2))(W b,r(x)− θ(x))/b′r′ = θ(x) + nζCovj . (15)

The second equality in (15) holds because of the strong law of large numbers. By replacing the estimators
above in the following limits, we get φ(1)j (x) = limζ→0 ζ

−1θ̂(x|Fj(ζ))− θ(x) = nCovj(x).
To obtain the second order IF, we need to extend the approximation in (14) one step further, which

results in ωb,r(pj(ζ)) ≈ 1 + nζ(mb
j +mb,r

j − 2) + nζ2(mb
j +mb,r

j − 2)2/2. Similar to (15) we get

φ
(2)
j (x) = lim

ζ→0

θ̂(x|1/n+ ζ(δj − 1/n))− 2θ(x) + θ̂(x|1/n− ζ(δj − 1/n))

ζ2
= n2Cov∗j (x),

where Cov∗j (x) =
∑

b

∑
r(m

b
j + mb,r

j − 2)2(W b,r(x) − θ(x))/b′r′ is the covariance between the ratio

of weights and simulation outputs, knowing E[mb
j + mb,r

j] = E[E[mb
j + mb,r

j |mb
j]] = E[2mb

j] = 2. We
estimate θ(x) with W (x). Following chapter 6 of (Efron 1982),

θ̂NestBoot(x)− θ(x|F c) =
1

2

n∑
j=1

φ
(2)
j (x)

n2
=
∑
b

∑
r

(
∑

j(m
b
j +mb,r

j − 2)2)(W b,r(x)− θ(x))

2b′r′
=

Cov∗

2
.

Therefore, the debiased estimator can be computed as θ̂NestBoot(x)− Cov∗(x)/2.

4 NUMERICAL EXPERIMENTS

To evaluate the proposed estimator and compare its performance with other methods, we experiment on a
case study on the feature selection problem. We simulate two datasets with n = 100 rows for the training
and an additional 100 points for out-of-sample validation. The first simulated dataset has 12 independent
Gamma distributed features, with both shape and scale parameters set equal to 2. The second simulated
dataset similarly has 12 variables, but their distribution is changed to Laplace. Both datasets follow equations
introduced in (Van der Laan et al. 2007), with the addition of 23 standard normal noise features and 15
correlated (auto-regressive) features with a correlation value of 0.5. We refer to them as simulation 1 and
simulation 2, respectively.

4.1 Case Study: Feature Selection (FS)

In machine learning, selecting the most informative and contributing features among the extensive set of
independent variables is a challenging task. As a case study of the proposed work, we test our estimator
within an optimization algorithm for evaluating each subset of features selected by the algorithm. This
case study is a continuation of the simulation optimization-based FS algorithm introduced in (Vahdat and
Shashaani 2020). In FS, the decision variable or x is a binary vector with size p, which equals the number
of variables in a dataset. We employ a genetic algorithm (GA) (Goldberg and Holland 1988) search engine
to go through different solution candidates and select the best. The GA hyperparameters were tuned using
a Bayesian optimization framework. GA evaluates the candidate solution using an estimator at each search
iteration and compares candidates with their evaluations. As a result, the estimator’s robustness and stability
play an essential role in guiding the search engine towards the best solution.

Vahdat and Shashaani

4.2 Results and Analysis

We perform an extensive comparison between different sampling methods and the nested bootstrap method
proposed here. For each estimator, the average and standard deviation of the fitness function estimate (θ̂),
along with average loss (`) computing the mean squared difference between the predicted values using
only the true features and those with the optimal features (capturing the robustness of the selected solution
Sanchez and Sanchez (2020)), the number of optimal features (ν), and the average computation time.

Table 2: Summary results of FS case study on two simulated datasets where average and standard deviation
of the performance measures are computed over 100 macro-replications with b′ = 10, r′ = 5, and k = 10.
The average and standard deviation show the distribution of the corresponding method.

Simulation 1 Simulation 2
Method θ̂ ¯̀ ν̄ Time θ̂ ¯̀ ν̄ Time

Boot 12.4 ± 4.8 313 17.0 ± 2.8 1.6 71.7 ± 27.9 30.8 13.4 ± 3.5 1.5
632Boot 12.9 ± 4.9 344 19.2 ± 2.4 1.8 75.1 ± 27.7 31.3 16.4 ± 3.3 1.7
LkOBoot 12.9 ± 5.0 352 17.4 ± 2.9 1.7 71.9 ± 27.2 29.8 13.6 ± 3.3 1.9
repeated CV 13.4 ± 4.9 405 20.1 ± 3.0 1.7 78.0 ± 30.3 33.9 17.2 ± 3.7 1.6
LBootOBoot 13.4 ± 4.7 424 18.7 ± 2.9 1.1 74.6 ± 27.5 33.1 15.2 ± 3.9 1.1
NestBoot 11.6 ± 4.6 256 12.6 ± 1.6 1.6 66.7 ± 26.3 27.4 10.0 ± 2.0 1.6
Debiased NestBoot 12.4 ± 4.9 350 13.9 ± 1.6 1.6 67.6 ± 26.2 29.2 9.0 ± 2.1 1.5

The NestBoot has less MSE and loss in both datasets; hence it is more robust and accurate in our
experiments without sacrificing time. The difference between NestBoot and other methods is tested using
a χ2 test with the significance level of 0.05. All the p-values lie below 0.05, showing the superiority of the
proposed sampling method. However, the debiased NestBoot does not perform better than NestBoot, likely
due to a sufficient amount of data in both simulations. LBootOBoot is the fastest among other methods
because of its limited number of models (see Table 1), but with worse performance. Furthermore, we could
bring the average number of selected features down to 13 from 17 in the best case of the existing methods
in simulation 1 and to 10 from 14 in simulation 2. The NestBoot’s success in identifying informative
features is due to more robust and accurate estimates of the loss function values at each iteration.

5 CONCLUSION

This paper proposes a novel estimator, NestBoot, for evaluating predictive rules’ performance in a simulation-
optimization setting. The NestBoot is not the first method to use a second level of bootstrapping; however,
nested bootstrapping samples the test set first to compute the weighted average as the output is the novelty
of our method. The NestBoot is more robust against changes in the input data as it takes the input
variability into account by conditioning. The estimator’s variance calculated using ANOVA appears to be
independent of estimation error. We employed the nonparametric delta method to loosely estimate the
bias and deduct that from the proposed estimator; however, it does not improve the performance in our
numerical experiments. Improving the approximations that lead to bias estimation and finding the optimum
number of bootstraps at each level is our future focus.

REFERENCES

Barton, R. R., H. Lam, and E. Song. 2018. “Revisiting Direct Bootstrap Resampling for Input Model
Uncertainty”. In Proceedings of the 2018 Winter Simulation Conference, 1635–1645. Gothenburg,
Sweden: Institute of Electrical and Electronics Engineers, Inc.

Vahdat and Shashaani

Bengio, Y., and Y. Grandvalet. 2005. Bias in Estimating the Variance of K-Fold Cross-Validation, 75–95.
Boston, MA: Springer US.

Corlu, C. G., and B. Biller. 2015. “Subset Selection for Simulations Accounting for Input Uncertainty”. In
Proceedings of the 2015 Winter Simulation Conference, 437–446: IEEE.

Efron, B. 1979. “Bootstrap Methods: Another Look at the Jackknife”. The Annals of Statistics 7(1):1–26.
Efron, B. 1982. The Jackknife, the Bootstrap and Other Resampling Plans. Society for Industrial and

Applied Mathematics.
Efron, B. 1983. “Estimating the error rate of a prediction rule: improvement on cross-validation”. Journal

of the American statistical association 78(382):316–331.
Efron, B. 2014. “Estimation and Accuracy After Model Selection”. Journal of the American Statistical

Association 109(507):991–1007.
Efron, B., and R. Tibshirani. 1997. “Improvements on Cross-validation: The 632+ Bootstrap Method”.

Journal of the American Statistical Association 92(438):548–560.
Fernholz, L. T. 2012. Von Mises calculus for statistical functionals, Volume 19. Springer Science & Business

Media.
Fisher, A., and E. H. Kennedy. 2020. “Visually Communicating and Teaching Intuition for Influence

Functions”. The American Statistician 0(0):1–11.
Goldberg, D. E., and J. H. Holland. 1988. “Genetic Algorithms and Machine Learning”. Machine Learn-

ing 3(2-3):95–99.
Lam, H. 2016. “Advanced Tutorial: Input Uncertainty and Robust Analysis in Stochastic Simulation”.

In Proceedings of the 2016 Winter Simulation Conference, 178–192. Arlington, Virginia: Institute of
Electrical and Electronics Engineers, Inc.

Lam, H., and E. Zhou. 2017. “The empirical likelihood approach to quantifying uncertainty in sample
average approximation”. Operations Research Letters 45:301 – 307.

Morgan, L. E., B. L. Nelson, A. C. Titman, and D. Worthington. 2019. “Detecting bias due to input
modelling in computer simulation”. European Journal of Operational Research 279(3):869 – 881.

Sanchez, S. M., and P. J. Sanchez. 2020. “Robustness Revisited: Simulation Optimization Viewed Through
A Different Lens”. In Proceedings of the 2015 Winter Simulation Conference, 60–74.

Song, E., and B. L. Nelson. 2019. “Input–Output Uncertainty Comparisons for Discrete Optimization via
Simulation”. Operations Research 67(2):562–576.

Sun, Y., D. W. Apley, and J. Staum. 2011. “Efficient Nested Simulation for Estimating the Variance of a
Conditional Expectation”. Operations Research 59(4):998–1007.

Vahdat, K., and S. Shashaani. 2020. “Simulation Optimization Based Feature Selection, A Study on Data-
Driven Optimization with Input Uncertainty”. In Proceedings of the 2020 Winter Simulation Conference,
2149–2160. IEEE.

Van der Laan, M. J., E. C. Polley, and A. E. Hubbard. 2007. “Super Learner”. Statistical applications in
genetics and molecular biology 6(1).

AUTHOR BIOGRAPHIES

KIMIA VAHDAT is a third year Ph.D. student in the Edward P. Fitts Department of Industrial and System
Engineering at North Carolina State University. Her main research is in the combination of stochastic
optimization with data analysis. Her email address is kvahdat@ncsu.edu.

SARA SHASHAANI is an assistant professor in the Edward P. Fitts Department of Industrial and Sys-
tem Engineering at North Carolina State University. Her research interests are probabilistic data-driven
modeling and simulation optimization. Her email address is sshasha2@ncsu.edu and her homepage is
https://shashaani.wordpress.ncsu.edu/.

mailto://kvahdat@ncsu.edu
mailto://sshasha2@ncsu.edu
https://shashaani.wordpress.ncsu.edu/

	INTRODUCTION
	Notation
	Problem Statement: Robustly Calibrating Prediction Rules
	Why do we care about robustness?

	SURVEY OF PREDICTION RULES' PERFORMANCE ESTIMATION
	Comparing Estimators
	Proposed Sampling Scheme: Nested Bootstrap Method

	ANALYSIS OF VARIANCE AND BIAS IN NESTED BOOTSTRAPS
	Analysis of Variance
	Bias Estimation Using Influence Functions

	NUMERICAL EXPERIMENTS
	Case Study: Feature Selection (FS)
	Results and Analysis

	CONCLUSION

