
Proceedings of the 2021 Winter Simulation Conference
S. Kim, B. Feng, K. Smith, S. Masoud, Z. Zheng, C. Szabo, and M. Loper, eds.

MULTI-FIDELITY MODELING FOR THE DESIGN OF A MARITIME ENVIRONMENTAL
SURVEY NETWORK UTILIZING UNMANNED UNDERWATER VEHICLES

Danielle F. Morey
Zelda B. Zabinsky

Industrial and Systems Engineering Department
University of Washington

Seattle, WA 98195-2650, U.S.A.

Cherry Wakayama
Randall Plate

Intelligence, Surveillance
and Reconnaissance Department

Naval Information Warfare Center Pacific
San Diego, CA 92152-5001, U.S.A.

ABSTRACT

New maritime operational concepts are being considered for future network topologies that are efficient
and reliable in underwater domains where the design of networking is challenging due to the harshness of
the environment. Various communication and network simulation tools exist to model scenarios of interest
and evaluate metrics of interest, e.g., latency, throughput and reliability, for high-fidelity evaluations.
However, the computation time required for high-fidelity simulation is extensive for evaluating many
network topologies associated with topology optimization. Thus we develop low-fidelity models to explore
many network topologies and identify a few Pareto optimal configurations to evaluate with the high-fidelity
simulation. In this paper, we demonstrate a multi-fidelity topology optimization methodology for maritime
environmental survey operations involving multiple unmanned underwater vehicles. The low-fidelity models
developed for this maritime operation scenario are able to accurately identify the intuitive optimal solution
based on multiple objectives, which are then validated by high-fidelity simulations.

1 INTRODUCTION

With the maturity of networking and autonomous unmanned technologies, new applications for networked
sensors and assets in underwater domains are emerging for public, commercial and defense services.
Wireless sensor networks are being considered in the underwater domain to monitor the health of marine
environments (Vasilescu et al. 2005). Unmanned underwater vehicles (UUVs) are being used by the oil and
gas industry to map the seafloor prior to construction of subsea infrastructure (Zwolak et al. 2017). Key
technologies in UUVs, sensors, underwater communication networks and autonomous behavior are driving
new operational concepts for performing various undersea Intelligence, Surveillance and Reconnaissance
(ISR) mission tasks (Fletcher 2000).

Underwater operations are generally costly, challenging and complex because of the harsh underwater
environment, limited power supply and limited underwater communication channels. Considerable work,
resources and careful planning are required to deploy and maintain sensors and assets to perform underwater
operations (LiVecchi et al. 2019). Addressing these challenges, our work focuses on developing a modeling
methodology to evaluate and optimize different design topologies for deploying multiple sensors and assets
that perform specific operational missions. In particular our model development emphasizes the communi-
cation and networking aspect of maritime topologies that can support various data exchange requirements,
such as data volume, data timeliness, energy usage and delivery reliability. There is considerable literature
concerning routing and methods of path planning (Echeveste et al. 2021; Zhang and Fei 2007). This work
aims to expand the literature by focusing on topology design under the assumption of fixed routing.
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Without loss of generality and for ease of reference, we represent an end-to-end maritime mission
system as a control system composed of observation, decision and action layers with each layer composed
of independent nodes or a network of distributed nodes which perform specific roles: observation nodes
collect data, decision nodes offer centralized or decentralized decision capabilities, and action nodes perform
actions for timely implementation. Nodes may interact with other nodes in the same layer and/or across
layers depending on the decision and networking topologies. The data are sent to nodes in the decision layer
via available communication and network (C&N) links for decision making. This paper focuses on the
topology design of a communication network involving mobile observation nodes (UUVs) for delivering
a large amount of data from observation layer to decision layer.

Topology optimization for a complex system of systems can be viewed as a black-box global optimization
problem where high-computation high-fidelity simulation models are often required to perform evaluation
of measures of performance (Fu 2015; Kang et al. 2017; Linz et al. 2017). However, these high-fidelity
models are too computationally expensive to iteratively run over a parameter space in order to find optimal
configurations. Thus, our approach to topology optimization is based on multi-fidelity modeling and
simulation, in which low-computation low-fidelity models that are capable of being solved efficiently
are first constructed to provide quick insight and information on topology configurations. Guided by the
solutions of low-fidelity models, a reasonable number of topology configurations are systematically selected
for further evaluation using high-fidelity simulation models. These limited high-fidelity evaluations are
then used to validate the low-fidelity models in producing trends on performance measures that are fairly
consistent with varying topology configurations. In future work, we plan to develop a feedback scheme
which uses observed discrepancy measures to calibrate low-fidelity models for improved accuracy.

In this work we explore the topology configurations for a maritime environment survey operation
involving multiple UUVs collecting large volumes of data in an operational area and delivering the data to a
processing or decision center, which is referred to as a depot. The design variables involve determining the
optimal topology configuration based on the number of UUVs to deploy and the number of location nodes
to be visited by each UUV. To address failure probability associated with maritime systems and underwater
operations, delivery reliability, in the form of redundancy in coverage, is also considered in the construction
of topology configurations. From a communication and networking perspective, the interested measures
of performance include delivery delay, location node revisit rate and delivery reliability in addition to cost
(number of UUVs) and energy usage.

It is important to clearly outline the differences between the low-fidelity and high-fidelity models in
this paper. Our low-fidelity models capture measures of performance in an aggregated view by combining
individual details into group representations under simplifying assumptions. Instead of characterizing
individual UUV trips and paths, all UUV trips and paths are represented using single common metrics.
For example, a fixed round-trip duration and energy usage are used for all UUVs without detailed path
planning for each UUV. Weighted revisit time is defined to capture the node revisit rate, and expected
number of unsuccessful deliveries (the number of data collection nodes that fail to have data successfully
transmitted to the depot) is computed to capture delivery reliability under the simplifying assumptions that
UUV trips are independent and the data collection, transporting, and transmission events are independent.

On the other hand, our high-fidelity model implements direct simulation. A detailed scenario with
specific node locations, UUV movements and behaviors, and data transfer over specified communication
links are programmed to execute the scenario for a specified mission duration. A fixed path must be explicitly
defined for each configuration in order to execute the simulation. Energy usage for data collection, UUV
travel and data transmission are included in the simulation. Delivery delays for individual data packets
are tracked as well as the visit times of each UUV to each data collection node location. Multiple delay
metrics are evaluated. The simulation provides highly accurate results, but requires a high computation
cost. Thus we perform high-fidelity simulation evaluations only for selected topology configurations based
on the results of the low-fidelity models. We verify the consistency of the results over different topology
configurations, for example, that the configurations that produce shorter revisit times using the low-fidelity
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models also produce shorter revisit times using the high-fidelity models, thus demonstrating the utility of
low-fidelity and high-fidelity models for topology optimization problems.

2 TOPOLOGY DESIGN PROBLEM DESCRIPTION

This paper focuses on the scenario of a 100 km2 plot of ocean for an underwater environment survey.
The design concept is to use UUVs to collect data packets from locations called data collection nodes,
and transport the data to a depot node, where the data is transmitted from the UUV to the depot and then
ultimately sent to a decision location. This scenario example considers that each UUV has on-board sonar
capability to collect an image of the area represented by the data collection node. This environment survey
data is referred to as a data packet, and is of constant size. In the future, we will consider data collection
nodes that accumulate data packets continuously and relay data to neighboring nodes.

In this paper, data collection nodes are placed uniformly 1 km apart in a 10-by-10 grid across the
100 km2 area, as in Figure 1. UUVs start from and return to a single depot node to charge and deliver data.

Figure 1: 10-by-10 fixed grid data collection node layout with an example city-block trip path, starting
and ending at the purple depot node for data delivery and UUV recharging.

We assume that all nodes are visited by at least one UUV, and when multiple UUVs are available,
the workload (number of data collection nodes to visit) is evenly balanced. For the low-fidelity model
we assume a worst-case travel time computed using a city-block path for all UUVs according to the path
shown in Figure 1. In this way defining the number of UUVs in use and the number of nodes that each
UUV visits, which is uniform across UUVs by the assumption of balanced workloads, provides a complete
description of the configuration. In the high-fidelity simulation, specific UUV paths are followed to each
node location in an efficient manner (see Figure 4).

There is one additional key component of these configurations that is worth defining explicitly for
each configuration, namely the “coverage,” which captures redundancy. The coverage is defined as the
total percentage of nodes visited by all UUVs. It is assumed that, similar to balancing UUV workloads,
node coverage is also balanced. As such, a configuration with 100% coverage has each node visited by a
single UUV, while a configuration with 200% coverage has each node visited by two UUVs. As another
example, a configuration with 320% coverage has every node visited by at least three UUVs: 20% of the
nodes are visited by a fourth UUV, with the remaining 80% of nodes visited by exactly three UUVs.

A set of 33 configurations with number of UUVs ranging from 1 to 5 and coverage ranging from 100%
to 500% is listed in Table 1. Two example configurations are shown in Figure 2. The number of data
collection nodes serviced by each UUV is varied by 10 nodes at a time. A case with 100% coverage, such
that every node is serviced without redundancy, was evaluated for each number of UUVs as a base case. In
order to achieve as close as possible to 100% coverage in the case of 3 UUVs, each UUV visits 33 nodes,
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and in the case of 4 UUVs, each UUV visits 25 nodes (configurations 8 and 16 in Table 1, respectively).
The last two columns of Table 1 are metrics calculated with the low-fidelity model (see Section 3).

(a) Configuration with 2 UUVs servicing 70 nodes each
and 140% coverage (configuration 4 from Table 1).

(b) Configuration with 3 UUVs servicing 60 nodes each
and 180% coverage (configuration 11 from Table 1).

Figure 2: Two example configurations of nodes visited by UUVs. Each pentagon shaped UUV services
the nodes of their corresponding color and pattern. The purple square represents the depot.

Several parameters that specify the scenario are listed in Table 2. These parameter values are inferred
from the findings provided in a report as part of the study to support the Powering the Blue Economy
Initiative by the U.S. Department of Energy (LiVecchi et al. 2019). A UUV travels at a constant speed
and makes a round-trip from the depot, visiting up to two rows of data collection nodes (the maximum
without risk of exhausting its battery). The UUV then delivers data to the depot via an optical link and
recharges its battery at the depot. The UUV energy usage is modeled by three parameters: travel energy
usage, data collection energy usage at node locations, and data transmission energy usage to depot.

3 LOW-FIDELITY MODEL DEVELOPMENT

The low-fidelity model makes simplifying assumptions and aggregates details into group representations.
In the low-fidelity model, a 20-node trip length between battery charges is assumed for the purposes of
calculating reliability and latency metrics. Path planning is not considered in the low-fidelity model.

In a 10-by-10 fixed grid of data collection nodes, a 20-node trip is an intuitive trip length as this involves
traveling across one row of nodes and then traveling back to the depot via another row. This 20-node trip,
including the travel distance to and from the depot, is a total of 36 km as measured by a city-block method
(see Figure 1). This provides the distance for a worst-case path and is used as the travel distance for every
trip in the low-fidelity model.

Based on the parameter values in Table 2 for travel energy usage, data collection energy usage, and
battery capacity, a round trip of 36 km and data collection at 20 nodes will drain 3800 kJ. Based on the
battery charging rate, it will take 2.64 hours to recharge the 3800 kJ of energy drained in one trip. Based
on the UUV travel speed, the 36 km trip takes 5 hours. Data transmission to the depot node will occur
simultaneously with charging and will not increase the time the UUV is at the depot node. The total time
per trip (travel time plus recharge time) is therefore 7.64 hours.

3.1 Probabilistic Reliability Model

Given that there is inherent uncertainty in the data collection and delivery process, such as transmission
interference and the possibility of UUV or sensor mechanical malfunction, reliability must be considered
when making decisions on configurations.
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Table 1: List of 33 design configurations and results.

# of Nodes Covered by # Nodes Weighted Expected
# of Config. Different # of UUVs Serviced Average #

# UUVs Coverage per Revisit Unsuccessful
1 2 3 4 5 UUV Time (hr) Deliveries

1 1 100% 100 0 0 0 0 100 38.19 43.30
2 2 100% 100 0 0 0 0 50 19.10 43.30
3 2 120% 80 20 0 0 0 60 20.63 38.39
4 2 140% 60 40 0 0 0 70 21.39 33.48
5 2 160% 40 60 0 0 0 80 21.39 28.57
6 2 180% 20 80 0 0 0 90 20.63 23.66
7 2 200% 0 100 0 0 0 100 19.10 18.75
8 3 99% 99 0 0 0 0 33 12.48 42.87
9 3 120% 80 20 0 0 0 40 13.75 38.39
10 3 150% 50 50 0 0 0 50 14.32 31.02
11 3 180% 20 80 0 0 0 60 13.75 23.66
12 3 210% 0 90 10 0 0 70 12.92 17.69
13 3 240% 0 60 40 0 0 80 13.24 14.50
14 3 270% 0 30 70 0 0 90 13.18 11.31
15 3 300% 0 0 100 0 0 100 12.73 8.12
16 4 100% 100 0 0 0 0 25 9.55 43.30
17 4 120% 80 20 0 0 0 30 10.31 38.39
18 4 160% 40 60 0 0 0 40 10.69 28.57
19 4 200% 0 100 0 0 0 50 9.55 18.75
20 4 240% 0 60 40 0 0 60 9.93 14.50
21 4 280% 0 20 80 0 0 70 9.80 10.24
22 4 320% 0 0 80 20 0 80 9.68 7.20
23 4 360% 0 0 40 60 0 90 9.74 5.36
24 4 400% 0 0 0 100 0 100 9.55 3.52
25 5 100% 100 0 0 0 0 20 7.64 43.30
26 5 150% 50 50 0 0 0 30 8.59 31.02
27 5 200% 0 100 0 0 0 40 7.64 18.75
28 5 250% 0 50 50 0 0 50 7.96 13.43
29 5 300% 0 0 100 0 0 60 7.64 8.12
30 5 350% 0 0 50 50 0 70 7.80 5.82
31 5 400% 0 0 0 100 0 80 7.64 3.52
32 5 450% 0 0 0 50 50 90 7.73 2.52
33 5 500% 0 0 0 0 100 100 7.64 1.52
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Table 2: Parameters for scenario specification.

Parameter Value
Travel energy usage 100 J/m
Data collection energy usage 10 kJ/node
Battery charging rate 400 J/s
UUV travel speed 2 m/s

Let the probability of successful data collection by a UUV at a data collection node be ps, let the
probability of a UUV successfully completing a round-trip to the depot be pu, and the probability of
successful transmission of all data packets collected by a UUV to the depot be pg. Assume that these
probabilities are the same for any UUV and data collection node and all events are independent. With
these assumptions, the counting process for successes (or failures) of the overall data collection system is
modeled as a binomial process.

Consider a single UUV visiting 20 locations on a single round-trip to the depot. The probability that
i out of 20 data packets get successfully delivered to the depot by a single UUV is,

P(i successful deliveries out of 20 by one UUV) =


(

20
i

)
pi

s(1− ps)
20−i pu pg for i = 1, . . . ,20

1− pu pg(1− (1− ps)
20) for i = 0.

It follows from the binomial distribution that the expected number of data packets, out of 20, that are
successfully delivered to the depot by one UUV on one trip is

E[successful deliveries out of 20 by one UUV] = 20ps pu pg.

Depending on the configuration of UUVs, some data collection nodes may be visited by more than one
UUV allowing for improved reliability through UUV redundancy. Suppose that k UUVs make independent
trips to visit a set of nodes. To simplify the analysis, we express the probability that a data packet from a
single data collection node is successfully delivered to the depot by at least one of the k UUVs, as

pk-shared
d = 1− (1− ps pu pg)

k.

Using a binomial distribution, it follows that the expected number of successful deliveries out of 20
nodes by at least one of k UUVs can be written as

E[successful deliveries out of 20 nodes by k UUVs] = 20pk-shared
d = 20(1− (1− ps pu pg)

k).

The expected number of unsuccessful deliveries out of 20 nodes, or in other words, the expected number
of data collection nodes that fail to have their data successfully transmitted to the depot, can be written as

E[failed deliveries out of 20 nodes by k UUVs] = 20−20(1− (1− ps pu pg)
k) = 20(1− ps pu pg)

k.

Considering the field of 100 data collection nodes and any configuration in Table 1, let rk be the number
of nodes serviced by k UUVs (where 0 ≤ rk ≤ 100 and ∑

5
k=1 rk = 100), and n be the number of nodes

serviced by each UUV (where 0 ≤ n ≤ 100). For each configuration, the values rk for k = 1, . . . ,5 are in
columns 4-8 of Table 1, and n appears in column 9 of Table 1. The expected number of nodes that are not
delivered to the depot by any of the k UUVs can be written as

E[failed deliveries out of 100 nodes for a configuration] =
5

∑
k=1

rk(1− ps pu pg)
k. (1)

In the low-fidelity model results, we used parameter values of ps = 0.9, pu = 0.7, and pg = 0.9 based
on expert opinion. A sensitivity analysis was performed by varying values for ps, pu, and pg. The results
are discussed in the last paragraph of Section 3.3. It was observed that changing these values did not
impact the optimal configuration determined for each number of UUVs.
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3.2 Latency Model

For the environmental survey operation scenario considered in this paper, there are two main metrics to
consider when quantifying latency: data latency and revisit time. Data latency is the elapsed time between
when a data packet is collected at the data collection node and when it is delivered to the depot. For this
scenario (as described in Section 2), the data is collected when a UUV visits the data collection location
and is then delivered to the depot at the completion of one trip. This means that the data latency is directly
related to the trip time. Since path planning is ignored in the low-fidelity model, this metric does not
distinguish configurations. As such, the low-fidelity model focuses on revisit time. Revisit time at a data
collection node is defined as the time between consecutive visits from UUVs at that node. In the case that
a node is visited by multiple UUVs, it is assumed that the time between UUV visits are evenly spaced. It
is also assumed that each UUV visits the same number of data collection nodes. Therefore the revisit time
at a data collection node is simply the total time (travel plus recharge time) each UUV spends visiting its
set of data collection nodes divided by the number of UUVs that visit that data collection node.

For a configuration with k UUVs, n nodes serviced by each UUV, and rk nodes serviced by k UUVs,
for k = 1, . . . ,5 (as in Table 1), we calculate the weighted average revisit time, denoted T , as the sum of
the revisit time for each number of UUVs visiting a single data collection node, denoted Tk, multiplied by
the proportion of data collection nodes in the configuration with that number of UUVs, i.e.,

T =
5

∑
k=1

( rk

100
Tk

)
, where Tk =

(
7.64

n
20

)
/k. (2)

Note that the number of trips each UUV takes is the number of data collection nodes serviced by that UUV
divided by 20, and the time for each trip is 7.64 hours.

3.3 Low-Fidelity Model Results and Findings

The expected number of failed completions (as defined in (1) in Section 3.1), and the weighted average
revisit time (as defined in (2) in Section 3.2), are calculated for each of the 33 configurations. These
calculations were performed in a Microsoft Excel spreadsheet and the computational time was nearly
instantaneous. These two metrics appear in columns 11 and 12 of Table 1, and are plotted in Figure 3.

An optimal configuration minimizes both the weighted average revisit time and the expected number
of failed completions. Notice that the two metrics are not in conflict. More specifically, configurations
with the same number of UUVs have similar revisit times while increased coverage significantly reduces
the expected number of unsuccessful completions.

As can be seen in Figure 3, there is a clear efficient frontier of optimal configurations. When only one
UUV is available, there is only one possible configuration, namely configuration number 1 (see Table 1),
and this point is dominated by all other points. When the number of UUVs ranges from 2 to 5, there is a
single configuration that dominates the others with the same number of UUVs. Specifically, configurations
7, 15, 24, and 33, for 2, 3, 4, and 5 UUVs, respectively, are optimal. It can be noted that the case with 100%
coverage and the case with maximum redundancy for each number of UUVs have the same revisit time,
which is an intuitive result. The low-fidelity model also supports the intuition that maximizing redundancy
increases reliability without sacrificing revisit time.

A larger number of UUVs allows for lower revisit times and lower number of unsuccessful deliveries.
The improvement in revisit time and reliability is detailed in Table 3. The marginal improvement of each
additional UUV decreases with each additional UUV. The number of UUVs can be considered as a measure
of cost, demonstrating a clear trade-off between the number of UUVs used in the configuration and the
resulting revisit time and reliability.

Given a fixed number of UUVs, it should be noted that the decrease in reliability with less coverage (90
nodes versus 100 nodes per UUV) is small. This means that if it is extremely difficult to ensure maximum
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Figure 3: Plot of reliability and latency metrics for different numbers of UUVs. The data labels (positioned
near each point) correspond to configuration numbers in Table 1.

redundancy, due to situational constraints outside of the scope of these models such as strong currents or
physical obstacles, then a near-optimal configuration can still be achieved.

Sensitivity Analysis: A sensitivity analysis was performed by adjusting the trip time from within the range
of 1 to 20 hours (baseline of 5 hours) and charge time within the range of 0.5 to 10 hours (baseline of 2.64
hours). The probability of successful data collection (ps), trip completion (pu), and packet transmission (pg)
were adjusted as well within the range of 0.25 to 0.95 (baseline of 0.9, 0.7, and 0.9, respectively). Changing
these five parameters impacted the metrics proportionally for all configurations. Under all combinations
tested, the optimal configurations were consistent. This sensitivity analysis revealed that the results identified
above are robust.

4 HIGH-FIDELITY SIMULATION DEVELOPMENT

The high-fidelity simulation was developed in the Network Simulator NS-3 (NS-3 Consortium 2021) using
the Underwater Acoustic Network (UAN) module. The data collection nodes are laid out in the same
10-by-10 grid pattern described in Section 2. The UUVs move according to a waypoint mobility model,
with a waypoint specified each time they change direction. The waypoints are selected such that the UUVs
traverse directly over top of the data collection nodes in straight line paths. An “arrival” radius of 25 m is
defined for each node such that once a UUV is within this radius it generates a data packet to represent
the sonar image at that location. These packets are stored on the UUV in a queue until the UUV returns
to the depot, at which point they are successively transmitted to the depot using a simulated data link.
The UUVs are each staggered by two minutes at the start of the simulation such that even if they traverse
identical length paths they do not arrive at the depot at the same time and thus packet collisions are avoided.
After each trip, the UUV returns to the depot to deliver the collected packets and recharge its battery. A
battery model is leveraged to track the energy remaining in the UUV as it travels. Energy is used for
propulsion according to the rate specified in Table 2 as well as for the data communications according to
a modem energy model for transmit, receive, and idle time. The recharge time required at the depot is
computed based on the energy level remaining upon returning and the recharge rate specified in Table 2.
After recharging is completed, the UUV is assigned a new path and it once again traverses the assigned
nodes in the field.
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Table 3: Marginal improvement metrics of lowest revisit time and lowest unsuccessful deliveries.

# Lowest # Improvement % Improvement # Improvement % Improvement
UUVs Revisit Time vs. 1 UUV vs. 1 UUV vs. Previous vs. Previous

1 38.19 N/A N/A N/A N/A
2 19.10 19 49.99% 19 49.99%
3 12.73 25 66.67% 6 33.35%
4 9.55 29 74.99% 3 24.98%
5 7.64 31 79.99% 2 20.00%

Lowest
# Unsuccessful # Improvement % Improvement # Improvement % Improvement

UUVs Deliveries vs. 1 UUV vs. 1 UUV vs. Previous vs. Previous
1 43.30 N/A N/A N/A N/A
2 18.75 25 56.70% 25 56.70%
3 8.12 35 81.25% 11 56.69%
4 3.52 40 91.87% 5 56.65%
5 1.52 42 96.49% 2 56.82%

Unlike the low-fidelity model, specific paths for the UUVs for each configuration are created in the
simulation. Seven configurations corresponding to one, two, and five UUVs were simulated, as shown in
Table 4. The one- and five-UUV cases used the same assumption as the low-fidelity model, where the
UUV was assigned to traverse two adjacent rows at a time and then return to the depot, followed by another
set of two rows, etc. For the two-UUV cases, the field was divided approximately in quarters as shown
in Figure 4 in order to avoid partial paths where a UUV would traverse an area without collecting any
data; two of the paths contain 24 nodes and the other two contain 26. All UUV paths in the high-fidelity
simulation also differ from that of the low-fidelity in terms of including shortest length (diagonal) legs to
get between the depot and the sensor field as opposed to the city block assumption since this would be a
more realistic pattern for UUVs to traverse in order to minimize time and energy usage.

Figure 4: Plots of the UUV paths in the high-fidelity simulation for the cases where a single UUV covers
100 nodes with 20 nodes per path (left), and the case where two UUVs split the nodes (right) and the field
is divided in quarters (Q1 - Q4).
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Table 4: High-fidelity simulation results.

# of Config. # of Nodes Covered by # Nodes Avg Pkt Revisit Time (hr) Exec
# UUVs Coverage Different # of UUVs Serviced Latency Time

1 2 3 5 per UUV (hr) Avg. Min Max (sec)
1 1 100% 100 0 0 0 100 1.90 28.28 28.21 28.36 9
2 2 100% 100 0 0 0 50 2.23 13.60 13.59 13.63 13

4.5 2 150% 50 50 0 0 75 2.23 13.36 6.66 20.35 14
7 2 200% 0 100 0 0 100 2.23 13.56 6.66 20.53 13
25 5 100% 100 0 0 0 20 1.89 5.63 5.22 6.11 44
29 5 300% 0 0 100 0 60 1.89 5.62 0.21 10.64 45
33 5 500% 0 0 0 100 100 1.89 5.65 5.27 6.10 45

4.1 High Fidelity Simulation Results and Findings

A summary of the revisit time and packet latency metrics for the high-fidelity simulation are shown in
Table 4. Note that the second two-UUV case does not exactly map to a configuration number of the
low-fidelity model, due to the fact that the field was split into quarters instead of 20-node sections in order
to make the UUV routing more efficient, and thus falls half-way between configurations 4 and 5 in terms
of allocations of nodes serviced.

It is observed that the average node revisit time is nearly identical for each set of cases for the same
number of UUVs, but intuitively, decreases with more UUVs that service the field since more trips are then
concurrently executed. This is consistent with the low fidelity results, although the exact numbers vary due
to the detailed modeling of UUV path length and recharge time in the high fidelity simulation. In addition
to the average revisit time, the minimum and maximum revisit times for each node are captured. These are
additional factors from the high-fidelity simulation that may be considered when choosing a configuration
not defined in the low-fidelity model. For example, from the low-fidelity model it was concluded that
the maximum redundancy configuration was optimal to minimize revisit time and expected number of
unsuccessful deliveries. The high-fidelity simulation with specific path planning for routing of UUVs
demonstrates a larger revisit variance. As discussed in more detail later, revisit time is most uniform for
the case of no redundancy and potentially increases in variance with more complex allocations of nodes
to UUVs, depending on how routes are chosen.

An additional metric, that of packet latency from generation time until the time it is delivered to the
depot, is available from the high-fidelity simulation. This is observed to be entirely dictated by the path of
UUVs employed; the 1-UUV and 5-UUV cases each have 20 nodes per trip, while the 2-UUV cases have
(on average) 25 nodes per trip and exhibit a larger latency.

While the average interval between node visits for the three 2-UUV and the three 5-UUV cases are
nearly identical, the variance of revisit times, as seen by the minimum and maximum revisit times, is
impacted by the UUV routing plan. Example histograms for revisit time per node in the 5-UUV cases
are shown in Figure 5. In the 100% coverage case, three different revisit times are observed due to the
differing distances from the depot to the nodes in rows being serviced, with nodes in rows 1-2 and 9-10
experiencing the longest revisit times, while rows 3-4 and 7-8 experiencing moderate revisit times, and
rows 5-6 experiencing the shortest revisit times. A similar phenomenon is observed for the 500% coverage
case, except that a cyclic pattern is experienced as the UUVs rotate through different trip lengths over
the set of 5 path pairs visited, which results in four dominant revisit times. For the middle case of 300%
coverage (configuration 29), the cumulative trip and recharge times result in a large variance of node revisit
times. In this situation, sometimes all of the UUVs are visiting independent rows while sometimes they
end up visiting the same two rows in close succession while others are not serviced.

Though the histograms for the 2-UUV cases are not shown due to space limitations, variations are
observed due to the order in which quarters of the field are visited. For the 150% coverage configuration
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Figure 5: Histograms of the revisit times for each node for each UUV trip for the three different 5-UUV
configurations: 100% coverage (left), 300% coverage (center), and 500% coverage (right).

4.5, one UUV visits Q1, Q2, Q3 and repeats, while the other visits Q4, Q3, Q2 and repeats. Due to this
specific path planning, the nodes in Q1 and Q4 have a gap of 2 trips between visits, while nodes in Q2 and
Q3 are visited sequentially and then have a gap of only 1 trip. For the 200% coverage configuration 7, one
UUV visits the quarters from top to bottom (Q1, Q2, Q3, Q4, repeat) while the other visits from bottom to
top. This results in different revisit times per node. This further demonstrates that path planning impacts
revisit time variances. The variance in revisit times may influence the decision of optimal configuration.

The computation time of each simulation run is listed in the final column of Table 4. It should be noted
that this is just one implementation of a “high fidelity” simulation, and the execution time can be greatly
affected by how the modeling is chosen to be done. For example, the UUV mobility model is simplistic
and does not account for deviations due to ocean currents or other disturbances. The time horizon for the
simulation runs was 136 hours. This was chosen to allow approximately 24 round trips of the UUVs. The
length of the time horizon impacts computation time. For comparison, one high-fidelity simulation run
ranged from 9 to 45 seconds while the low-fidelity model computation time is essentially instantaneous
for all 33 configurations.

5 CONCLUSION AND FUTURE WORK

This paper focuses on the development of a multi-fidelity approach to handle a multi-objective optimization
problem. The approach was implemented around a maritime environmental survey operation scenario using
multiple UUVs, as defined in Section 2, where data packets are collected upon arrival of the UUV to a
data collection location. This scenario has allowed for the demonstration of the optimization approach,
where the low-fidelity models is used to identify potential optimal configurations for a given number of
UUVs that can then be evaluated by the high-fidelity simulation.

The low-fidelity model in Section 3 provides a measure of reliability and shows that redundancy greatly
reduces the expected number of nodes with unsuccessful deliveries. The expected revisit times calculated
with the low-fidelity model do not show much difference for configurations, but is consistent with the
finding that configurations with maximum redundancy are optimal.

The high-fidelity simulation in Section 4 validates the conclusion that configurations with maximum
redundancy are optimal, however, the simulation provides insight into the impact of path planning on
performance. Additional measures not calculated in the low-fidelity model, such as packet latency and the
minimum and maximum revisit times, can also be gathered by the simulation. In this way, the low-fidelity
models can evaluate many different configurations and identify the most promising, and then the high-fidelity
simulation can provide additional data on those configurations to assist in more informed decision making.

Future work will include a method of incorporating packet generation failures and UUV failures into
the high-fidelity simulation, to account for reliability of a given configuration. In addition, we will consider
fixed sensors at data collection nodes that accumulate data packets continuously. The number of data packets
collected by a UUV will depend on the time of the last collection. Future work will also consider different
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modes of communications, such as optical and acoustic communication, with different ranges, reliability,
and data rates. The existence of cross-links between sensor nodes will be considered allowing for data
to be accumulated at certain nodes. The methods introduced in this paper may be expanded to additional
metrics of the topology optimization problem, such as network connectivity and lifetime, prioritization,
and energy consumption. The methods introduced in this paper may be expanded to include air, land, and
space communications.
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