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ABSTRACT

The modeling of violence, including terrorist activity, over space and time is often done using one of two
broad classes of statistical models. Typically, the location of an event is modeled as a spatio-temporal
point process and the latent structure is either modeled through a latent Gaussian process motivated by
a log-Gaussian Cox process or through data dependency similar to a Hawkes process. The former is
characterized through dependence in an unobserved latent Gaussian process, while the later assumes a
data driven dependence in the data. While both techniques have been used successfully it remains unclear
whether the processes are practically different from one another. In this manuscript, we demonstrate that
in many situations, the most common statistic to characterize clustering in a process, Ripley’s K function,
cannot differentiate between the two processes and should not be used.

1 INTRODUCTION

The statistical modeling of crime, or violence, serves to both predict where a violent event will occur as
well as explain what factors contribute to an area having a high propensity towards violence. The best
practices for creating a statistical model, however, are not entirely straightforward. For example, in 2017,
the National Institute of Justice offered a competition to predict where crimes would take place (Hunt
2019). This competition was won by two teams who took, on the surface, very different approaches.
In Mohler and Porter 2018, the authors used a marked Hawekes process to generate a predictive model
whereas in Flaxman, Chirico, Pereira, Loeffler, et al. 2019, the team employed a latent Gaussian process
with a spatially structured covariance. However, both teams were very successful in their predictions.

In the military this problem occurs as well. For example, in modeling the spread of terrorism, Clark and
Dixon 2018 demonstrated that temporal Hawkes processes could be combined with spatial latent Gaussian
structures and that the choice of the latent yielded significantly different results when analyzing Iraq data.
Whereas in Python, Illian, Jones-Todd, and Blangiardo 2019 the authors placed all spatio-temporal structure
in a latent Gaussian process when analyzing terrorism on across the globe.

While these different models have been used in both fields, it remains unclear if the data patterns
generated from the two approaches are practically different from each other. While Mohler et al. 2013
demonstrated that a temporal log Gaussian Cox process could be decoupled from a temporal Hawkes
process, it remains unclear whether the same principles apply to spatio-temporal models. Further, while the
data may be uncoupled, it remains unclear whether the patterns that result from the different data generating
processes are practically different from one another. Though the above discussion appears academic on the
surface, it has practical implications for military intelligence and police analysts. There are assumptions
about the data-generating mechanism inherent in the choice of the model. When justifying a Hawkes
process through a first principle approach as in Short, D’orsogna, Pasour, Tita, Brantingham, Bertozzi, and
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Chayes 2008 for crime or Clark and Dixon 2018 for terrorism, the results may drive practitioners to make
policy decisions based on conclusions that are only valid if the actual mechanism is reasonably modeled
in the first place. Therefore, fitting of these models to data may drive practitioners to make conclusions
on repeat-victimization that lead to policy decisions (Farrell 1995). Repeat-victimization is the theory that
there are geographical locations or individuals that get repeatedly victimized more often than would be
expected (Farrell 1995). Repeat-victimization is often modeled through the use of a self-exciting statistical
model, or a statistical model where the expected number of events is a function of the previous number
of events (Mohler, Short, Brantingham, Schoenberg, and Tita 2011). As demonstrated in Clark and Dixon
2018, the choice of different latent Gaussian structure may impact the parameter that models self-excitation,
so rather than repeat-victimization, the model may, in fact, be misspecified leading to incorrect conclusions
about repeat victimization. This is further demonstrated in Reinhart and Greenhouse 2018 where it was
shown that omitting covariates from the background rate also biased the self-excitation parameters.

In this manuscript, we give examples of both self-exciting processes and latent Gaussian driven processes
that could be used to model the spatio-temporal spread of violence. We further simulate data over a range
of parameters for both models and demonstrate that the most common spatial clustering statistic, Ripley’s
K function, should not be used to differentiate the two processes. While it remains an open question how
to do so, our current recommendation is to not use data patterns to select the modeling approach but rather
rely on first principles from fields such as criminology or military intelligence .

2 Background

Throughout this manuscript, formally we assume that Y is a Poisson process defined on a space-time set
si× t with an intensity function for all bounded B ∈ S given by λ (si, t) =

∫
si×t ρ(ζ )dζ . Informally, we can

think about terrorism or criminal events arising at higher rates in regions of high intensity and lower rates
in regions of lower intensity. The primary challenge is how to structure the intensity field.

In Short, D’orsogna, Pasour, Tita, Brantingham, Bertozzi, and Chayes 2008, a collection of crimi-
nologists, mathematicians, and statisticians formulated a statistical model for crime that matched current
crimonological beliefs on how crime moves in space and time. In their formulation, the number of burglaries
observed at a given spatio-temporal location was a function of both near-repeat victimization as well as
broken windows effect. This was achieved through allowing the expected number of events to be a function
of the expected events at neighboring locations as well as self-excitation, or a data driven process. In
Mohler, Short, Brantingham, Schoenberg, and Tita 2011 the authors demonstrated how the formulation
used in Short, D’orsogna, Pasour, Tita, Brantingham, Bertozzi, and Chayes 2008 leads to a Hawkes point
process model. The subsequent manuscript has been cited over 700 times as of April 2021 and has been
used in many applications.

2.1 Hawkes Point Process

An approach to modeling λ (si, t) that is directly motivated from ideas of self-excitation and spatial spread is
to use a self-exciting process similar to a Hawkes Process. As in Mohler, Short, Brantingham, Schoenberg,
and Tita 2011 the intensity field could be modeled as

λ (si, t) = µ(si, t)+ ∑
k:tk<t

g(t− tk, |si− sk|). (1)

Here, the intensity is a function of two components, a background process, µ(si, t) that describes the
background intensity and g(.), the triggering function, which describes how much an observed event at
location (tk,sk) increases the intensity at (si, t). While the seismology literature has proposed a plethora
of choices for g(.) (Ogata 1998), the criminology and terrorism literature has mostly used the exponential
kernel in time and the Gaussian kernel in space(Mohler et al. 2013), (Clark and Dixon 2018), (Mohler
2014),(Reinhart and Greenhouse 2018), which is written as
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g(t− tk, |si− sk|) = λ exp(−λ (t− tk))
1

2σ2 exp(−||si− s j||
1

2σ2 ). (2)

Reinhart and Greenhouse 2018 demonstrated that proper parameterization of the background rate is
essential to inference and should be structured as µ = exp(XT β ).

The significance of the modeling choice is that the parameters within the Hawkes process are often
given real-world meaning. For instance, in Short, D’orsogna, Pasour, Tita, Brantingham, Bertozzi, and
Chayes 2008, the amount of temporal self-excitement is referred to as repeat victimization, and the amount
of spatial self-excitement is referred to as near-repeat victimization and the broken windows effect.

Practically, this has policy implications as the broken windows effect has led to changes in policing
in many major cities (Harcourt and Ludwig 2006). While policies based on the broken windows theory
of deterrence have been criticized (Harcourt 1998), the concepts underlying this phenomenon remain a
subject of research in not only criminology and the study of terrorism, but also tourism, (Liu, Wu, and
Che 2019) epidemiology (O’Brien, Farrell, and Welsh 2019) and international corruption (Alford 2012).

2.2 Log-Gaussian Cox Process

An alternate modeling technique that is proposed in Cressie and Wikle 2015 is to place spatio-temporal
structure in an unobserved latent Gaussian process. The analogue to this in continuous space and time is
a log-Gaussian Cox Process (LGCP). An LGCP is often refered to as a double stochastic process (Moller
and Waagepetersen 2003) and is structured through assuming in a given space time region, A, the number
of observed events follows

Z(A)∼ Po
(∫

A
λ (si, t)d(si)dt

)
. (3)

Further structure is then placed on the log of the intensity field

log(λ )∼MV N(µ,Σ(θ)). (4)

Spatio-temporal structure, then, can either come from structure placed on µ or through specifying a
covariance (or precision) matrix that captures the relationship between spatio-temporal locations.

For a spatial only model (no temporal aspect), log-Gaussian Cox processes aggregated over spatial
regions can be well approximated by the geostatistical model

Z(si)∼ Po(λ (si)) (5)

and Σ(θ) has a Matern class covariance function (Cressie and Wikle 2015). The Matern class covariance
function assumes that the covariance between locations si and s j is

c(si,s j) =
σ2

Γ(ν)2ν−1 (κ|si− s j|)νKν(κ|si− s j|), (6)

where Kν is the modified Bessel function of the second kind, κ is a scaling parameter, σ2 is the marginal
variance and ν is typically fixed due to poor identifiability (Guttorp and Gneiting 2006). For simplicity
we assume ν = 1 throughout this manuscript.

While the Matern covariance function is extremely flexible and relates to the log-Gaussian Cox process,
in practice (6) is a bit unwieldy and is computationally difficult to fit. Therefore, we can use the result of
Lindgren, Rue, and Lindström 2011 which states that a Gaussian field with a Matern covariance matrix
can be well approximated by a Gaussian Markov random field.

In order to extend this to a spatio-temporal model, we can form a covariance matrix through the
kronecker product of the spatio covariance matrix with an auto-regressive (1) or AR(1) covariance matrix,
which has the form
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Σ
−1
s,t = Σt(θ)

−1⊗Σs(θ)
−1. (7)

As both Σ
−1
t and Σ−1

s are sparse, so is Σ
−1
s,t allowing computationally inexpensive inference.

While the latent Gaussian process is less easily described than (1), it is immensely flexible and has
also successfully been used to model the spatio-temporal spread of violence (Shirota and Gelfand 2017;
Rodrigues and Diggle 2012; Python, Illian, Jones-Todd, and Blangiardo 2019). In order to mimic the
spread assumed in (2), we can assume that Σt(θ)

−1 captures a Random Walk structure and Σs(θ)
−1 is the

precision matrix for a Matern covariance matrix.

2.3 Posterior Predictive Checks

If we are given a set of data, y, and we fit it to a model f (y|θ), one natural question to ask is, is the model
appropriate for our data. One typical way to answer this question is with a χ2 goodness of fit test. However,
for complex models, such as models outside the generalized linear model family, it’s nearly impossible
to figure out the asymptotic distribution of this test statistic (Berkhof, Van Mechelen, and Hoijtink 2000).
Furthermore, in the analysis of spatial data or spatio-temporal data, our question of interest usually is not
whether the model is appropriate, but rather are our spatial points uniformly distributed over space/time,
and if not, can we quantify how the clusters are formed.

One way to figure out whether our statistical model is appropriate is to compute a posterior predictive
check (Gelman, Meng, and Stern 1996). A posterior predictive check is done through comparing the
distribution of a given statistic of our data, T (y) with the same statistic calculated from the posterior
distribution of data simulated from our fitted model, T (yrep|y), where yrep is simulated via

p(yrep|y) =
∫

f (yrep|θ)p(θ |y)dθ (8)

A natural choice of T (.) is Ripley’s K function (Dixon 2014) which quantifies the expected number of
additional points within a set distance from another point over what is expected. Here we explore Ripley’s
K function calculated using a border correction as implemented via the spatstat library in R (Baddeley and
Turner 2005). In broad terms, Ripley’s K captures the amount of extra events within a given distance of
a chosen event. High values of Ripley’s K mean there is substantial clustering in the data, whereas low
values means the data are more dispersed than what would be expected. However, Ripley’s K does not
always uniquely define point processes and two processes that have different generating distributions may,
in fact, have similar Ripley’s K values (Baddeley and Silverman 1984). While we will not rigorously prove
this is the case between Hawkes and LGCPs processes, and there may in fact be some differences, we will
demonstrate below that over a wide range of σ values, a LGCP is able to replicate the Ripley’s K value
of the Hawkes process.

3 Simulation

In this simulation we assume that the underlying generative process is actually a Hawkes process. That is,
we assume that the broken windows phenomena holds and that the intensity of newly observed events are
directly caused by events in close spatial or temporal proximity. We assume that the background intensity,
µ(si, t) is constant and the spatio-temporal excitation can be broken into two distinguishable components
as in (2). We allow λ = 1 and range σ ∈ {0.3,0.7,1.5,1.9,2.3}. These values of σ were chosen to reflect
what we felt were realistic dispersion on the 10× 10 field. For each value of sigma, we generated 100
separate realizations of the Hawkes process.

For each selection of σ we simulate from a Hawkes process using the methodology discussed below,
and then fit it to a Log-Gaussian Cox-Process as in Section 3.2. We then calculate the Ripley’s K statistic
using the original data, as well as Ripley’s K using data simulated from the fitted LGCP model. For each
σ value we then compute the posterior-predictive check. If the models are able to simulate data with the
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same spatio-temporal characteristics we would expect about half the time the Ripley’s K statistic from the
Hawkes process would be larger than the Ripley’s K statistic from the LGCP. If the posterior-predictive
check yields values close to zero or close to 1, then one of the models allows for more clustering than
the other, which suggests that Ripley’s K could be used to determine if the generative process was indeed
driven by a Hawkes process or not.

This entire process is computationally expensive and was done on a 24-core (48 thread) AMD Epyc
7401P processor operating at 2.0 GHz (3.0 GHz boost) paired with 256 GB of ECC DDR4 memory and
two Nvidia Titan RTX GPUs each with 24 GB of DDR4 memory. The simulations were done in parallel
using the R software and functions from the doParallel library (Corporation and Weston 2019).

3.1 Simulating from Hawkes Process

We define the intensity field given in (1) with the background process, µ(si, t), constant and the triggering
function, g(t− tk, |si− sk|), the product of an exponential kernel in time and a Gaussian kernel in space as
given in (2).

We simulate data from a self-exciting background process using the method described in (Reinhart
2018). First we generate events from the background process over a 10x10 field of arbitrary units and 15
time periods by simulating from a Poisson process with mean m ·A ·T , where m is given in (Reinhart 2018),
A is the total area, 100, and T is the total time, 15. We normalized our triggering function so that m = 1.

For each parent event, i, in our background process, we generate N(i) offspring events, where N(i) ∼
Po(m), with time and location generated from our triggering function and events truncated at our spatio-
temporal boundaries. We continue this for 15 generations of offspring.

3.2 Inference from Log-Gaussian Cox Process

As mentioned above, a challenge with the LGCP is how to structure the spatio-temporal dependence in an
efficient manner while retaining flexibility in the process to capture a wide range of spatial and temporal
dependencies. By far the most flexible spatial structure that can be used is assuming the spatial data arise
from a Matern covariance matrix, which has been shown to be robust to misspecification (Stein 1988).

To allow for this, we use the stochastic partial differential equation (SPDE) inferential methodology
introduced in (Lindgren, Rue, and Lindström 2011). Here, the authors demonstrate that the Matern class
covariance function is a solution to a specific SPDE which, in turn, can be approximated using a sparse
Gaussian Markov Random Field. This is implemented using the Integrated Nested Laplace Approximation
(INLA) package in R (Lindgren and Rue 2015).

INLA performs approximate Bayesian inference for Latent Gaussian Models. The critical assumption
is that the observations are linked to Gaussian (latent) linear predictors through a known link function
similar to a generalized linear model. Here we denote η(si, t) as the linear predictor η(si, t) = µ(si, t)+
f (si)+g(t)+ε(si, t). Where f (si) and g(t) denote the spatial and temporal random effects respectively. As
in Martino and Riebler 2014, we let x = (ηsi, t,µ(si, t), f (si),g(t),ε(si, t) denote the full latent Gaussian
field. The complete assumed model is given by

Y |x,θ ∼Π f (zi|ηi,θ) (9)

x|θ ∼ N(0,Σ−1
s,t (θ)) (10)

θ ∼ π(θ) (11)

INLA, as opposed to MCMC style Bayesian inference, directly approximates the posterior through
exploiting the relationship
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π(θ |Y ) ∝
π(y|x,θ)π(y|θ)π(θ)

π(x|θ ,y)
(12)

To calculate this, INLA computes a Gaussian approximation for the posterior of the latent Gaussian
state, π(x|θ ,y), by matching the model and curvature at the mode.

In order to fit a LGCP using INLA it is necessary to determine how to structure f (si) in this framework.
To do this, we first project all simulated points from the Hawkes process and project them onto the plane in
R2. We then use the inla.mesh.2d function from the r-INLA package to create a triangular mesh where each
point sits on a vertex. Then, the SPDE that gives rise to the Matern covariance function is approximately
solved by using the finite element method through the basis function representation on the mesh. The
resulting approximation has a sparse precision matrix. We assume that the temporal structure of the LGCP
arises from a Random Walk (1) model which also has a sparse precision matrix, therefore allowing the
entire latent structure to be efficiently computed.

4 Results

In general, we found that as σ increased, the amount of clustering at a distance of 1 unit decreases, which
is to be expected. When σ = 0.9, the Hawkes process yielded a Ripley’s K value of approximately 3.8 on
average, decreasing steadily as shown in Table 1. Here we give the mean Ripley’s K value across the 100
simulations for several of the σ values that we considered.

Table 1: Here we give the mean Ripley’s K value, calculated directly from 100 simulated data sets for
several σ values at a distance of 1 unit.

σ = 0.3 σ = 0.7 σ = 1.5 σ = 1.9 σ = 2.3

3.75 3.74 3.72 3.69 3.64

As we estimated parameters from the LGCP using the data generated from the Hawkes process and
then simulated data from the fit model, we saw that the LGCP process was, for the most part, able to
replicate the Ripley’s K statistics from the original data. As seen in Table 2, the posterior predictive checks
yielded values that were not extreme.

Table 2: Posterior Predictive Check for Select σ values

σ = 0.3 σ = 0.7 σ = 1.5 σ = 1.9 σ = 2.3

0.63 0.61 0.67 0.72 0.57

As the posterior predictive checks yielded values that were larger than 0.50 we can conclude the LGCP
produced values that were, on average, slightly higher than the Ripley’s K value found from the Hawkes
process. However, as this value is not near 1, and for the most part is not larger than 0.70, we can conclude
that this is very slight and likely to not be detectable by users. Overall, throughout the range of σ values
we struggled to notice any discernable differences in the two cluster processes.

5 Conclusions

Selecting an appropriate statistical model is often the first task a statistician or data scientist must perform in
order to conduct inference or make predictions. Often it is tempting to rely on characteristics of the data in
order to determine the functional form of the model. For instance, continuous data often leads practitioners
to start with a linear regression model unless there is observed curvature in the data or truncation that is
present. Unfortunately, though, in the modeling of spatio-temporal data there does not appear to be a nice
clear rule or statistic to differentiate two common methodologies from one another. While second order
statistics are often used in spatio or spatio-temporal models to characterize data, in this manuscript we
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demonstrate that they cannot be used to differentiate between Hawkes processes and log-Gaussian Cox
Processes.

While this may feel less than satisfying for practitioners seeking advice on structuring their statistical
model, we conclude that this is actually freeing for intelligence analysts or criminologists seeking to conduct
statistical analysis. Instead of allowing the data to drive the model, practitioners should be encouraged to
use first principles from their chosen discipline to create a model that is testable. For example, if, as in
(Tench, Fry, and Gill 2016), an intelligence analyst hypothesizes that the emplacement of IEDs is often
done in response to other violent attacks, it would make sense to use a self-exciting Hawkes process. To
test this, then, inference should be made on the triggering function, g(.), given in (1). However, caution
should be used when assigning meaning to or basing policies off of estimated parameters based on fit of the
model alone. As is true in causal inference, the assumptions necessary to infer a specific data-generating
mechanism are not readily verified in the data alone.

While we only looked at the spatial version of Ripley’s K, there has been some work done on spatio-
temporal Ripley’s K (Lynch and Moorcroft 2008) that may provide a method for differentiation, however
the implimentation of Ripley’s spatio-temporal K function remains a challenge (Wang, Gui, Wu, Peng,
Wu, and Cui 2020). Overall, we assess that attempting to find a statistic to differentiate the two processes
will remain fruitless.
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