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ABSTRACT 

Spatial agent-based simulations of infectious disease epidemics require a high-resolution regional 
population model. However, only aggregated demographic data is available for most geographic regions. 
Furthermore, the infectious disease application case can require the fusion of multiple data sources (e.g. 
census and public health statistics), inducing demand for a modular and extensible modeling approach. In 
this work we provide a novel sequential sample-free approach to generate synthetic baseline populations 
for agent-based simulations, combining synthetic reconstruction and combinatorial optimization. We 

applied the approach to generate a population model for the German state of North Rhine-Westphalia (17.5 
million inhabitants) which yielded an average accuracy of around 98% per attribute. The resulting 
population model is publicly available and has been utilized in multiple simulation-based infectious disease 
case studies. We suggest that our research can pave the way for more geographically granular synthetic 
populations to be used in model-driven infectious disease epidemics prediction and prevention.  

1 INTRODUCTION AND RELATED WORK 

The COVID-19 pandemic has demonstrated the profound contribution of spatial agent-based simulations 
(ABS) to public health decision-making (Bicher et al. 2021). While some models are used to anticipate the 
disease propagation (Mahmood et al. 2020), others focus on the evaluation of effective intervention 
strategies (Silva et al. 2020). It is imperative for these models to capture regional demographic structures 
on individual level (i.e. age distribution or occupation) as well as on household level (i.e. average household 
sizes). While age might be a proxy for individual risks of hospitalization upon infection, occupation may 

inform the model about the probability of encounters with infectious individuals. Average household-sizes 
may greatly impact the effect of stay-at-home orders as useful interventions. This could be seen during the 
second wave lockdown of the COVID-19 epidemic in Germany, where the city of Münster consistently 
showed lower incidence and mortality rates as compared to the German average (Robert Koch-Institut 
2021). As a so-called student city, Münster combines a low average age and a large amount of single-person 
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households. Seeing that a large portion of infections occur at home (Grijalva et al. 2020), these households 
seem to be self-evidently beneficial for breaking chains of infections. However, this setup is not 
representative for the whole country. This implies, that simulation-based propagation and intervention 

models should not be designed and tested with a secluded population, but require a high-resolution 
regionally stratified population model. The procedure of generating such virtual representations of real-life 
populations is referred to as Population Synthesis (Beckman et al. 1996). 

Most of the available population synthesis approaches make use of local census data which is usually 
provided in the form of aggregated statistics on demographic features (such as age distribution) or a 
representative sample of households and individuals. Thus, these methods are either focusing on 

disaggregating statistics (sample-free), scaling-up samples (sample-based) or both. The two most popular 
approaches are the so-called synthetic reconstruction (SR) and combinatorial optimization (CO) (Ye et al. 
2017). The SR approach proposed by Beckman et al. (1996) is still one of the most commonly used methods 
to generate baseline populations. It is a sample-based approach which relies on microdata records 
containing detailed information about a subset of individuals of the target population (sample). The authors 
derive joint distributions of features (e.g. age and sex) based on this sample and upscale it by means of 

iterative proportional fitting (Deming and Stephan 1940) to match the target population size and satisfy 
overall demographic features (such as the number of people in a certain age group). Although being 
remarkably applicable, the approach lacks the option of controlling household and individual attributes 
simultaneously, the integration of multiple data sources, and the zero-element problem which limits the 
synthetic population to the individuals contained in the sample. Subsequent publications (i.e. Pritchard and 
Miller 2012) since improved the initial algorithm to address these caveats. Gargiulo et al. (2010) propose a 

contrasting sample-free approach which generates the target number of individuals solely by their age-
groups and combines them to households based on census-provided probabilities of people of certain ages 
sharing a home. While this approach suggests wide applicability as it does not require a sample, it is limited 
to a single individual attribute (age) and hence of limited usability in the infectious disease context. 
Williamson et al. (1998) were the first to suggest a fundamentally different approach to population synthesis 
by means of combinatorial optimization. It has since been adapted and expanded in many subsequent 

publications (e.g. Huynh et al. 2016). The general approach is to draw the target number of individuals from 
a sample and replaces individuals with subsequent drafts from the sample if they improve the overall fitness. 
In a comparing study, Ryan et al. (2009) found that CO approaches outperform their SR counterparts in 
terms of accuracy, however, due to their computationally intensive calculations of fitness, they usually 
require to split the population in mutually exclusive subpopulations to control for the problem complexity 
(Ye et al. 2017). 

With the particular focus on infectious disease simulation, we argue that sample-free approaches 
provide an advantage over sample-based approaches due to the fact that the model might require in inclusion 
of multiple data sources. Such data can embody statistics on preexisting health conditions or social contact 
studies which are usually not provided by the general census. Hence, a census-based sample would not 
contain the required data. The absence of a suitable sample of households naturally comes with the 
requirement of introducing descriptive (qualitative) assumptions about grouping individuals to households 

– what constitutes a family? Such definitions (also referred to as household restrictions throughout this 
document) can be obtained from the census’ collateral and have to be respected during the household 
generation process. 
 In this work, we propose a sequential sample-free approach for generating synthetic baseline 
populations. Synthetic reconstruction is utilized to generate a pool of individuals and households with all 
required features based on aggregated German census data (Destatis 2011c). We then assign these 

individuals to households with respect to the qualitative definitions of households and apply combinatorial 
optimization to increase accuracy, both, on individual- and household level. The results are then validated 
for synthetic populations of all 396 municipalities of the German state North Rhine-Westphalia (NRW) 
with three individual- and three household attributes using a weighted mean absolute percentage error 
measure (WMAPE). We found that this approach generates fairly precise population models with average 
accuracies among the various attributes of 98%. Meanwhile, we are maintaining the flexibility to adapt the 
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generation process to the requirements of a particular simulation scenario. The approach has been utilized 
in multiple case studies, notably in a simulation retracing the initial COVID-19 outbreak in Germany in 
February 2020. Our work contributes to the ongoing efforts of infectious disease simulation in two ways. 

First, while our population model was developed for Germany, we suggest that our approach is adaptable 
to other geographic regions and their particular data availability. Second, we made our synthetic German 
population model publicly available to be reused in further simulations. 

The following section provides a brief overview of the data we utilize for generating populations. We 
then present our sequential approach to population synthesis and provide validation of our work in sections 
3 and 4. Lastly, we discuss our approach and its application in an ABS project in section 5. 

2 DATA 

Our population generation solely relies on aggregated data, both regarding the frequency of individual 
characteristics (e.g. a certain age) and the frequency of household characteristics (e.g. a certain household 
size). For definition purposes, we regard characteristics as feasible values for attributes (e.g. Male and 
Female are characteristics of the attribute Sex). Whenever we refer to census attributes and characteristics 
specifically, they are being put in cursive letters throughout this document. Although we use the German 

census data (Destatis 2011a), it is possible to incorporate data from arbitrary sources as long as the data 
provides the same geographical resolution (e.g. stratified by municipalities) and the same subdivisions of 
joint characteristics (e.g. both sources stratifying age-groups in five-year compartments). Thus, when 
combining data from multiple sources, additional preprocessing may be required. 
 The census data provides tables with marginal distributions of up to 18 individual and up to seven 
household attributes (Destatis 2011b) stratified by 11,340 geographical regions (municipalities) (Destatis 

2011a) as well as several joint attribute tables. Moreover, it contains qualitative definitions of household 
compositions, i.e. regarding their family forms or senior status (Destatis 2011c). With the particular 
application focus on infectious disease propagation, we selected the three most relevant household attributes 
Size (HSI), Family Status (HLA), and Senior Status (HSC) and three individual attributes Age (AG2), Sex 
(SEX) and Employment (EMP) for our synthetic population (census identifiers in parentheses). While these 
attributes (except Employment) are mandatory for our synthesis, the generic approach can be extended to 

incorporate more of the available attributes by adding the respective tables. In addition to the mentioned 
single-attribute tables we utilize joint attribute tables for Age-Sex and Sex-Employment.  
 Due to data privacy reasons, especially in scarcely populated areas, the census may not provide values 
for all characteristics and combinations, as it would allow to conclude assumptions about living persons. 
Thus, it contains missing values or noisy data (Amt für Statistik Berlin-Brandenburg 2013). These 
occurrences induce the requirement of additional data preprocessing scaling the sum of single 

characteristics per attribute and hence matching the actual total of individuals or households.  
 A fortunate feature of the German census is that it provides grid data, informing us about the number 
of households in 100x100m cells across the whole country (Destatis 2011b). There are also worldwide 
population density maps (e.g. Oak Ridge National Laboratory 2019) with a resolution of 1x1km which 
could be utilized for other countries. 

3 POPULATION SYNTHESIS 

The generation of population for each municipality consists of five steps (Figure 1). First, the data is 
preprocessed to harmonize table totals. Then, separate pools of individuals and households instances are 
created using a Synthetic Reconstruction approach. In a third step, individuals get assigned to households 
based on a predefined ruleset. However, it is virtually impossible to obtain a perfect match of individuals 
and households when working with synthesized populations based on aggregated data. For this reason, we 
relaxed the restriction to assign every individual to a household only once in order to achieve the best fitting 

composition of households. Naturally, this procedure impedes the accuracy of the individuals’ 
demographic. For this reason, we apply combinatorial optimization to increase accuracy, both, on individual 
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and household level in a fourth step. Finally, the households are assigned to a grid equipping them with a 
geographical location. 

 

Figure 1: Synthetic Population Generation Procedure. 

Most design decisions were being made in order to balance the conflicting goals of flexibility and run-time. 
Especially the combinatorial optimization phase is computationally intensive. This applies to large 
municipalities in particular as the runtime grows linearly with the number of households. While the 
runtimes for the vast majority of municipalities are a matter 1-5 minutes, very few very large municipalities 

(e.g. Cologne with ~1 million inhabitants) can take several hours. As we opted for a Java-based 
implementation we are able to parallelize the generation of municipalities. A synthetic population of NRW 
with roughly 17.5 million inhabitants in 396 municipalities takes around three and a half days to generate 
on a XEON quad-core server with 16GB memory. However, we expect the runtime to drop by about 70% 
when running our code on a high-performance cluster with as many threads as target municipalities as it is 
then limited by the generation time of the largest municipality. In further versions of the software, we also 

plan to parallelize the optimization procedure itself. 

3.1 Data Preprocessing 

To preprocess the data every attribute table is checked for the same column totals. The comparison is done 
using a base-table containing individual- and household sums for each municipality provided by the census 
(Destatis 2011b). If an attribute table sum differs from the base-table for the respective municipality the 
values are scaled to match the total while retaining proportions of characteristics. These deviations are 

generally below 1% of the target totals with a few outliers of around 5.5%. The scaling enables an exact 
match with the created population. 

3.2 Individual & Household Generation 

The goal of this phase is generating pools of individuals and households so that their overall demographic 
features match with the aggregated census data. While there are approaches to generate individuals and 
households simultaneously (e.g. Moreno and Moeckel 2018) we opted for a sequential approach as we see 

the risk of having the number of potential attribute combinations (of combined households and individuals) 
exceed the actual target quantity of individuals, especially for smaller municipalities. This would strongly 
impact any form of stochastic reliability of the resulting population model. 

We rely on a well-established Synthetic Reconstruction approach utilizing Iterative Proportional Fitting 
(Beckman et al. 1996) to determine the frequency of co-occurring characteristics enabling the generation 
of the aforementioned individuals and households. Figure 2 depicts the following workflow for the pool of 

individuals, however, the household instances are generated in exactly the same way: 
 1. Transforming absolutes to probabilities. In a first step, the absolute values from the attribute tables 
are normalized by dividing every cell by the column total to obtain percentage values characteristic 
frequencies (e.g. 40 males out of 100 individuals is translated to a fraction value of 0.4 males). 
 2. Combining probabilities. The attributes’ characteristic probabilities are now joined to a probability 
matrix by means of multiplication. The very first iteration is done with two of the input tables. Subsequent 

iterations join the Combined-table (output of step 6) with the next input table. As mentioned in section 2, 
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the census does also provide joint attribute tables which we utilize in our synthesis. For these tables, we 
check for the existence of what we call a pivotal attribute first, referring to an attribute contained in the 
Combined-table and available in the joint input table. In absence of a pivotal attribute, the process is 

identical with the case of single-attribute tables. In presence of a pivotal attribute, we generate one 
probability matrix for each characteristic of the pivotal attribute. Considering a joint input table of Age x 
Sex and the Combined-table consisting of Age x Employment, the pivotal attribute would be Age and thus 
trigger the generation of one Sex x Employment table per age group. While the marginal values of the 
Combined-table remain in the newly generated tables to retain the initial distribution of characteristics (i.e. 
Age & Employment), the added attribute (i.e. Sex) is scaled to achieve that marginal values sum up to 1 

(within the respected age group) and thus not impede the initial distribution of characteristics.  
 3. Enforcing restrictions. As some combinations of characteristics should be considered infeasible 
(e.g. an employed five-year old), we maintain a list of such “impossible” occurrences. In each iteration, we 
apply this list to the newly joint table and set all probabilities to 0 for matching combinations. 
 4. Optimizing the table. After the previous step, the row- and column-wise sums of cells do not match 
the marginal distributions anymore (as some of the cells were set to 0). To converge the remaining values, 

we apply Iterative Proportional Fitting according to Beckman et al. (1996). This procedure scales the cells 
of rows and columns to match their marginal values alternately. The fitting procedure is terminated either 
at a threshold value of 0,1% deviation from the anticipated marginal values or after 200 iterations which 
were found to be an appropriate limit (Huang and Williamson 2001) to prevent infinite loops. 
 5. Transforming into vector. The resulting matrix is then transformed into a vector by combining the 
attribute characteristics of the two attribute tables. This way we can use the resulting table for further 

iterations. 
 6. Generating instances. Once all attributes were combined in one table the individual- and household-
instances are created. This is done by scaling the resulting probability vector to the initial population size 
and generating the respective quantity of instances.  

 

 

Figure 2: Individual Pool Generation. 

3.3 Household Assignment 

This phase aims at assigning the generated individuals to households so that the pool of households provide 
the same demographic features as the reference data (regarding household composition and size). Therefore 
we iterate over every household and assign individuals who match the qualitative definition of the 
respective household characteristic (e.g. Family Status, Senior Status and Size). Table 1 illustrates the 
assignment ruleset which is based on the census’ definition of household types (Destatis 2011c) and will 

be described in the following:  
 The Family Status (HLA) generally informs the composition of households and the residents’ 
relationships. It is based on the definition of a core family, which consists of a defined index person and at 
least one further family member living in the household, who is either a child or the partner of the index 
person. The household can consist of either only the core family or also include additional members, who 
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do not belong to the core family (Michel 2014). Therefore the characteristics of the Family Status are the 
different types of core families. The characteristics can be grouped in three categories: No Core Family or 
Single-Person Households, Couples and Single Parents. Single-Person Households and households with 

No Core Family have no restrictions on the relations of their residents. Furthermore, there are three census 
characteristics of Couples consisting of a couple and optional children as core families: Married Couple, a 
Not Formally Registered Couple or a Registered Couple. The vary in that the Registered Couple is same-
sex, while the other types imply mixed-sex couples. This is built into the assignment, but for the sake of 
simplicity not visualized in Table 1. Two individuals forming a couple are assigned based on probabilities 
of age differences and their sex. According to the German Federal Office of Statistics, in 17% of couples, 

the woman is older than the man, in 73% the man is older and in 10% their age is the same. Furthermore, 
52% have an age difference of 1-3 years, 41% a difference of 4-9 years and 7% more than ten years. Married 
couples have to be at least 18 years of age (Destatis 2018). During our assignment, we sample “suitable 
counterparts” for the index person based on these probabilities. We apply the same approach for assigning 
children who have a 31% chance to be over the age of 18, and thus a 69% chance to be minors. Among the 
latter, 82% are between the ages 0-14 (Destatis 2018). The last group among families consists of Single 

Parents, divided into the census characteristics Single Mothers and Single Fathers. These households have 
to consist of at least one parent of the defined Sex and a child (Destatis 2011c).  

Table 1: Household Assignment Ruleset. 

Family Status Senior Status Rule 

No Core Family/ 

Single-Person 

Household 

Only Seniors Fill with seniors 

Mix Assign senior and one non-senior + fill without restriction 

No Seniors Fill with non-seniors 

Family Only Seniors Assign senior couple + fill with seniors 

Mix If household size = 2 Assign mixed couple 

Else assign senior + add non-senior family 

No Seniors Assign non-senior couple, fill with children 

Single Parent Only Seniors Not possible (constraint) 

Mix If household size = 2 assign senior and fitting child 

Else assign senior + parent + fill with children 

No Seniors parent + fill with children 

 

The Senior Status of an household (HSC) has three characteristics: The household can have No Seniors, 
Only Seniors or a Mix. A senior is defined as a person of age 65 or older (Destatis 2011c). 
 Finally, the Household Size (HSI) is used to determine the number of individuals per household and 
groups households in sizes from 1 to 6+. It is also used to “fill up” a household that already consists of the 
required individuals to match Family Status and Senior Status but has not reached capacity. 
 These definitions restrict the individuals, who are suitable for the respective household. Therefore they 

have to be filtered by their attributes Sex and Age (in eleven age groups) (Destatis 2011c). The assignment 
is then performed using a rule-based approach guided by the census definitions. The two individuals 
attributes (Sex and Age) attributes as well as the three household attributes (Family Status, Senior Status 
and Size) are mandatory input parameters. As mentioned in section 3.2, additional individual- and 
household attributes can be incorporated. However, if they affect the household assignment (for example 
the number of members in the core family), it requires an adaption to the assignment ruleset. 

 Assigning individuals to households “correctly” is a rather complex task as many individuals naturally 
fit in various households. Furthermore, we cannot be certain that there is a perfect match of individuals and 
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households as both pools were only generated based on aggregated data. Our initial tests had shown that 
generating household assignments sequentially, emptying the available pool of individuals, leads to a 
considerable decline in household accuracy. This particularly applies to the households being assigned 

towards the end, as the shrinking pools of individuals may not hold any fit anymore. For this reason, we 
suggest to relax the requirement to assign every individual exactly once. In fact, we saw much better results 
in sampling individuals from the pool with replacement. While this approach leads to a perfect match on 
household level and causes a reduction of unique individuals (and thus population heterogeneity) of 0.13%, 
it decreased the accuracy on individual level to around 88% in our test cases. This necessitates an additional 
optimization presented in the next section. 

3.4 Optimization 

Combinatorial Optimization is used to rearrange and replace households to find a set of households which 
fits the census data the best. In order to guarantee the integrity of households regarding their Family Status 
and Senior Status, we do not replace individuals in the respective households. Furthermore, optimizing 
among all individuals in all households is highly computationally intensive and of limited applicability for 
large populations as Ponge et al. (2016) have shown. We opted for a recombination approach where we 

draw households including their assigned individuals from the generated pool and allow for selecting the 
same household more than once which yields the risk of losing population heterogeneity. However, our 
tests show that on average, this leads to a reduction of unique households of 3.31% and unique individuals 
by 0.25%. Thus, at least 96,7% of the population heterogeneity is retained after optimization. 
 The recombination is performed using a genetic algorithm according to Luke (2013) working with ten 
candidate solutions. A candidate solution contains the target number of households for a given municipality 

according to the census. At initialization, each candidate solution is constructed by drawing the respective 
number of households from the pool at random. We measure the fitness of candidate solutions by means of 
Z-Scores (RSSZ*) as proposed by P. Williamson  (Tanton and Edwards 2013). RSSZ* is an established 
measure of fit for combinatorial optimization approaches generating synthetic small-area microdata. 
 In each evolutionary cycle, we build eight crossovers of the two most promising candidate solutions by 
randomly sampling households from either candidate solution. The new solutions as well as their two 

parents remain in the set of candidate solutions in order to ensure keeping the best fitting candidate. With 
a chance of 20% the newly created candidate solutions are then mutated, which means a replacement of 
0-100% of the households by randomly selecting substitutes from the pool. The initial solutions not selected 
for crossovers are disregarded. 
 The termination criterion is an overall RSSZ* of less than 1, as this guarantees, that every attribute 
table has a Z-Score of less than one and is therefore defined as a so-called fitting table according to Tanton 

and Edwards (2013). As there is no definitive guarantee for this termination criterion to be met, our fallback-
stopping criterion is triggered after 5,000 generations of this recombination.  

3.5 Grid Assignment 

In the last step, we assign locations to the household selection that was generated in the previous step. 
Therefore the grid data of the census is used. By determining all inhabited grid-cells for the municipality, 
the percentage of the households, which are in the respective grid-cell can be calculated. Every household 

is then assigned to a grid-cell, following the household density distribution given by the census grid data. 
This approach will always assign all households of the final set. The assignment of households is performed 
at random, as the census does provide no information on what particular households shall be located in a 
particular grid-cell for privacy reasons. In fact, the approach of reverse-engineering information about 
individual households (e.g. through cells with single households) might be a violation of census regulations. 
However, as the German census contains more than eleven thousand municipalities, assigning households 

per municipality does still provide a substantial level of region heterogeneity. Figure 3 shows the 
frequencies and locations of households in the synthetic population for the municipality of Gangelt in the 
Heinsberg county (Western Germany) using ArcGIS Pro (Esri 2019).  
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𝐸𝑡 , 𝑆𝑡 = Empirical and Synthetic frequencies 

for characteristic 𝑐 of attribute 𝑎 

 

Figure 3: Household Locations for the Gangelt Municipality (Left) in the Heinsberg County (Right). 

4 VALIDATION 

We validate the resemblance of our synthetic population to its real-life equivalent in two steps: An in-depth 
examination of a single municipality’s demographic features and a comprehensive validation comparing 

separate population models for all 396 municipalities of the state of NRW. For the in-depth validation, we 
chose the Gangelt municipality in the western part of Germany (s. Figure 3). Gangelt was the epicenter of 
Germany’s COVID-19 outbreak in February 2020 (Streeck et al. 2020) and thus the first municipality we 
generated a synthetic population for using the approach presented in this paper. 
 We apply an artificial census to our synthesized population and contrast the absolute values of the 
results with the original census data. The results of the used attributes (census identifiers in parentheses) 

Age (AG2), Sex (SEX), Employment Status (EMP), Household Size (HSI), Family Status (HLA) and Senior 
Status (HSC) can be seen in Figure 4. Furthermore we calculate the Weighted Mean Absolute Percentage 
Error (WMAPE) for each attribute: 

                                             𝑊𝑀𝐴𝑃𝐸𝑎 =
∑ |𝐸𝑐 − 𝑆𝑐|𝑛

𝑐=1

∑ |𝐸𝑐|𝑛
𝑐=1

 

This measure weights the proportion of characteristics in comparison to the total amount of instances. It 
prevents the overemphasis of percentage errors in characteristics with comparably few individuals in the 
respective category (e.g. age group [0-3] vs. age group [40-49]) and thus creating a robust measure for 
comparison. In the following, the terms error and WMAPE are used interchangeably. We generally observe 

a very good fit of our synthetic population and the Gangelt census data with errors between 0.2% (Senior 
Status) and 6.28% (Household Size). By comparison to other municipalities in NRW (Figure 5), the 6.28% 
error in household sizes constitutes an outlier. The target population size for the synthetic population is 
informed by the overall sum of household sizes. However, this target sum (10,722) does not match with the 
reported number of individuals (11,405) (Destatis 2011c). A fraction of this deviation may be traced back 
to our limit of six individuals per household, since the census does not report on the actual number of 

individuals in large households. Yet, to account for the full deviation of 683 people, the average size of the 
90 larger-than-six person households in Gangelt (Destatis 2011c) would have to be 13.6 which we assume 
to be rather unlikely. Another more probable explanation is the fact that a considerable number of people 
in Gangelt (617) live in communal accommodation (Destatis 2011a). While this discrepancy also causes 
the synthetic population to be slightly smaller than the real population (11,180 individuals vs. 11,405), it 
does not seem to be a reoccurring effect throughout all municipalities. In fact, among the 396 municipalities 

of NRW, we see 59 entities with a larger target sum of household sizes as opposed to the reported number 
of individuals. The peculiarity of household sizing requires further examination in the future.  
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Figure 4: Absolute Frequencies of Individual- & Household Characteristics for Gangelt considering Age, 
Sex and Employment (Top Row) and Household Size, Family Status and Senior Status (Bottom Row). 

In order to obtain statistically reliable validation results, we generated 100 synthetic populations for Gangelt 
and calculated the WMAPE for every attribute. The results are given in Table 2. We observe, that the errors 
for the various attributes are rather consistent with maximum standard deviation of 0.14% and a maximum 
range of 0.67%.  

Table 2: WMAPE in Percent per Attribute Across 100 Synthetic Populations for Gangelt (Heinsberg). 

Attribute Mean Error St.-Deviation Min Error Max Error 

Age 2.10 % 0.14 % 1.86 % 2.53 % 

Sex 1.89 % 0.03 % 1.81 % 2.00 % 

Employment 1.89 % 0.03 % 1.81 % 2.00 % 

Household Size 6.28 % 0.08 % 6.08 % 6.53 % 

Household Family Status 2.88 % 0.07 % 2.68 % 3.13 % 

Household Senior Status 0.20 % 0.08 % 0.05 % 0.41 % 

 

However, as we have seen for Gangelt, validation results can be highly dependent on the particularities of 
the municipality in focus. To collect a more comprehensive assessment on the synthesis performance, we 
generated synthetic populations for all 396 municipalities of the state of NRW in a second validation step.  
We selected NRW as it is the largest German state and it shows significant demographic differences among 
the municipalities regarding the number of citizens (4,197 to 1,005,775), share of minors (13% to 25%), 
and the share of senior citizens (14% to 31%) as well as the composition of households regarding the share 

of single-person households (17% to 51%), share of married-couple households (32% to 68%), and no-
senior households (55% to 77%). We consider this variety to be a reasonable stress test for our algorithm. 
 For every municipality we calculated the WMAPE for each attribute. Figure 5 contains the distribution 
of errors visualized in a boxplot with the errors for Household Family Status (0.91%), Household Senior 
Status (0.48%), Household Size (1.53%), Sex (0.46%), Age (1.62%), and Employment (0.88%).  
 As all average error margins are contained below a 2% threshold, we conclude that our approach yields 

an average accuracy of around 98% per attribute. We can observe a general trend, that attributes with more 
characteristics (Age, Family Status and Household Size) tend to yield higher error margins. Nonetheless, 
the number of characteristics shall not be an universal estimator for an attribute’s error margin since the 
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error can also be induced by mismatches in the input data as it was previously shown for Household Size. 
From this observation we conclude the requirement of thorough input data analysis, both, for the attributes 
at hand and especially for attributes which might be added in future works.  

 

Figure 5: WMAPE in Percent of household- & individual attributes across all 396 municipalities of the state 
of North Rhine-Westphalia (Largest State in the West of Germany with roughly 17.5 million inhabitants). 
Each observation corresponds to one municipality. 

5 DISCUSSION AND APPLICATION 

In the previous chapters we demonstrated how a two-step hybrid approach for population synthesis can 
benefit from both, the input data flexibility of synthetic reconstruction and the accuracy improvement of 

combinatorial optimization approaches. While our methodology is based on the initial work of Beckman et 
al. (1996), we can omit the zero element problem by calculating all possible attribute combinations based 
on the census tables. Moreover, this approach eliminates the need for a microsample, but introduces the 
risk of generating non-feasible attribute combinations (employed five-year-olds) which have to be 
controlled for manually. However, especially in the infectious disease simulation context, we see the 
increased input data flexibility as a significant advantage. In contrast to the sample-free approach by 

Gargiulo et al. (2010), our approach is able to base household assignments and compositions not only on 
individuals’ age but on an arbitrary number of attributes by means of the rule-based assignment approach 
complemented with combinatorial optimization. Through separating the generation of individuals and 
household composition we benefit from the advantages of combinatorial optimization (Huynh et al. 2016; 
Ryan et al. 2009; Williamson et al. 1998) without being dependent on the availability of a microsample. 

The model presented in this paper serves as the baseline population layer to an in-progress agent-based 

simulation project investigating the effectiveness of non-pharmaceutical interventions in wake of the 
German COVID-19 epidemic. On top of the population layer we synthesize a contact network layer 
including workplace and school connections as well as random encounters in supermarkets or during leisure 
activities. Our high-resolution population model enables us to evaluate interventions with respect to 
regional demographical features. We retraced the initial outbreak in the municipality of Gangelt which 
occurred after an infected couple attended a carnival event in February 2020 (Streeck et al. 2020). While 

containment efforts (i.e. closure of schools and non-essential businesses) were imposed promptly, empirical 
studies have found that roughly 15% of inhabitants were infected within the next six weeks (Streeck et al. 
2020). A scenario which we could also demonstrate in our simulation. Then, we set out to explore, whether 
such an event and the subsequent interventions would have caused the same disease progression in a 
municipality of similar size but with considerably different demographic features (in terms of age structure 
and household sizes). Preliminary results indicate that the same interventions would have prevented up to 

25% of the overall infections in more “demographically advantageous” regions (i.e. regions with more 
single-person households and a lower average age). The conclusions we draw from our observations are 
twofold: first, demographical features do have an influence on the course of an epidemic and second, these 
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features should be considered when trying to design minimal-invasive interventions. We suggest that agent-
based simulations in accord with our regional high-resolution population models can support the design of 
effective and efficient containment measures. 

6 CONCLUSION 

In this work we presented a novel sequential sample-free approach to generate synthetic baseline 
populations for agent-based simulations. The five-step approach is modular and extensible, both, regarding 
the input data as well as the ruleset guiding the composition of households. We applied the approach to 
create synthetic populations for the German state of NRW and could show that we achieve consistent 
average accuracies across all attributes of at least 98%. The resulting dataset has been made publicly 

available at https://github.com/JohannesPonge/SyntheticPopulations and we suggest that the spatial ABS 
research community will benefit from our efforts. It has been used in agent-based simulation case studies 
to evaluate the effectiveness of immediate interventions in wake of the initial COVID-19 outbreak. 

Still, there is a lot potential for further research. So far, only census data has been used to generate and 
parametrize synthetic populations. However, the infectious disease simulation context can require the 
combination of multiple data sources (such as data on preexisting conditions). We anticipate the extension 

our model and thus provide more comprehensive synthetic population datasets in the next years.  
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