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ABSTRACT

We introduce a computational behavioral model for non-player characters (NPCs) that endows them with
the ability to adapt to their experiences — including interactions with human trainees. Most existing NPC
behavioral models for military training simulations are either rule-based or reactive with minimal built-in
intelligence. Such models are unable to adapt to the characters’ experiences, be they with other NPCs, the
environment, or human trainees. Multi-agent Reinforcement Learning (MARL) presents opportunities to
train adaptive models for both friendly and opposing forces to improve the quality of NPCs. Still, military
environments present significant challenges since they can be stochastic, partially observable, and non-
stationary. We discuss our MARL framework to devise NPCs exhibiting dynamic, authentic behavior and
introduce a novel Graph Neural Network based behavior prediction model to strengthen their cooperation.
We demonstrate the efficacy of our behavior prediction model in a proof-of-concept multi-agent military
scenario.

1 INTRODUCTION

Adaptive and human-like synthetic characters are essential features of new-generation simulation-based
training environments. These characters fill roles traditionally performed by human participants, thus
allowing for on-demand and location-agnostic training. Like their human counterparts, synthetic characters
must be able to perform in a believable and authentic manner. If they cannot, the desired human-
agent collaborations (or competitions) will not be realized. The process of generating such characters is
complicated by the inherent complexity of the military training simulations that rely on stochastic and/or
partially observable events, rich interactions amongst multiple players, and other non-linear features. Such
environmental dynamics render rule-based control of synthetic characters virtually impossible. Building
on Shiva, a multi-agent reinforcement architecture (Ustun et al. 2020), we have devised a framework to
generate computational behavioral models which perform believable sequences of interactions with other
agents.

Multi-agent Reinforcement Learning (MARL) and Graph Neural Network (GNN) modeling paradigms
form our computational behavioral modeling framework’s backbone. MARL models consider multi-agent
systems characterized by a population of autonomous, interacting agents that share a common environment.
These agents are generally equipped with sensors to gather information from and actuators that allow them
to interact with the environment and other agents. It is common practice to embed state-of-the-art Artificial
Neural Networks in MARL algorithms to allow them to interpret and make use of the information they
encounter (Bugoniu et al. 2010). Shiva builds on the basic principles of MARL with the inclusion of an
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imitation learning module. Moreover, it is designed to support various Reinforcement Learning algorithms
and interface with diverse simulation environments. In prior work, Shiva interfaced with a Unity-based
simulation environment in which machine learning (ML) agents learned to defend in a proof-of-concept room
clearing scenario (Ustun et al. 2020). Here, Shiva interfaces with a OpenAl Gym simulation environment
that is a simplified abstraction of a Unity-based one. Pseudo-human trainee trajectories are simulated using
MARL via Shiva in the simplified environment for this proof-of-concept work. These trajectories are later
used to train NPCs to cooperate with their pseudo-human counterparts.

GNNs aggregate information from graph structures into simpler representations (Zhou et al. 2020).
What differentiates GNNs from their predecessors, convolutional and recurrent neural networks, is the
ability to operate on higher complexity data than what can be represented in regular Euclidean structures,
e.g., a picture (2D) or text (1D). GNNs accomplish this by being order-invariant — they propagate on each
node in the graph independently and ignore the input order — and by using the graph structure to guide
propagation. Standard neural networks simply treat the structural information (edges) as node features.
These innovations empower GNN models to “reason” about a graph, that is, draw general inferences, then
use those inferences to make predictions and classifications. GNNs’ convolutional and recurrent counterparts
simply learn the distribution of data and then use what was learned to recreate synthetic versions of what
they previously observed.

Military training simulations are challenging environments for MARL models because of the interaction
dynamics. There are ways, however, to ease the learning difficulty. First, providing predictive information
about the environment and other agents may help to accelerate and stabilize the learning process (Lee
et al. 2020). For example, (Racaniere et al. 2017) leveraged a recurrent neural network based imagination
mechanism to assist Reinforcement Learning. Second, predictive models may help facilitate cooperation
in multi-agent settings (Jiang et al. 2020). We propose using GNNs to learn and provide predictions about
other agents’ behaviors in military training simulations. These predictions support reinforcement learning,
specifically by improving the agents’ learned cooperation strategies.

We employ this framework to train and develop synthetic characters for roles in the Rapid Integration
& Development Environment (RIDE), a Unity-based military training simulation environment (Hartholt
et al. 2021). RIDE facilitates rapid development and prototyping of simulated environments in direct
service of Army and other Department of Defense simulation communities. A core ability of RIDE is
its drag-and-drop user interface that allows users to add elements from geo-specific terrain models, the
Army validated Physical Knowledge Acquisitions Documents, non-player characters (NPC) and vehicles,
and even Al behaviors without technical expertise. RIDE also supports Machine Learning experiments,
allowing to directly train NPCs within the high-fidelity military training simulation environment. In this
paper, to facilitate our training framework, we utilize a custom graph-based simulation environment that
abstracts the full-scale RIDE simulation environment (Figure 1). This graph-based representation of the
simulation environment is then leveraged in a later graph learning stage that exploits the reasoning ability
of GNNs to predict agent behaviors. Our synthetic characters are, in a sense, pre-trained for RIDE using
simplified graph representations and endowed with the ability to reason about the behaviors of other agents
in the environment.

We have devised a proof-of-concept application and pipeline to demonstrate the efficacy of our framework.
In this pipeline, we train a GNN model for behavior predictions utilizing observations comprised of
environment states and the actions of an agent following a behavior policy independently trained through
Reinforcement Learning. We then show that a successive agent introduced in the same environment learns
faster and more effective cooperation strategies when provided with the output of the predictive GNN
model.

2 BACKGROUND

Computer simulation plays a prominent role in modern military personnel training (Hill and Miller 2017).
Driven by the simultaneous need for dynamic, human-like NPCs in simulations (our focus) and the
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Figure 1: The left image shows a screenshot of a training instance in the RIDE platform. The image in
the middle is a real terrain map. In the right image, discretized waypoints are marked on the zoomed-in
view of the yellow box area in the map. These waypoints along with their connectivity to other waypoints
generate the graph-based simulation environment scenario used in the experiments.

anticipated presence of synthetic teammates in future military operations, integrating intelligent synthetic
agents is increasingly considered a necessary capability of the platforms used in military training (Bruzzone
and Massei 2017). Prior research has demonstrated the ability to generate NPCs capable of human-like
behaviors from a training framework similar to ours (Ustun et al. 2020). The framework employed in that
research, however, lacked the training benefits of GNNs and utilized a complete RIDE instance. Despite
the efficiency of RIDE, high fidelity simulations increase the turnaround times for the experiments, which
is crucial, especially in the hyper-parameter tuning stage. Therefore, we leverage a graph-based simulation
environment based on the RIDE model for our experiments.

To better understand the benefits of using a graph-based multi-agent scenario and GNN learning phase,
it is helpful to review MARL and its role in generating NPCs. Recall that MARL algorithms are tools for
modeling the sequential decision-making process of multiple agents in dynamic environments (Busoniu
et al. 2010). Moreover, the agents work to optimize their individual rewards by interacting with the
environment and other agents. Legions of algorithms have been proposed to this end, with recent notable
examples dominating games like Go (Silver et al. 2016; Silver et al. 2017), and advancing autonomous car
technology (Shalev-Shwartz et al. 2016). In the case of NPCs, MARL seeks to find competent behavioral
strategies for optimizing each character’s reward based on their given value function — which can take
multiple inputs, such as avoiding injury, finding food, and even socializing. MARL models cannot efficiently
perform this optimization online during a training session since the data acquisition is a highly demanding
process within the existing deep MARL frameworks. Instead, an effective offline model that is pre-trained
in a simulated scenario is much preferable in practice. However, the NPCs may continue to update their
behavior policies during training sessions to better adjust to human trainees’ needs.

Shiva supports myriad MARL algorithms, such as Deep Q-Network (DQN) (Mnih et al. 2015), Deep
Deterministic Policy Gradient (DDPG) (Lillicrap et al. 2016), Multi-agent DDPG (MADDPG) (Lowe
et al. 2017), etc., along with the capability to add new algorithms to Shiva. MADDPG is one of the most
commonly used algorithms in MARL experiments, and we also employ (MA)DDPG in the reinforcement
learning stages of our experiments. MADDPG extends actor-critic policy gradient methods for multi-agent
settings. It tries to address the challenges in MARL via a centralized training and decentralized execution
approach; after the training is complete, only the local information is used during execution. In this
approach, during training time, a central critic, which has access to observations of all the actors (agents)
and their rewards, is set up for each agent. In contrast, the actors only have access to local information,
depending on their central critic’s feedback to improve their behavior policies. Centralized critics, as a
result, can inform individual agent policies utilizing the information based on other agents’ actions and
received rewards, potentially yielding a learned consensus in cooperative tasks. However, computationally
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intensive hyper-parameter tuning and long training times are needed to learn effective cooperation strategies
in experiments run with the MADDPG algorithm.

As previously noted, Shiva is designed to interface with a diverse array of simulation environments.
Previous experiments (Ustun et al. 2020) validated its ability to train agents in Unity, MuJoCo, NeuralMMO
(Suarez et al. 2019), OpenAl Gym (Brockman et al. 2016), and the RoboCup Soccer 2D Simulation engines.
Different use cases — think of military training versus autonomous driving — motivate the selection of
different platforms. RIDE is a Unity-based simulation environment developed specifically to support Army
training simulations as well as the broader Department of Defense community and an obvious environment
for developing NPCs. Although RIDE is continually being developed to serve as a sandbox for prototyping
simulated training environment components, deep MARL experiments are very computationally expensive,
particularly at the hyper-parameter tuning stage. Training behavioral agents strictly in RIDE, therefore, is
often computationally prohibitive. This bottleneck motivated developing a graph-based environment that
implements the OpenAl Gym interface from which good candidate hyper-parameters or candidate behavior
policies can be derived. These candidates can later be used to seed the main RIDE simulation or further
train in the graph-based environment.

We use a Graph Attention Network (GAT) architecture (Velickovi¢ et al. 2018) in the graph learning
phase of training. Recall that graphs are data structures in which nodes (vertices) are connected via edges.
Nodes represent sub-units of data in the larger structure. Edges indicate a relation between two nodes in
the structure and can be directed or not. Graph learning aims to extract information from the structure that
is useful in making predictions about future states of the graph or its component parts. GATs use a spatial-
based approach in which graph convolutions aggregate information from neighbors. This means that rather
than considering the graph structure as a whole, data is gathered from small, overlapping neighborhoods
of the graph for feature extraction. The GAT architecture is differentiated from similar networks by the
attention mechanism. This mechanism allows the model to learn which features of a node are important to
its neighbor. Other architectures assume that contributions to a central node from its neighbors are identical
(Hamilton et al. 2017) or that they are predetermined (Kipf and Welling 2017). However, a learnable
attention mechanism performed better in several problems where the GAT architecture out-performed other
architectures (Velickovi¢ et al. 2018).

Learning on the graph representation afforded by the OpenAl gym scenario is possible in a variety of
ways, from simple to complex. Like many computational tasks, each modeling paradigm presents unique
opportunities and trade-offs. Simple models are easy to deploy (i.e., computationally efficient and relatively
straightforward to program) and can facilitate learning from limited data. This all, of course, comes at
the expense of learning important behavioral nuances. More complex models, on the other hand, can
potentially capture more nuance but require richer data and more resources to run. The GAT architecture,
for example, can be enriched with edge features. Adding edge types extends the model that GAT's are based
on to allow graphs to have multiple, independent relationships between nodes (Schlichtkrull et al. 2018).
Allowing for different node and edge types yields a heterogeneous graph (Wang et al. 2019). In this type
of architecture, the different node types have unique feature sets but can still aggregate information about
neighbors of a different type. Edge features can also be added to the network resulting in a rich network
capable of capturing subtle nuances about a graph structure. Since our motivation is demonstrating the
viability of this training framework and keeping the computational costs low, we decide to use the basic
GAT.

3 APPROACH

We apply our framework in a proof-of-concept experiment on training Non-Player Characters for roles in
simulations with human trainees. A military skirmish scenario serves as the vehicle to demonstrate the
viability and effectiveness of our NPC training framework. Our ultimate goal is to endow the NPCs with
the ability to perform human-like strategic behaviors in skirmishes with human trainees. This work, in
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which computational agents learn, compete against other agents, and collaborate with agents that replicates
human behavior, is a first step towards that goal.
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Figure 2: The graph representation of the environment. (a) demonstrates the graph connectivity. The
highlighted red nodes depict the potential spawn positions for Red agents. The blue arrows construct the
patrol route of the Blue agent. (b) is the visibility graph used for field of view calculations. (c) is an
example of the node feature initialization in graph learning phase. The colored nodes represent the agents’
current and future positions. The corner mark denotes how many steps ahead would the agent appear on
that node.

3.1 Graph-based Simulation Environment

A discretized abstraction of the continuous terrain map from the RIDE platform helps model the relations
between the agents and the surrounding area. This discretized map representation is easily translated into
a graph representation in which each discrete location is a node connected to its cardinal neighbors via
edges. The nodes capture proximity information about the geometric coordinates while the edges model an
agent’s movement in a single simulation step. More importantly, this allows for predetermined, static graph
connectivity during training. This feature significantly reduces both the requisite computational resources
and training data.

For reinforcement learning, we developed a graph-based custom OpenAl Gym multi-agent scenario
along with its interfacing wrapper to the Shiva architecture to replace the Unity based RIDE simulation
environment. This alone resulted in experiments running seven times faster, on average, all else being
equal (i.e. hyper-parameter configurations). The NetworkX library (Hagberg, Swart, and Schult 2008) was
utilized to model the sparse graph representation of the map (Figure 2a). The learned policies can then
be transferred back to RIDE for evaluations and initialization of new training instances. Furthermore, this
graph representation for the environment can be leveraged directly (Figure 2c) in instantiating GATs to
learn behavior predictions.

3.2 Proof-of-Concept Scenario

The building skirmish simulation scenario includes two teams of agents. Red agents are the NPCs of
interest, i.e. those being trained via our framework. The Blue agents follow scripted patrol routes informed
by actual human behavior in real simulations. Both Blue and Red agents attempt to terminate their opponent
in the skirmish. Red agents are awarded points each time they successfully “shoot” a blue agent and lose
points for being shot. Points are also awarded at the end of the skirmish based on if a Red agent successfully
terminated its opponent and how much health it has remaining.

The 2D graph representation we utilized in this paper captured a local view containing three adjacent
building blocks in an approximately 30 meter by 50 meter area, extracted from a 3D geo-specific terrain
map instance. We marked 27 way-points based on the agent’s step-wised movement limitations in Unity
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(Figure 1). In the graph-based simulations, those 27 nodes along with edges generated by the constrained
movements were utilized in all training scenarios (Figure 2a). Just like actual human participants, the
agents cannot see through the buildings (Figure 2b) and must learn to hide and ambush.

3.3 Learning Pipeline

The learning pipeline of our NPC training framework consists of three phases: two Reinforcement Learning
(RL) phases and a Graph Learning (GL) phase. The skirmish in the first RL phase pits a single heuristic
Blue agent against a single Red — the agents play the roles of human participants. Recall that the Red
agents learn via the (MA)DDPG algorithm, an actor-critic method that optimizes a policy (actor) based
on a value function (critic). Once learning stabilizes (i.e. performance plateaus) in the initial RL phase,
the policy is frozen and a batch of trajectories, which stand in for human participant data at the moment,
is processed that can later be used in the GL phase of the training. Each unique set of hyper parameters
results in a unique desired policy. Every policy generates inputs for a separate graph model and the hidden
states of the output layer of each graph model associated with a policy are inserted into the observations
as additional teammate action indicators for a second Red agent in a new RL phase.

The Red agent we introduce in the second phase of RL, which plays the role of an NPC that cooperates
with the pseudo-human agent, has an enriched observation tensor that includes the intermediate outputs
from the GL phase. The new Red agent, like its teammate, is attempting to learn a behavioral policy. This
RL phase also introduces another element to the reward function: if the two Red agents stand on the same
node, a point is forfeited. Unlike its teammate, this agent is able to draw on prior knowledge via the GL
to predict its teammate’s behavior. This means that the new Red agent is not only trying to learn a policy
to neutralize the Blue agent, but also coordinate with its teammate. Our hypothesis is that the ability to
predict the teammate’s behavior will reduce the time required to train the new Red agent and the variance
in the total reward obtained across batch learning episodes.

4 EXPERIMENT

As stated in Section 3.3, our experiment starts with a RL phase, followed by GL phase to learn from
the data generated in the first RL phase, and finally another RL phase that exploits the GL to improve
performance. The experiment setup details of these two learning components are further discussed in this
section.

4.1 Reinforcement Learning

Each agent was initialized with its own actor-critic networks and a hyper-parameter set for reinforcement
learning. The potential spawning positions for Red agents were fourteen nodes on the left side and right
side of the graph as shown in (Figure 2a). Agents begin with full health points in each new iteration and
could lose health points each time their opponent successfully shot them. The end game condition was
defined as a team losing all health points or if the simulation reached the maximum step in an episode. To
shoot an opponent, an agent had to have them in sight and within combat range. The field of view for all
agents was limited to 120 degrees, and the combat range was set to 25 meters.

To simplify the agents’ interactions and better control the rewards, all agents were granted 100 health
points so that they would never die or freeze. All agents continued engaging with each other until running
40 steps for each episode. A shooting action at a target who was in view and within range was guaranteed
to hit and take precisely one health point down. We defined a Red win as the case when at least one Red
agent survived, which means the agent lost no more than five health points, and the Blue agent’s final
health points dropped below a given threshold. The losing threshold was set to 5 for a single Red agent
scenarios and 10 for two Red agents simulations. A perfect run happened when all Red agents remained
with full health and the Blue agent’s health dipped below the threshold.
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* Action space: The action space consisted of moving and turning for each simulation step. All agents
first selected amovement from the valid actions in the set { NOOP, S(outh), N(orth), W (est), E(ast)}.
An agent could always choose to stay; however, movement in the cardinal directions was limited by
the edges connecting the current node to other nodes. If the present node did not have a neighbor
to the North, this option was not available. After the movement, the agent can choose to look in
front of the current moving direction or turn 90 degrees to the left or right. Consequently, agents
were restricted to a (5, 3) two-branched discrete action space grounded by a valid action mask.

* Observation space: The observations for agents were the concatenation of position embedding
vectors and engaging indicators. Position embedding vectors were node coordinates embedded
by 6-bit binary tokens. The binary engaging indicator matrices were determined by the field of
view checks and combat range checks for each pair of the opposing agents in every simulation
step. In single Red agent simulations, the observation space for the Red agent had 20 elements.
In contrast, in two Red agents baseline cases, the 26-dimension observation tensors were padded
with a 6-bit teammate position embedding. In the complete experiment, the observation had been
further extended by teammate behavior indicators, yielding a total size of 31 elements.

* Reward design: During step i, the Red agents got reward Ri_>b = 43 for shooting Blue agents
and lost R2_>r = —4 for being shot. In the teammate collaboration cases, a negative step reward
Ri__, = —1 was applied if a Red agent stood on the same node with its teammates. After a
simulation was done, if all Blue agents had been terminated successfully and the Red agent had ever
shot, a positive episode reward R;), = [0,15,20,25,50,100] for damage taken € [0,) would be
added to this agent’s final reward based on its remaining health points. Note that Red agents were
incentivized to be cautious, as the cost of being shot was higher than the reward for successfully
shooting the Blue agent. The desired policies were selected based on this additional constraint
when both actor and critic losses were stable.

4.2 Graph Learning

Our GAT architecture consists of two stacked attention layers with the same connectivity as the graph
representation of the environment in RL. These layers first apply a linear transformation to each node’s input
features to create higher-level features, i.e., embeddings. Next, attention scores are computed for neighbors.
This computation is accomplished by concatenating neighboring nodes’ respective embeddings, taking the
dot product of this concatenation and a learnable weight vector, applying an activation function, and finally
applying self-attention on the nodes. Each node “attends” to its neighbors through this mechanism, and
the model learns the importance of node j’s features to node i. Deep Graph Library (DGL) (Wang et al.
2019) provided the GAT modules.

The task is to predict the first Red agent’s next position on the graph via node classification. The
network was trained using the batch of skirmishes collected after the RL was frozen. For each step in
every batch skirmish, node feature vectors are generated for all nodes in the graph. Each vector had ten

features. The first was a binary flag, Postr'e"dl, turned on if a Red agent could appear on this node in the next

step. The following 9 flags were three tuples, (Posit*. Dmglt™* | Dmg'™* ), where k € [1,3]. Each slot

in the tuples represented a successive look forward (Figure 2c). Posﬁjuke contains the next three positions of
the Blue agent, meaning if the Blue agent appears on the given node at that time step, then the associated
binary flag is turned on. Dmgzt/;r encodes whether Blue can inflict damage on Red from the given node
in each of the following time steps while Dmg’rf’;b captures the same for Red.

After the first round of the single Red agent RL training, all possible trajectories were collected by
executing its deterministic policy for 40 simulation steps in evaluation mode from all seven initial positions.
The 280 training samples were fed into the graph neural networks for a supervised node classification task.
Finally, the second round of RL training introduced another Red agent creating a Red team that battles a

single Blue agent. In the two Red agents RL phase, agent Ag,4, reused the stored policy from the initial RL
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training. In contrast, the new agent Ag,4, started a novel RL training period with the extended observations,
including the teammate action indicators provided by the trained GAT at run-time.
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Figure 3: An instance of a perfect run condition that both Red agents shot at least five times and had full
health points after 40 simulation steps. The first agent Ag.4, visited 11 nodes across the right side of the
graph while the second agent Ag.s, moved back and forth within a region of 3 nodes on the left side. The
figure showed the environment states in step 8 when Ag,;, made a shot. There was no interaction between
ARged, and the Blue agent in this step, since they were out of sight of each other.

4.3 Results

In the single Red against single Blue MADDPG experiments, both agents started with five health points.
Note that it was technically possible for the Blue agent to win as were ties; however, neither of these
event types were used in RL policy derivation. The single Red agent only spawned on the right side of
the graph with seven possible initial positions. The scripted Blue agent followed a 34-step patrol route
circling the buildings (Figure 2a). Multiple MADDPG training runs were conducted using MSELoss loss
function and Adam optimizer. The following learning parameters of the MADDPG agent were fine-tuned:
actor and critic learning rates, range of noises, exploration episode, network size, and MADDPG specific
configurations. Many good policies resulted in the Red agent finding a strategic waypoint and barely moving
from that spot. Because the first phase of RL is designed to supplant dynamic human behavior, we did not
include these policies in the GL phase’s training set. Instead, we gathered high-reward learned policies
that were characterized by more movement. We found that high initial noises with exploration episodes
greater than 5,000 would help to learn frequent moving policies. It also requires that the action’s noises
gradually reduce to near zero during 30,000 to 60,000 episodes after the exploration period. The perfect
win shown in (Figure 3) was achieved when actor and critic learning rates were 0.000003 and 0.000009,
respectively. The best set of actor-critic networks and learning rates, and exploration period were reused
in the final phase of RL training.

The learned policies and their stored trajectories were parsed to initialize the node features in the graph
learning phase. Five-fold cross-validations were conducted for the supervised graph node classification
tasks. For the demonstrated policy, the average accuracy of the cross-validation was 89.3%, which indicated
that most action prediction providing the next RL phase would be the actual moving action generated by
the saved deterministic policy. In this case, we assigned the value of an action that had a probability greater
than 0.4 as True to generate multi-hot five-dimensional tensors for the next training phase.

In the two Red agents versus one Blue agent MADDPG training scenario, which was the final phase
of the preliminary experiments in this paper, the Blue agent’s starting health points were doubled. In this
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case, the winning condition for team Red became shooting the Blue agent more than ten times in total.
We compared the complete experiment, which included teammate action data from the graph model, to
two baseline conditions: 1) Ag.q, only had a local view of itself similar to the single-agent simulation
scenario and 2) Ag.s, had teammate location inserted to its observation. We executed the first baseline
experiments to fine-tune a part of hyperparameters, including the range, starting, and ending values of
noises to find perfect wins of team Red. Note that until this point, the only changeable hyperparameters
were the MADDPG agent-specific variables. The noises, exploration periods, actor-critic networks, and
learning rates were all fixed for the second baseline and the final experiments to make it fair for evaluating
the training speed.

The second Red agent could also select to spawn on either the left or right side of the map with seven
possible initial nodes for each case. We considered these two conditions as different simulation tasks and
reported them separately in (Table 1). Two agents starting on the same side of the map turned out to be a
more challenging learning case due to the negative R,_-, step reward. With this in mind, we decided to
set the threshold of the averaged total rewards to 20 for agents starting on different sides of the map and
15 for starting on the same side. We stored trajectories for every 100 episodes in the former and every 500
episodes in the latter case. We measured the earliest simulation episode when the top-performing agent’s
average reward reached a certain threshold to compare the learning speed. The results showed that the
additional teammate observation tensor led to agents who learn to coordinate faster than non-augmented
baselines.

Table 1: Experiment results of the two Red agents versus a single Blue agent simulations. A policy reaching
to a reward threshold with fewer simulation episodes is learning faster.

The first episode Rewardpg,q, Started on different sides Started on the same (right) side
passing a given threshold >5 >10 >15 >20 >0 >5 >10 >15
Baseline[20]: local obs only | 71.7k  78.6k 85.3k 103.7k | 96k 170.5k 2625k -
Baseline[26]: +Ageq, position | 59.1k 64.2k 66.0k 85.1k | 83.5k 98k 142k 186.5k
Complete[31]: +Ageq, actions | 57.0k 63.1k 66.5k 82.5k | 86.5k 92k 116.5k 138k

S CONCLUSIONS

Our experiment focused on developing believable behaviors for non-player characters in skirmish simulations.
The motivation for such characters is clear: NPCs are critical to running a simulation that has face validity
to the players, but filling a simulated training environment with human actors is not always feasible. Having
the capability to generate such NPCs helps to 1) create more realistic and challenging training experiences
2) reduces the cost and time to develop them and 3) makes these simulations less dependent on human
participants’ availability.

Our experiment relied on a computationally generated version of human agents or synthetic characters—
the Blue and the first Red agent—to simplify the proof-of-concept. Even though we do not directly address
human-synthetic composite teams in this work, their viability has already been demonstrated in a flight
simulation training environment (Myers et al. 2019). Synthetic teammates offer training diversity, meaning
players can ‘“get to know” various behavioral profiles in a non-combat setting. Moreover, synthetic
teammates could potentially be a part of military operations in the foreseeable future (USACAC. 2020).
It is crucial that the research and development communities fully understand the dynamics of composite
teams before fully deploying synthetic teammates in live missions. Our framework offers rapid prototyping
of synthetic teammate behavioral profiles, an indispensable tool for understanding how synthetic teammate
characteristics impact composite team performance. Still, learning robust and stable computational behavior
policies that can be deployed in training environments is a big challenge. The proposed framework is just
a step towards addressing one of the aspects of that challenge.
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5.1 Future Research

We strive to improve the capabilities of NPCs in military training simulations. Generating NPCs that build
better behavior representations of their teammates and opponents is possible by refining our framework
and pipeline. To this end, we plan to:

* Reward design: In our reinforcement learning experiments, high episode reward plus low step
reward made the losses hard to converge. Sharp pulses on the loss replay were observed frequently
once a good episode reward was obtained while the average reward over time was stabilized at a
relatively low value. Although reducing the episode reward could ease the convergence issues, low
episode rewards encouraged the Red agent to learn aggressive behaviors rather than maintain good
health, which defied our intention. Our immediate next step following the preliminary experiments
would be exploring novel reward design strategies to balance reward signals and loss values.

* Scripted behaviors: We utilized a relatively simple behavior script to control the Blue agent. We
plan to gradually increase the complexity of the Blue agent’s behavior script to further test the
robustness of our pipeline.

* Introducing human data: We plan to collect and utilize human data in our experiments after the
restrictions due to the current pandemic are relaxed. Replacing the RL policy generated trajectories
with more realistic ones would allow us to better evaluate the predictions learned by GNNs in the
graph learning phase. Furthermore, such predictions will provide the opportunity to observe how
the second red agent adjusts to more realistic human behavior.

* Structured learning: In the current stage of the framework development, the transition from graph
learning to reinforcement learning was a multi-hop binary tensor, which was trivial. Our ultimate
goal is to introduce the graph-structured information gathered from the graph model’s intermediate
layers to the actor-critic training scenarios to better capture the relations between the agents and
the local geometric layouts. We plan to adjust agent action selections by leveraging structured data
provided by graph models in the next stage.

* Joint learning: The graph model in this pipeline was trained offline, and there was only a single
agent actively learning in the reinforcement learning experiments. When there are multiple agents
learning concurrently, a more sophisticated framework would train the reinforcement and graph
components, leveraging behavior prediction to assist learning in RL. Implementing a more expressive
network architecture may improve learning with minimal computational cost or facilitate learning a
richer repertoire of behaviors — both of which would be valuable in training a synthetic character
to be a teammate.

5.2 Summary

The two main research questions we explored in this paper are: (1) If we have human behavior data, can a
GNN like model learn to predict the behavior?; and (2) if we have such a GNN based behavior predictor, can
we use it to help with learning better cooperation policies in multi-agent reinforcement learning? We did
not have human data to explore the first question. Instead, like a pseudo-human, we generated trajectories
via a behavior policy learned through reinforcement learning to use as training data. Utilizing GNNs as
behavior predictors yielded promising results. In pursuit of the second research question, we implemented
a MARL-GL architecture that utilizes the outputs of the GNN based behavior prediction model. Including
these outputs enabled new agents to better coordinate with existing agents within a reinforcement learning
experiment. We have leveraged a simple skirmish scenario in the RIDE simulation environment to facilitate
our experiments. Our experiments show that this framework could learn faster-converging behavior policies
with better cooperation characteristics for our proof-of-concept simple skirmish scenario. However, more
experiments warranted to further investigate our approach.
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