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ABSTRACT

Large, high quality data sets are essential for training machine learning models to perform their tasks
accurately. The lack of such training data has constrained machine learning research in the cyber domain.
This work explores how Markov Chain Monte Carlo (MCMC) methods can be used for realistic synthetic data
generation and compares it to several existing generative machine learning techniques. The performance of
MCMC is compared to generative adversarial network (GAN) and variational autoencoder (VAE) methods
to estimate the joint probability distribution of network intrusion detection system data. A statistical analysis
of the synthetically generated cyber data determines the goodness of fit, aiming to improve cyber threat
detection. The experimental results suggest that the data generated from MCMC fits the true distribution
approximately as well as the data generated from GAN and VAE; however, the MCMC requires a significantly
longer training period and is unproven for higher dimensional cyber data.

1 INTRODUCTION

The year 2021 was marred as the year when concern of cybersecurity transitioned from a niche academic
and professional concern to an everyday priority. In late 2020, a massive attack on the SolarWinds
information technology management platform resulted in 18,000 customers installing malicious code into
their networks. Among the victims were defense contractors, government agencies, and hospital systems
(Jibilian and Canales 2021). The intricate attack is believed to have gone undetected for months and may
be linked to previously undetected exploitations (Volz and McMillan 2020). The reported frequency and
damage associated with cyber attacks has increased steadily between 2005 and 2018 (Evans and Smith
2019). We contend that this number may be biased by organizations unable to detect or unwilling to
divulge damaging attacks (Evans and Smith 2019). The cyber threat against friendly assets extends beyond
information systems to the Internet of Battlefield Things (IoBT).

It is anticipated that future wars will be fought largely in the cyber domain but there is little precedent
to understand what such a war would look like. The 2014 Russian occupation of Crimea showcased
the synchronization of cyber exploitation with kinetic attacks (Collins 2018). A 2018 report outlines that
foreign actors used malware to access sensitive information from the Naval Undersea Warfare Center (Evans
and Smith 2019). Many legacy cyber-physical systems are built with no foresight to cyber vulnerabilities
(Applegate 2013). As the IoBT grows to include more of these systems, the potential cyber threat exposure
also grows. It is critical that we address our cybersecurity shortcomings with novel techniques before
adversaries exploit them. Intrusion detection systems (IDS), for example, are an approach to deter and
defend from cyber attacks (Applegate 2013). The IDS scans log files of cyber data traffic through network
or on host devices for evidence of malicious behavior. Machine learning (ML) based IDS require large
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data sets for training (Chalé et al. 2020) and organic cyber attack data, with labelled entries, is notoriously
scarce.

Generative modeling techniques, stemming from the fields of statistical computing and artificial intel-
ligence, have the potential to address the data deficiency. Methods such as Markov Chain Monte Carlo,
variational autoencoders (Gelman et al. 2013), and generative adversarial networks (Bengio et al. 2017)
are used to estimate the probability distribution functions of existing multivariate data sets. It is then
possible to draw new, synthetic data from these generative models. This research seeks to understand which
existing generative approaches are best suited for generating realistic synthetic cyber data. Specifically,
this work reports the performance of three generative methods and suggests future work to address their
shortcomings. We expect these findings will enhance the design and training of more effective IDS.

This paper is structured as follows. Section 2 outlines the evolution of IDS, cyber data sets and how
generative modeling techniques play a role. Section 3 describes the generative methods under investigation,
to include presenting an application of generative methods to model the NSL-KDD cyber data set. Section 4
describes the computational experimentation, to include the results of using the three generative methods for
generating synthetic cyber data and an approach for assessing the quality of the synthetic data. Conclusions,
recommendations and future work are described in Section 5.

2 Literature Review

Cyber borne threats have plagued computer networks since the early days of ARPANET (Chen and Robert
2004). By 1971, researchers at Bolt Beranek and Newman Inc. implemented the concept of “self-replicating
automata” (Chen and Robert 2004) which was previously postulated by Neumann, Burks, et al. (1966). This
experimental program was itself benign, but it paved the way for malignant worms and viruses (Chen and
Robert 2004). Cybersecurity, the scientific approach of protecting data from illegal access and alteration,
has become an important and constantly evolving field.

In 1972, a panel of experts presented a series of cybersecurity vulnerabilities to the U.S. Air Force
Systems Command. The report outlined redesign requirements for secure information systems. The cost
of inaction against threats was determined to be greater than the cost of securing the vulnerable systems
(Anderson 1972). A subsequent report advocated for increased logging of network traffic; illegal users
exhibit abnormal behavior which could be detected during network audits.

2.1 Intrusion Detection Systems

Intrusion detection systems are a distinct layer of cybersecurity that detect and react to malicious activities
within networks or at a host device. Denning (1987) describes six components of an IDS, as well as best
practices for logging activity, auditing records, and deploying responses; Axelsson (2000) provides a more
recent, though now dated chronicle of IDS. IDS detectors may follow a signature-based strategy where
information from prior records are used to flag specific attack behavior. Alternatively, anomaly-based IDS
detect statistical abnormalities in the data logs, which are also indicative of an attack (Stallings et al. 2012).
A comprehensive review of anomaly detection techniques is given by (Chandola et al. 2009). Some recent
IDS employ a hybrid of both methods (Patcha and Park 2007).

Japkowicz et al. (1995) performs classification by training an auto-encoder on a positive data class
only. Once trained, data examples that yield high error in the auto-encoder are adjudicated as anomalies,
and therefore members of the negative class. This approach is desirable when data on the negative class
is scarce. Butt (2018) applies this method to intrusion detection, however the project warrants a revisit.
We emphasize guidance by Patcha and Park (2007) that the mean square error threshold for classification
should be tuned during a validation testing to optimize a performance metric such as recall, and we direct
the interested reader to best practices for model selection (James et al. 2013).

A compelling anomaly detection technique based on Markov Chain Monte Carlo modeling has been
successfully applied to IDS (Scott 2001). The model uses an indicator variable to fit data to either baseline
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traffic or contaminated traffic. Posterior analysis informs the probability of contamination. Patcha and
Park (2007) cautions that anomalous network records are not always malicious and that signature-based
detectors often exhibit superior false negatives on known attack types. Therefore, we must also consider
the strengths and weakness of signature-based IDS.

Signature-based IDS excel when there is a bounty of training examples for normal and illegal activity
though the model must be updated frequently as new attack signatures are discovered (Patcha and Park
2007). These discriminators may struggle to identify contextual evidence of attacks that span multiple
records. Patcha and Park (2007) and Hindy et al. (2020) advocate that signature-based IDS must be
updated frequently to reflect newly discovered attack types, but they do have excellent detection rates on
known attack types. Signature-based systems are unable to detect a zero day attack; that is a novel attack
type exploiting unknown vulnerabilities. Unfortunately, they also struggle to model contextual evidence
of attacks that spans multiple records (Patcha and Park 2007; Hindy et al. 2020).

Among 85 recently published IDS manuscripts reviewed by Hindy et al. (2020), the vast majority
of IDS detectors employ machine learning techniques. Chalé et al. (2020) leverage a signature-based
approach that uses a meta-learner to predict the best candidate classification algorithm on unseen cyber
data; they experimentally concluded that publicly available cyber data is insufficient to train an effective
IDS, a sentiment shared by Hindy et al. (2020). In general, the extraction of features from network
traffic for use in training ML-based classifiers for IDS is a necessary pre-processing step. Maxwell et al.
(2019) experimentally analyze various methods of feature engineering for ML-based IDS. However, subject-
matter-expertise is often required to extract optimum features, so De Lucia et al. (2021) avoid the feature
engineering problem by developing novel algorithms using deep learning for IDS using only raw network
traffic.

2.2 Cyber Data Sets

According to Hindy et al. (2020), cyber databases become obsolete almost immediately as attackers
constantly evolve their strategies. Databases almost never reflect real-world cyber traffic with realistic
proportions of varying attack types and background traffic. The databases don’t reflect temporal changes
that occur in modern networks. Viegas et al. (2017) provides specific requirements for IDS training data sets;
notably, they should be easily amendable. Sharafaldin et al. (2018) advocates for effective documentation
so greater audiences can utilize and update public databases. Hindy et al. (2020) identifies a literature
gap in metrics to assess realness of IDS databases. To this point, we direct the curious reader to machine
learning efficacy (Xu et al. 2019), which assesses the databases usefulness as a training set for an arbitrary
ML task. This metric may be a starting point for future work assessing realness. We offer our support to
the sentiment that there should be better community coordination in maintaining the taxonomy of cyber
threats (Hindy et al. 2020) and evolving databases. For instance, Tavallaee et al. (2009) critiqued the
statistical properties of the well cited KDD CUP 99 data set and provided an improved version, NSL-KDD,
to the community.

2.3 Generative Methods

Generative methods are a excellent tool set when the measurable relationships in a system are complex,
possibly beyond the useful scope of deterministic models (Jebara 2012). The premise of generative modeling
is to estimate a joint probability distribution of the variables in a system and many techniques heavily
leverage Bayes’ theorem. Evidence from data refines prior beliefs about the form of a model, and in many
cases estimates parameters in a closed form model. Whether or not a closed form model is produced,
generative models are often used to generate new data from the same statistical distribution as the training
data (Jebara 2012).

Generative machine learning (GML) stands in contrast to discriminative machine learning (DML) which
does not directly model the distribution of data, but nonetheless models the conditional relationship of the
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class label given predictor information. DML methods typically generate decision boundaries for class
labels (Jebara 2012). DML includes methods such as support vector machine and logistic regression in
which the joint distribution of data is not modelled. The joint distribution created by GML is in many
ways more informative than the models from DML. Further, it is possible to test the correctness of the
generated distribution against real data (Goodfellow 2017).

2.3.1 Markov Chain Monte Carlo

Markov Chain Monte Carlo (MCMC) sampling stems from the field of Bayesian analysis. Many generative
methods are unable to accommodate high dimensional data, where in some cases the dimensionality is
greater than the number of records. The complexity of these models lend to exponentially increasing
computational time. Another situation is intractable inference, where a conditional distribution is estimated
via an intensive summation over other variables marginal probability density functions. Lastly, intractable
normalization constant is problematic for certain function classes including logistic, where gradients are
difficult to estimate. MCMC methods are appealing in these cases (Bengio et al. 2017).

As a method within the broader field of Bayesian data analysis, we follow three high level steps
of analysis. Firstly, the full probability model is defined in the form consistent with prior knowledge,
including all observable and latent variables in the system. Second, we find the posterior distribution, that
is the probability distribution of the latent variables conditioned on observed values. Estimates on the
posterior distribution provide our approximate joint distribution. Finally, we evaluate the model according
to fit, utility, and correctness of assumptions then assess any necessary revisions. In some applications, the
Bayesian model, which conditions on observed data and incorporates prior beliefs, is often more informative
than the frequentist approach, which calculates statistics from data alone (Gelman et al. 2013).

One of the primary appeals of the Bayesian modeling framework is the compatibility with multi-level,
or hierarchical modelling. These models incorporate parameters for phenomena at different levels in the
system, each which plays a role in modelling the joint distribution. These models provide useful predictions
in complex systems (Gelman et al. 2013).

MCMC generative methods find model parameters θ that generate a posterior distribution p(θ |y) that
matches a target distribution. It works by drawing parameters θ from a proposal distribution, assessing
the correctness of the draw, and progressing towards a better vector θ . Markov chain convergence occurs
when the samples of θ exhibit a stationary distribution. The Markovian property implies that the sampling
sequence leads to the same region of the parameter space regardless of initial point θ 0. Therefore, multiple
chains achieving the same stationary distributions provide evidence that proper convergence has occurred.

Several sampling methods of MCMC modeling have unique advantages. Gibbs sampling is the simplest
form of MCMC model learning. The parameter space of the model is divided into d subsets. Within an
iteration of the Gibbs sampler, the algorithm iterates through the d subset of parameters. Within each of
d steps of the iteration, a subset of parameters are drawn from a posterior distribution which has been
conditioned on the current values of all other parameters outside the subset. Under the reasonable assumption
that the chain follows an irreducible, aperiodic, non-transient Markov process, the Gibbs sampler converges
to a stationary output in a finite number of iterations (Gelman et al. 2013).

Metropolis-Hasting sampling is differentiated from the Gibbs sampler by relying on independent
parameter sampling and by incorporating probabilistic acceptance of each step (Hastings 1970). The
acceptance function promotes steps in high density regions of the joint distribution, without getting stuck
at any particular region. The algorithm satisfies the condition of detailed balance (Kass et al. 1998), which
guarantees the posterior distribution generated by the algorithm converges to the target distribution in the
data. In practice, the Metropolis-Hastings algorithm tends to spend fewer iterations stuck near local minima
before converging to the joint distribution (Yildirim 2012).
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2.3.2 Generative Adversarial Networks and Autoencoders

Generative adversarial networks (GAN) is a ML technique for building generative models introduced by
Goodfellow et al. (2014) and updated in Goodfellow et al. (2020) with recent insight. GANs are built using
a game-theoretic, adversarial process. On one side, a multi-layer perceptron (MLP) generates data (the
generator), initially with random weights, while on the other side, a discriminative MLP (the discriminator)
detects whether or not the generated data matches the distribution of a “target” set. Initially, the discriminator
set can easily distinguish generated data examples from true example, but the generator improves its model
over time. Simultaneously, the discriminator learns on its mistakes and improves its model. Eventually, the
generator produces examples that match the original distribution very well, and the discriminator cannot
detect a difference in the generated examples (Goodfellow et al. 2014).

There are instances of GANs used for cyber data. Yao et al. (2018) provides a semi-supervised generative
approach for fabricating realistic cyber data that only requires labels on 10% of training examples. Alhajjar,
Maxwell, and Bastian (2020) use GANs to generate adversarial examples to fool ML-based network IDS
classifiers. CTGAN is collection of deep learning based synthetic data generators for single table data (with
both categorical and continuous), which are able to learn from real data and generate synthetic clones with
high fidelity. The GAN is trained by conditioning on the discrete variables and perceived mode within
the continuous variables. Results indicate that CTGAN generates synthetic tabular data, which is both a
statistical fit to baseline data and performs well in data science applications (Xu et al. 2019).

Autoencoders are unsupervised ML algorithms that learn to encode an input data set to a smaller
summary code, then process the encoded data such that the original set is recovered with minimal error.
The encoder function, h, is typically a single hidden layer artificial neural network, where h = f (x). The
decoder, r = g(h) is the complimentary network responsible for transforming h back to its original form;
it typically has a single hidden layer as well. The models are generally trained with minibatch gradient
descent and back-propogation. A properly trained autoencoder learns g( f (x)) = x for all x in the entire
domain (Bengio et al. 2017). The primary advantages of an autoencoder are to learn which data features
are most important to describe the system, and to compress data with minimal reconstructive error.

3 Methodology

The methodology seeks to employ and compare three different generative methods in their capability to
generate synthetic, realistic network IDS data. Since cyber data may contain a vast variety of variables,
the methods must model the joint probability distribution of discrete and continuous features.

3.1 NSL-KDD Cyber Data

The NSL-KDD cyber data set is selected as the baseline data set because it is well studied in the literature,
and it has improved statistical properties over the predecessor KDD CUP 99 data. Three variables of
the NSL-KDD cyber data set were selected for statistical modeling as part of this research. “Attack
Type” is binarized as attack or normal. Additionally, the two continuous variables selected are count
and Srv count. Mini-max normalization is performed on each continuous variable. These variables
were chosen because they are important features for IDS applications. They are few enough that we can
experiment with computationally demanding models and plot results in R2 for intuitive analysis. Using
both continuous and categorical variables provides a proof of concept that can be expanded into higher
dimensions in future studies.

The real NSL-KDD data is plotted in Figure 1, a pair plot of the count and Srv count continuous
variables. The plots demonstrate several linear trends. The marginal distributions, which are conditioned
on the categorical variable Attack Bin, show that there are multiple modes, though it is difficult to
discern the exact quantity from the plot.
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Figure 1: Real NSL-KDD Cyber Data

3.2 Conditional GAN and Variational Autoencoder

The Python implementation of CTGAN (Xu et al. 2019) is used to model cyber data and generate synthetic
data, with an emphasis on data sets with both continuous and discrete variables as well as multiple modes
and data imbalance. By conditioning on discrete categories, the GAN mitigates mode collapse, an effect
where minor categories are lost in the training. It also bypasses the problem of non-sparse one-hot vectors
generated by the GAN (Xu et al. 2019). Below is a summary of the CTGAN process.

Mode-specific normalization is used to improve the training of the conditional GAN. First, a univariate
Gaussian mixture model is fit to each continuous variable. Then, mode membership is assigned for all
values in that column from the training set. Finally, the values are normalized within their Gaussian cluster.
Both mode membership and normalized value are input to the GAN. Both the generator and discriminator
have a fully-connected architecture, as depicted in Figure 2a, to motivate learned relationships between
data columns. The input of CTGAN’s generator are a condition vector and Gaussian noise. The input of
the discriminator are real rows, conditioned on a discrete factor, as well as generated rows. αi j represents
a mode specific normalized continuous value for continuous variable i, whereas βi j represents a realization
of one hot vector for discrete variable i; the condition vectors are denoted by di j. The two hidden layers
employ relu with batch activation, while tanh and gumblesoftmax are used to accommodate scalar and
discrete output features, respectively. Complete details on the conditional GAN model are presented in (Xu
et al. 2019). The hallmark of a conditional GAN is that additional information is passed to the generator
to condition training on discrete treatments. CTGAN provides a mask vector informing that one level is
set for one particular discrete column. The generator learns to relay this vector, without modification, and
simultaneously optimize weights to generate plausible rows of synthetic data.

A variational autoencoder based deep learning data synthesizer (TVAE) is also specified in Xu et al.
(2019) with an implementation provided in the synthetic data vault Python library. The model estimates
the joint distribution of the data via a compression and a decoding network, as depicted in Figure 2b.
The encoder contains two hidden layers with relu activation functions and an output layer with softmax
activation for discrete variables and tanh activation for continuous variables. Gaussian noise is then applied
to continuous variables. The decoder network contains two hidden layers using relu activations and applies
Gaussian noise to the output.
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Figure 2: Network Architectures for CTGAN and TVAE Generative Methods

3.3 Conditional Hierarchical MCMC

The Bayesian approach to generative modeling is premised on updating a hypothesis as known information
becomes available. Hierarchical probabilistic models use a relational structure such that higher level
parameters inform lower level distributions that in turn inform the most probable parameters in the target
joint distribution. Following the precedent of Teh (2010) and Liew et al. (2019), we develop a Gaussian
mixture model that can fit up to three modes in the R3 space containing the variables. Notably, if fewer
than three modes are present, the model may fit a weight of zero to any particular component. Since the
continuous variables in our cyber data set are all positive, concentrated near zero, we employ the reflection
trick. A copy of each data point is added to the set, with all continuous variables negated. This motivates
the primary Gaussian cluster to center over zero, but allows the other two clusters to converge elsewhere
in the space.

MCMC sampling with the Metropolis-Hastings algorithm was initially performed on the previously
described 3-dimensional data set. Results demonstrated that the algorithm converged to reasonable estimated
of cluster means. However, the covariance matrices often reflected unreasonably high spread in the categorical
variables. That is, the Gaussian distribution centered over binary level of -1, was wide enough to largely
cover the +1 level, vice versa. This produced an unacceptable rate of mislabeled points when new data
was generated from the learned distribution. Tuning the model did not resolve the issue. This approach
also forced us to use a model ∈ R3 despite the observation that our three variate data is more naturally
modelled ∈ R2 ∪{0,1, ..., j}2 where j is the number of levels for the particular categorical variable.

We took inspiration from Mirza and Osindero (2014), where statistical models are conditioned on given
information. In our case, we conditioned on each level of the discrete variable, Attack Bin. MCMC
sampling was performed to create a model on each of the two subsets. Since we observe the proportion of
rows that are normal and attacks, we can combine generated data that are attacks and generated data that
are normal, in correct proportions, to estimate the joint distribution. Equations (1-5) define a hierarchical
mixture model of multi-variable Gaussian distributions.
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In Equation (1), we see that weight vector p is sampled from a Dirichlet distribution which is the natural
conjugate to the multinomial distribution. Equation (2) shows that LKJ Cholesky is the distribution over
the positive-definite, symmetric covariance matrix subject to shape parameter η . Equation (3) provides the
distribution over the standard deviation for the LKJ Cholesky covariance, which is notably asymmetrical.
Equation (4) presents a normal prior over the mean of each Gaussian cluster. Finally, Equation (5) is the
mixed Gaussian model of the joint distribution, as a function of modeled parameters.

p∼ Dir(α = [100,10,1]),∈ RK (1)

τ ∼ LKJCholeskyCov(η = 2,SD) (2)

SD∼ halfCauchy(γ = 1) (3)

µk ∼ N(φk,τ = 0.05+0.025∗ k),µk ∈ RD ∀ k ∈ [K] (4)

Y |p,Σ,µ ∼
K

∑
k=1

pkN(µk,Σk) (5)

The appeal of the hierarchical mixture model, Equations (1-5), stems from two possible advantages over
GAN and VAE models. Firstly, parameters that define the joint distribution are reported in an interpretable,
empirical mixture form for each discrete bin. Secondly, correlation between continuous variables is captured
directly within each cluster. The GAN and VAE methods attempt to implicitly capture covariance within
the parameters of their artificial neural networks. This strategy has demonstrated empirical success but
risks improper network specification that can lead to high model bias or variance. Gaussian copulas are yet
another method, which estimate the distribution of continuous columns and capture the covariance between
columns. Common copula functions require at least one tunable parameter to properly estimate covariance
in a joint distribution and it is difficult to automate model specification (Nelsen 2007).

4 Computational Experimentation

All computational experimentation was performed via the Massachusetts Institute of Technology (MIT)
Supercloud (Reuther et al. 2018) with Intel Xeon Gold 6248 2 core processor, 384 GB RAM, running
Python 3.7.3 in Jupyter Notebook 6.0.0. The variable attack type is binarized as normal or attack
and given the variable name Attack Bin. Mini-max normalization is performed on the continuous
variables count and Srv count. A random subset of 10,000 rows was used for generative modeling,
where 5,334 were normal and 4,666 were attacks (see Figure 1). The reflection operation was performed
to obtain a negative clone of records in the data set, resulting in 20,000 data records for MCMC trials.
By incorporating the negative clone for the continuous variables count and Srv count, we provide
symmetry about each axis, allowing Gaussian clusters to center over the origin for the MCMC model.

The conditional hierarchical MCMC model specified in Equations (1-5) was sampled with a warm up
period of 25,000 iterations and 5,000 recorded iterations for each of the two subsets; two chains with unique
seeds were performed on each subset. Stationary posterior distributions were observed for all chains after
25,000, sufficing for sampling termination. A trace plot for the weight variable, p, is presented in Figure
3, where chain one is plotted in blue and chain two is plotted in orange. Although both chains converge,
they suffer from the phenomena of label switching due to model non-identifiability (Jasra et al. 2005).
Ideally, the blue and orange posterior plots would be nearly identical for each parameter in each Gaussian
cluster, but our results show nearly identical posterior plots attributed to non-matching Gaussian clusters.
The informative prior distributions were intended to avoid non-identifiability, but were unsuccessful.

Parameters for the multivariate Gaussian mixture model were obtained from the MCMC trace. Note
that 400 new data points were generated by sampling from each mixture model in proportion to the observed
bin size. The absolute value of each data point was retained to compensate for the reflection transformation
on continuous variables. The generated data from the MCMC model is plotted in Figure 4, which yielded
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Figure 3: Trace Plot for Weight Vector p of the Gaussian Mixture

a score of 0.875 according to the inverted Kolmogorov–Smirnov (KS) D statistic (Patki et al. 2016). Note
that a score of 1.0 indicates excellent fit and 0 indicates poor fit.

Figure 4: MCMC-based Synthetically Generated Cyber Data

The GAN model was implemented using the synthetic data vault Python package, CTGAN, with all
default settings selected. The GAN model was fit with the same 10,000 data points as the MCMC model
and 400 new data points were generated. The synthetically generated cyber data from the GAN model is
plotted in Figure 5a, which yielded a score of 0.890 according to the inverted KS D statistic. Likewise,
the VAE model was implemented using the synthetic data vault Python package, TVAE, with all default
settings selected. Again, the VAE model was fit with the same 10,000 data points as the MCMC and GAN
models, and 400 new data points were generated. The synthetically generated cyber data from the VAE
model is shown in Figure 5b, which yielded a score of 0.723 according to the inverted KS D statistic.

A summary of performance results of these three generative methods is displayed in Table 1, where
the inverted KS D statistic indicates goodness of fit between generated data and real data and the runtime
indicates the computational demand to train each model. These results suggest that the cyber data generated
from MCMC fits the true distribution approximately as well as the data generated from GAN and VAE
methods. The GAN model performed best with a KS D statistic of 0.890, with MCMC close behind at
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(a) CTGAN Generative Model (b) TVAE Generative Model

Figure 5: GAN-based and VAE-Based Synthetically Generated Cyber Data

0.875 and the VAE poorest performing at 0.723. It should be noted that the MCMC model required a
significantly longer training period compared to the GAN and VAE methods, and it is unproven for higher
dimensional cyber data.

Table 1: Summary of the Generative Method Performance

Inverted KS D Runtime (mm:ss)

MCMC 0.875 38:53
GAN 0.890 4:07
VAE 0.723 2:54

5 Conclusions

As demonstrated in the experimentation, the MCMC, GAN, and VAE methods succeeded in producing
synthetic network intrusion detection system data. The primary advantage of using the MCMC method to
estimate the joint distribution of continuous variables in tabular data is to capture covariance within clusters.
It also reports a closed form model with interpretable parameters. The GAN and VAE models are black box
generative methods, which may provide inconveniences for certain users. Unfortunately, it is difficult for
hierarchical MCMC models to converge in higher dimensions. Training times grow rapidly as parameters
are added to the model, and models require manual tuning in order to converge in a reasonable time. As
stated by Aitkin (2001), model formulation is further complicated if the number of modes is unknown
prior to training. Future studies will determine mode quantity prior to MCMC modeling with methods
such as variational Gaussian mixture models, K-nearest neighbor, or multi-dimensional mode-hunting.
Alternatively, the Hierarchical Dirichlet Process infers the number of modes during training, but is a more
complicated MCMC model. The goal of this work was to compare MCMC, GAN and VAE methods for
generating realistic network intrusion data. Although the cyber data generated from the MCMC model fit
the real data well, it took much longer to train and tune the model. Thus, MCMC should be pursued for
applications such as cyber data generation where realism is more important than run time. Future research
may also address whether meta-learning can reduce tuning efforts and training times.
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