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ABSTRACT 

Data-driven decision making and expansion of smart city infrastructure require massive amounts of data 
that might not be available. The lack of infrastructure data can make it challenging to recover interdependent 

infrastructure systems following a disruption. Interdependent infrastructure systems are often modeled as 
networks with an interdependency parameter. Researchers can partially overcome gaps in data associated 
with the individual networks by modifying interdependency parameters to include interdependency type 
and coupling strategy information. Overcoming missing telecommunications data is illustrated using a 
combined network design and scheduling problem with a modified interdependency parameter. The 
modified parameter allows analysis without a full dataset and removes the necessity of adding constraints 

and variables to handle complex infrastructure relationships. The difference in system operability results 
from partial and full datasets is less than or equal to 2.6%. This modeling method provides an interim 
solution to full data acquisition and may be suitable in other applications. 

1 INTRODUCTION 

Changes in infrastructure management and protection are evident in current trends with Industry 4.0, Smart 
Cities, and City of the Future initiatives (American Society of Civil Engineers 2019; Rutgers and Sniderman 

2018). Collectively these changes require massive quantities of data which can be hard to acquire or access. 
While certain strategies have been employed to overcome data access challenges, it remains a significant 
problem. 
 The work presented herein addresses current work that proves useful when encountering access issues 
for modeling and simulation of interdependent infrastructure systems. It explores two of the six dimensions 
of interdependent infrastructure systems called interdependency type and coupling (Rinaldi et al. 2001). 

This paper then leverages these concepts of interdependency type and coupling as a way to overcome 
incomplete data. This is accomplished by modifying a commonly used interdependency parameter to 
incorporate these two elements, which allows for complex interdependencies to be created based on the 
available infrastructure data. This work's applicability is shown by comparing the results of recovery 
following a disaster for a network with all required infrastructure data and a network with a significant 
portion of the data missing. 

2 LITERATURE REVIEW 

This section details relevant literature for two topics important to this research. The first topic concerns 
current methods to overcome incomplete data for infrastructure modeling and simulation (M&S). The 
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second topic is handling operational interdependencies by the use of an interdependency parameter in 
network-based mathematical programs. This work combines these two topics by showing how 
interdependency parameters and coupling strategies can help overcome partial or incomplete infrastructure 

data. 

2.1 Overcoming Inaccessible Infrastructure Data for M&S 

Issues with access to infrastructure data typically stem from one of three reasons:  the data is sensitive, 
proprietary, or lacks sufficient quality (Ouyang 2014). Sensitive infrastructure information is the type of 
information that could cause security concerns for a community if mishandled or inappropriately used. 
Geospatial coordinates of water storage access points are an example of this. Proprietary infrastructure 

information is the type of information that allows a private company providing an infrastructure service 
(e.g., drinking water, electricity, etc.) some business advantage for sole ownership and control of the 
information. Proprietary information is also not specifically mandated for public disclosure. Data quality 
concerns may stem from sparse or randomly collected data, lack of standardization in data collection, and 
subjective data. This last issue is deeply concerning, seeing how emerging technology uses data to inform 
so many decisions, and data quality is not always readily apparent. 

The Cybersecurity and Infrastructure Security Agency (CISA) of the United States Government has 

taken steps towards securing a data repository, and they have incentivized critical infrastructure 

information (CII) sharing through the Protected CII (PCII) Program ( CISA 2005). The PCII was initiated 

in 2002, with the passing of the CII Act, and updated in 2006 when additional regulations were added to 

ensure proper handling and use of CII (CISA). However, industries and communities are still reluctant to 

exchange data and/or relinquish proprietary data (Peretti 2014). 

These governmental efforts are commendable; however, the data is also not widely available for use 

or research. Therefore, researchers and practitioners in the area of infrastructure M&S have come up with 

different ways to overcome the access to data issues. Ouyang (2014), in a review article on M&S for 

critical interdependent infrastructure, identified three workarounds:  1) empirical data harvesting from 

historical events, 2) random or characteristic-specific generated networks, and 3) representative data that 

seeks to take real systems and remove sensitive or proprietary information. While none of these are ideal, 

they have made substantial research and improvements possible. The present work uses the third option 

by using a representative dataset. 

2.2 Operational Interdependency Parameter in Network-Based Programming 

Rinaldi et al. (2001) identified six dimensions of infrastructure interdependent relationships; however, only 

two are critical for the present work. These two are interdependency type and coupling. In their study, they 
provided a useful classification of the types of interdependencies that affect network operations. These are 
physical (i.e., dependency based on the flow of materials), cyber (i.e., dependency based on the flow of 
information), geospatial (i.e., dependency based on proximity), and logical (i.e., any other dependency). 
These authors also described the coupling as being either tight or loose and either linear or complex. Tight 
coupling suggests a strict interdependency between systems (e.g., an electrically driven water pump). A 

loose coupling suggests there is an effect of one system on another, but it may not be directly felt (e.g., 
mining operation disruption may slow road repair and maintenance, but not immediately due to the buffer 
of raw material). Linear relationships behave proportionally, while complex relationships are not 
proportionally related or the proportions change over time.  
 González et al. (2016) introduced an idea of how to view these two dimensions in their presentation of 
the interdependent network design problem (INDP). While the authors only presented one coupling 

strategy, they described four variations that can cover most situations. These four strategies can be described 
as one-to-one, one-to-any, one-to-all, and one-to-many couplings. The authors suggested that multiple 
interdependency types and coupling strategies could be implemented if necessary; however, the method for 
employing multiple types and coupling strategies was to make independent sets of constraints with new 
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variables and new interdependency parameters related to different types and coupling strategies. The four 
different coupling strategies will be discussed in more depth in the following section. 

Other authors modeling interdependent infrastructure recovery have also used an interdependency 

parameter to describe whether infrastructure systems are interdependent. Lee et al. (2007) used a series of 
connector parameters which allowed them to establish node-to-node and node-to-arc relationships, both 
types being a one-to-one style of coupling. This formulation was a build-as-you-go type of formulation 
depending on what relationships were needed, and it also used special sets extensively. Cavdaroglu et al. 
(2013) used a binary variable equal to 1 if the slack of unmet demand at the parent node was zero, allowing 
the child node to be operable. This parameter did not include various interdependency types or couplings, 

thereby reflecting only a one-to-one relationship. Sharkey et al. (2015) used a binary variable similar to 
Cavdaroglu et al., except that their binary variable was arc-to-arc instead of node-to-node and didn’t require 
all demand to be met, but rather a sufficient amount of demand. This, in essence, allowed for some 
degradation of service before the interdependency rendered the child node inoperable. This also represents 
a one-to-one relationship. In contrast to these methods, Almoghathawi et al. (2019) and Karakoc et al. 
(2019) used an operability variable instead of an interdependency parameter to relate physically 

interdependent infrastructure systems. These examples also represent a one-to-one and node-to-node 
relationship.  

There is currently no model that employs both interdependency types and coupling strategies as an 
inherent part of the interdependency parameters or constraints. This paper proposes a way to implement 
such an integration. This modified interdependency parameter is then used to show how it can help 
overcome situations with partial infrastructure data. 

3 METHODOLOGY 

This section pulls together the formalization of coupling strategies and integrates those strategies in a 
combined network design and scheduling problem. First, the general notation used in the mixed-integer 
program (MIP) is given. Second, coupling strategies are explained in detail, given a mathematical 
expression, and provided with anecdotal context. Third, the MIP integrates the coupling strategies and 
interdependency types into the formulation to addresses the combined network design and scheduling 

problem. 

3.1 General Notation for MIP 

The combined network design and scheduling problem is based on a graph, 𝒢(𝒩, 𝒜), comprised of nodes 
and arcs divided into layers indexed by 𝑘 ∈ 𝒦. Each infrastructure layer has one or more commodities 
indexed by 𝑙 ∈ ℒ𝑘. The network is assumed to be damaged, which means that subsets of nodes and arcs 
within each layer have become inoperable. These nodes and arcs must be repaired by assigning work crews 

and repairing the nodes and arcs. Table 1 summarizes the relevant notation for the MIP. An additional 
parameter and set dealing with the integration of the coupling strategies and the interdependency types are 
detailed in the following subsection. 
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Table 1:  General notation for the MIP comprising sets, variables, costs, and other parameters for flow and 
scheduling. 

Sets Description  Variables Description 

𝒦  
 
𝒩  
𝒩𝑘  
𝒩′𝑘  

 
𝒜  
𝒜𝑘  
𝒜′𝑘  
ℒ𝑘  
𝒲𝑘  

Ψ  
 
Ξ  
 
𝒯  
 

 
Costs 
𝑐𝑖𝑗𝑙𝑡

𝑘   
𝑎𝑤𝑡

𝑘   
𝑞𝑖𝑗𝑡

𝑘  or 𝑞𝑖𝑡
𝑘   

 

𝜇𝑖𝑗𝑡
𝑘  or 𝜇𝑖𝑡

𝑘   

The set of infrastructure 
layers. 

The set of nodes, indexed as 𝑖. 
The subset of nodes.* 
The subset of damaged 

nodes.* 
The set of arcs, indexed (𝑖, 𝑗). 
The subset of arcs.* 
The subset of damaged arcs*. 
The set of commodities.* 
The set of work crews.* 

The set of interdependency 
types, indexed as 𝜓. 

The set of coupling strategies, 
indexed as 𝜉. 

The set of 𝑇 time periods 
evaluated, indexed as 𝑡. 

 
 
The cost of flow of 𝑙 in arc. 
The cost rate of assigning 𝑤. 
The cost of repairing arc or 

node. 

The value (cost equivalent 
priority) of arc or node. 

 𝑥𝑖𝑗𝑙𝑡
𝑘   

 
𝛼𝑖𝑗𝑤𝑡

𝑘  or 𝛼𝑖𝑤𝑡
𝑘   

 
 

𝛽𝑖𝑗𝑤𝑡
𝑘  or 𝛽𝑖𝑤𝑡

𝑘  
 
 
𝑦𝑖𝑗𝑡

𝑘  or 𝑦𝑖𝑡
𝑘   

 
𝑥𝑖𝑙𝑡

−,𝑘
  

 
𝑥𝑖𝑙𝑡

+,𝑘
  

 
 
 
Parameters 

𝑏𝑖𝑙𝑡
𝑘   

 
𝑢𝑖𝑗𝑡

𝑘   
 
𝑝𝑖𝑗

𝑘  or 𝑝𝑖
𝑘  

 

𝜇𝐴 or 𝜇𝐵  

The variable of flow of 𝑙  in 
arc. 

Binary variable equal to 1 if 
work crew 𝑤  assigned to 
repair arc or node. 

Binary variable equal to 1 if 
arc or node was repaired by 
work crew 𝑤. 

The variable between 0 and 1 
of operability of node or arc. 

The variable of unmet demand 

of 𝑙 at node. 
The variable of surplus of 𝑙 at 

node. 
 
 
 

The amount of supply or 
demand of 𝑙. 

The capacity of arc for all 
commodities. 

The processing time for repair 
of arc or node. 

Priority weight between 0 and 
1 for objectives 𝐴 and 𝐵. 

* Superscript 𝑘 means in infrastructure layer 𝑘 ∈ 𝒦; subscript 𝑡 means at time period 𝑡 ∈ 𝒯. Asterisk 
is used only for sets but pertains to variables and parameters as well. 

 

3.2 Operational Interdependency Parameter and Coupling Strategies 

Let 𝛾𝑖�̃�𝜓𝜉
𝑘�̃�  be a parameter that takes on a value from 0 to 1, describing a parent-child relationship between 

parent node 𝑖 ∈ 𝒩𝑘  and child node 𝑖̃ ∈ 𝒩�̃�  based on some interdependency type 𝜓 ∈ Ψ and coupling 
strategy 𝜉 ∈ Ξ. This operational interdependency parameter effectively integrates the elements of previous 
work, which allows for a node-to-node pairing. This parameter expands upon previous work by adding 
characterization of interdependency type and coupling. This means that a node can have more than one type 

of interdependency relationship between node pairs. This also expands the interdependency relationship of 
a child node to one or more parent nodes.  
 Before describing the coupling strategies in depth and describing how they affect the interdependency 
parameter, it is worthwhile to define the sets Ψ  and Ξ . The set Ψ = {𝑝ℎ𝑦𝑠𝑖𝑐𝑎𝑙, 𝑐𝑦𝑏𝑒𝑟, 𝑙𝑜𝑔𝑖𝑐𝑎𝑙,
𝑔𝑒𝑜𝑠𝑝𝑎𝑡𝑖𝑎𝑙}, which encompasses the operational interdependency types identified by Rinaldi et al. (2001). 
The set Ξ = {𝑜𝑛𝑒2𝑜𝑛𝑒, 𝑜𝑛𝑒2𝑎𝑛𝑦, 𝑜𝑛𝑒2𝑎𝑙𝑙, 𝑜𝑛𝑒2𝑚𝑎𝑛𝑦}, where each of these relationships is explained 

below. An additional subset, used as a filtering set, is advantageous in the programming of the MIP. Let 
𝒩�̃�𝜓𝜉

𝑘�̃�  be a subset of nodes in a given network 𝑘 ∈ 𝒦, that have an operational interdependent relationship 
of some type 𝜓 with another node 𝑖̃ ∈ 𝒩 �̃̃� in a different network �̃� ∈ 𝒦 based on some coupling 𝜉, where 
𝒩�̃�𝜓𝜉

𝑘�̃� ⊆ 𝒩. 
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 The one2one coupling describes when a child node 𝑖̃ ∈ 𝒩�̃� can be functional only if a parent node 𝑖 ∈
𝒩𝑘  is functional. This effectively means that when 𝜉 = 𝑜𝑛𝑒2𝑜𝑛𝑒, 𝒩�̃�𝜓𝜉

𝑘�̃�  is a singleton set for a given 
interdependency type 𝜓 (Figure 1). The one2any coupling is the case when at least one of any number of 

nodes 𝑖 ∈ 𝒩�̃�𝜓𝜉
𝑘�̃�  must be functional for the child node 𝑖̃ ∈ 𝒩�̃�  to be functional (Figure 2). The one2all 

coupling is where all nodes 𝑖 ∈ 𝒩�̃�𝜓𝜉
𝑘�̃�  must be functional for the child node 𝑖̃ ∈ 𝒩�̃� to be functional. This 

means that each one2all parent-child relationship receives an equal portion of the interdependency 
parameter, where the sum of all parts equals one (Figure 3). Finally, one2many coupling means that a 
portion (not necessarily equal) of the interdependency parameter is associated with each parent-child 
relationship, where the sum of all parts equals one (Figure 4). Therefore, let 𝜔𝑖�̃�𝜓𝑡

𝑘�̃�  be the portion of 

functionality or weight between nodes 𝑖 ∈ 𝒩�̃�𝜓𝜉
𝑘�̃�  and 𝑖̃ ∈ 𝒩�̃� , where ∑ 𝜔𝑖�̃�𝜓𝑡

𝑘�̃�
𝑖∈𝒩�̃�𝜓𝜉

𝑘�̃� = |𝒩�̃�𝜓𝜉
𝑘�̃� | , ∀𝜓 ∈

Ψ, 𝑡 ∈ 𝒯 when 𝜉 = 𝑜𝑛𝑒2𝑚𝑎𝑛𝑦. 
 Each one of these coupling relationships will also depend on the operability or functionality of the 
parent nodes. This is represented by 𝑦𝑖𝑡

𝑘 , which in the present work is allowed to take on a value between 0 
and 1. A parent node is inoperable when 𝑦𝑖𝑡

𝑘 = 0, partially operable when 0 < 𝑦𝑖𝑡
𝑘 < 1, and fully operable 

when 𝑦𝑖𝑡
𝑘 = 1. In Figures 1 – 4 below, interdependent relationships are illustrated with either inoperable or 

fully operable nodes. Partial operability in parent nodes is reflected by partial operability in child nodes. 
 Table 2 summarizes these relationships and provides the mathematical representation of the 
interdependency parameter. The MIP is presented following this summary. It is important to note that 
although parent node(s) may be functional, that does not directly equate to the child node's functionality. 
The child node must also have its demand met, must not be damaged, or if damaged, must be repaired to 
be functional; therefore, in the following figures, it is stated that the child node may or may not be 

functional. 

 

Figure 1:  Illustration of one2one coupling between two infrastructures 𝑘 and �̃�; a) when node 𝑖 ∈ 𝒩�̃�𝜓𝜉
𝑘�̃�  is 

functional, then node 𝑖̃ ∈ 𝒩�̃� may be functional depending on other conditions; b) when node 𝑖 ∈ 𝒩�̃�𝜓𝜉
𝑘�̃�  is 

not functional, then node 𝑖̃ ∈ 𝒩�̃� is not functional based on the interdependent relationship. 
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Figure 2:  Illustration of one2any coupling between two infrastructures 𝑘 and �̃�; a) when any node(s) 𝑖 ∈
𝒩�̃�𝜓𝜉

𝑘�̃�  are functional, then node 𝑖̃ ∈ 𝒩�̃� may be functional depending on other conditions; b) when all nodes 
𝑖 ∈ 𝒩�̃�𝜓𝜉

𝑘�̃�  are not functional, then node 𝑖̃ ∈ 𝒩�̃� is not functional based on the interdependent relationship. 

 

Figure 3:  Illustration of one2all coupling between two infrastructures 𝑘 and �̃�; a) when all nodes 𝑖 ∈ 𝒩�̃�𝜓𝜉
𝑘�̃�  

are functional, then node 𝑖̃ ∈ 𝒩�̃� may be functional depending on other conditions; b) when any node 𝑖 ∈
𝒩�̃�𝜓𝜉

𝑘�̃�  is not functional, then node 𝑖̃ ∈ 𝒩�̃� is not functional based on the interdependent relationship. 

 

Figure 4:  Illustration of one2many coupling between two infrastructures 𝑘 and �̃�; a) when all nodes 𝑖 ∈
𝒩�̃�𝜓𝜉

𝑘�̃�  are functional, then node 𝑖̃ ∈ 𝒩�̃� may be functional depending on other conditions; b) when some 
nodes 𝑖 ∈ 𝒩�̃�𝜓𝜉

𝑘�̃�  are functional, then node 𝑖̃ ∈ 𝒩�̃� may be partially functional based on a weighting factor 
(𝜔𝑖�̃�𝜓𝑡

𝑘�̃� ) and depending on other conditions; c) when all nodes 𝑖 ∈ 𝒩�̃�𝜓𝜉
𝑘�̃�  are not functional, then node 𝑖̃ ∈

𝒩�̃� is not functional based on the interdependent relationship. 

Of note, strict adherence to the one2all coupling relationship is most effectively achieved with binary 
restrictions on operability. Another method of modeling is based on the understanding that one2all 
relationships are multiple one2one relationships and is discussed in greater detail in the results section. 
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Table 2:  Interdependency coupling strategies 𝜉 affects the interdependency parameter 𝛾𝑖�̃�𝜓𝜉𝑡
𝑘�̃�  by changing 

the possible values. 

Coupling, 𝜉 Description 𝛾𝑖�̃�𝜓𝜉𝑡
𝑘�̃�  * 

One2one 𝑖̃ ∈ 𝒩�̃� is only functional when a specific singular 
node 𝑖 ∈ 𝒩�̃�𝜓𝜉

𝑘�̃� .is functional and 𝒩�̃�𝜓𝜉
𝑘�̃�  is a 

singular set. 

1 

One2any 𝑖̃ ∈ 𝒩�̃� is functional when at least one node of a 
subset is functional, namely some node 𝑖 ∈
𝒩�̃�𝜓𝜉

𝑘�̃� . 

1 

One2all 𝑖̃ ∈ 𝒩�̃�  is functional only if every node from a 
subset 𝒩�̃�𝜓𝜉

𝑘�̃�  is functional. 

1

|𝒩�̃�𝜓𝜉
𝑘�̃� |

 

One2many 𝑖̃ ∈ 𝒩�̃� depends partially on the functionality of a 
subset of nodes 𝑖 ∈ 𝒩�̃�𝜓𝜉

𝑘�̃� ; each node 𝑖 ∈ 𝒩�̃�𝜓𝜉
𝑘�̃�  

provides a fraction of the functionality. 

𝜔𝑖�̃�𝜓𝑡
𝑘�̃�

|𝒩�̃�𝜓𝜉
𝑘�̃� |

 

* This holds for all 𝑖 ∈ 𝒩�̃�𝜓𝜉
𝑘�̃� , 𝑖̃ ∈ 𝒩�̃� , 𝑘, �̃� ∈ 𝒦, 𝜓 ∈ Ψ, 𝑡 ∈ 𝒯. 

3.3 MIP Formulation 

The following presentation describes the multiple objectives used in a weighted objective function followed 
by the applicable constraints.  
 

 𝐶𝑜𝑠𝑡 𝑂𝑏𝑗𝑒𝑐𝑡𝑖𝑣𝑒:  𝐴 = ∑ ∑ (∑ [∑ (𝑞𝑖𝑗𝑡
𝑘 𝛼𝑖𝑗𝑤𝑡

𝑘 + 𝑎𝑤𝑡
𝑘 𝑝𝑖𝑗

𝑘 𝛼𝑖𝑗𝑤𝑡
𝑘 )(𝑖,𝑗)∈𝒜′𝑘 +𝑤∈𝒲𝑘𝑘∈𝒦𝑡∈𝒯

                                        ∑ (𝑞𝑖𝑡
𝑘 𝛼𝑖𝑤𝑡

𝑘 + 𝑎𝑤𝑡
𝑘 𝑝𝑖

𝑘𝛼𝑖𝑤𝑡
𝑘 )𝑖∈𝒩′𝑘 ] + ∑ ∑ 𝑐𝑖𝑗𝑙𝑡

𝑘 𝑥𝑖𝑗𝑙𝑡
𝑘

(𝑖,𝑗)∈𝒜𝑘𝑙∈ℒ𝑘 ) (1) 

 𝑂𝑝𝑒𝑟𝑎𝑏𝑖𝑙𝑖𝑡𝑦 𝑂𝑏𝑗𝑒𝑐𝑡𝑖𝑣𝑒:  𝐵 = ∑ ∑ (∑ 𝜇𝑖𝑡
𝑘 𝑦𝑖𝑡

𝑘
𝑖∈𝒩𝑘 + ∑ 𝜇𝑖𝑗𝑡

𝑘 𝑦𝑖𝑗𝑡
𝑘

(𝑖,𝑗)∈𝒜𝑘 )𝑘∈𝒦𝑡∈𝒯  (2) 

 
 Minimize  
 

 𝜇𝐴𝐴 − 𝜇𝐵𝐵. (3) 

 
 Subject to 

 

 ∑ 𝑥𝑖𝑗𝑙𝑡
𝑘

𝑗:(𝑖,𝑗)∈𝒜𝑘 − ∑ 𝑥𝑗𝑖𝑙𝑡
𝑘

𝑗:(𝑗,𝑖)∈𝒜𝑘 = 𝑏𝑖𝑙𝑡
𝑘 + 𝑥𝑖𝑙𝑡

−,𝑘 − 𝑥𝑖𝑙𝑡
+,𝑘,   ∀𝑖 ∈ 𝒩𝑘, 𝑙 ∈ ℒ𝑘 , 𝑘 ∈ 𝒦, 𝑡 ∈ 𝒯. (4) 

 ∑ 𝑥𝑖𝑗𝑙𝑡
𝑘

𝑙∈ℒ𝑘 ≤ 𝑢𝑖𝑗𝑡
𝑘 𝑦𝑖𝑡

𝑘 , ∀(𝑖, 𝑗) ∈ 𝒜𝑘, 𝑖 ∈ 𝒩𝑘, 𝑘 ∈ 𝒦, 𝑡 ∈ 𝒯. (5) 

 ∑ 𝑥𝑖𝑗𝑙𝑡
𝑘

𝑙∈ℒ𝑘 ≤ 𝑢𝑖𝑗𝑡
𝑘 𝑦𝑗𝑡

𝑘 , ∀(𝑖, 𝑗) ∈ 𝒜𝑘, 𝑗 ∈ 𝒩𝑘, 𝑘 ∈ 𝒦, 𝑡 ∈ 𝒯. (6) 

 ∑ 𝑥𝑖𝑗𝑙𝑡
𝑘

𝑙∈ℒ𝑘 ≤ 𝑢𝑖𝑗𝑡
𝑘 𝑦𝑖𝑗𝑡

𝑘 , ∀(𝑖, 𝑗) ∈ 𝒜𝑘, 𝑘 ∈ 𝒦, 𝑡 ∈ 𝒯. (7) 

 𝑦𝑖𝑡
𝑘 ≤ ∑ ∑ 𝛽𝑖𝑤𝜏

𝑘𝑡
𝜏=1𝑤∈𝒲𝑘 , ∀𝑖 ∈ 𝒩′𝑘, 𝑘 ∈ 𝒦, 𝑡 ∈ 𝒯. (8) 

 𝑦𝑖𝑗𝑡
𝑘 ≤ ∑ ∑ 𝛽𝑖𝑗𝑤𝜏

𝑘𝑡
𝜏=1𝑤∈𝒲𝑘 , ∀(𝑖, 𝑗) ∈ 𝒜′𝑘, 𝑘 ∈ 𝒦, 𝑡 ∈ 𝒯. (9) 

 ∑ ∑ 𝛽𝑖𝑤𝑡
𝑘

𝑤∈𝒲𝑘𝑡∈𝒯 ≤ 1, ∀𝑖 ∈ 𝒩′𝑘, 𝑘 ∈ 𝒦. (10) 

 ∑ ∑ 𝛽𝑖𝑗𝑤𝑡
𝑘

𝑤∈𝒲𝑘𝑡∈𝒯 ≤ 1, ∀(𝑖, 𝑗) ∈ 𝒜′𝑘, 𝑘 ∈ 𝒦. (11) 

 ∑ ∑ 𝛼𝑖𝑤𝑡
𝑘

𝑤∈𝒲𝑘𝑡∈𝒯 ≤ 1, ∀𝑖 ∈ 𝒩′𝑘, 𝑘 ∈ 𝒦. (12) 

 ∑ ∑ 𝛼𝑖𝑗𝑤𝑡
𝑘

𝑤∈𝒲𝑘𝑡∈𝒯 ≤ 1, ∀(𝑖, 𝑗) ∈ 𝒜′𝑘, 𝑘 ∈ 𝒦. (13) 

 𝛽𝑖𝑤𝑡
𝑘 ≤ ∑ 𝛼𝑖𝑤𝜏

𝑘min[𝑇,𝑡−𝑝𝑖
𝑘]

𝜏=1 , ∀𝑖 ∈ 𝒩′𝑘, 𝑤 ∈ 𝒲𝑘, 𝑘 ∈ 𝒦, 𝑡 ∈ 𝒯. (14) 

 𝛽𝑖𝑗𝑤𝑡
𝑘 ≤ ∑ 𝛼𝑖𝑗𝑤𝜏

𝑘min[𝑇,𝑡−𝑝𝑖𝑗
𝑘 ]

𝜏=1 , ∀(𝑖, 𝑗) ∈ 𝒜′𝑘, 𝑤 ∈ 𝒲𝑘 , 𝑘 ∈ 𝒦, 𝑡 ∈ 𝒯. (15) 
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 ∑ ∑ 𝛼𝑖𝑤𝜏
𝑘

𝑖∈𝒩′𝑘
min[𝑇,𝑡+𝑝𝑖

𝑘−1]

𝜏=1 + ∑ ∑ 𝛼𝑖𝑗𝑤𝜏
𝑘

(𝑖,𝑗)∈𝒜′𝑘

min[𝑇,𝑡+𝑝𝑖𝑗
𝑘 −1]

𝜏=1 ≤ 1 + ∑ ∑ 𝛽𝑖𝑤𝜏
𝑘

𝑖∈𝒩′𝑘
𝑡
𝜏=𝑝𝑖

𝑘+1
+

∑ ∑ 𝛽𝑖𝑗𝑤𝜏
𝑘

(𝑖,𝑗)∈𝒜′𝑘
𝑡
𝜏=𝑝𝑖𝑗

𝑘 +1
, ∀𝑤 ∈ 𝒲𝑘 , 𝑘 ∈ 𝒦, 𝑡 ∈ 𝒯. (16) 

 ∑ 𝛾𝑖�̃�𝜓𝜉𝑡
𝑘�̃� 𝑦𝑖𝑡

𝑘
𝑖∈𝒩�̃�𝜓𝜉

𝑘�̃� ≥ 𝑦�̃�𝑡
�̃� , ∀𝑖̃ ∈ 𝒩�̃�, �̃� ∈ 𝒦, 𝜓 ∈ Ψ, 𝜉 ∈ Ξ, 𝑡 ∈ 𝒯. (17) 

 𝑦𝑖𝑡
𝑘 𝑏𝑖𝑙𝑡

𝑘 ≥ 𝑏𝑖𝑙𝑡
𝑘 +𝑥𝑖𝑙𝑡

−,𝑘,   ∀𝑖 ∈ 𝒩𝐷
𝑘, 𝑙 ∈ ℒ𝑘 , 𝑘 ∈ 𝒦, 𝑡 ∈ 𝒯. (18) 

 0 ≤ 𝑥𝑖𝑗𝑙𝑡
𝑘 ≤ 𝑢𝑖𝑗𝑡

𝑘 , ∀(𝑖, 𝑗) ∈ 𝒜𝑘, 𝑙 ∈ ℒ𝑘 , 𝑘 ∈ 𝒦, 𝑡 ∈ 𝒯. (19) 

 𝑥𝑖𝑙𝑡
−,𝑘 ≥ 0,    ∀𝑖 ∈ 𝒩𝑘, 𝑙 ∈ ℒ𝑘 , 𝑘 ∈ 𝒦, 𝑡 ∈ 𝒯. (20) 

 0 ≤ 𝑦𝑖𝑡
𝑘 ≤ 1,   ∀𝑖 ∈ 𝒩𝑘, 𝑘 ∈ 𝒦, 𝑡 ∈ 𝒯. (21) 

 0 ≤ 𝑦𝑖𝑗𝑡
𝑘 ≤ 1,   ∀(𝑖, 𝑗) ∈ 𝒜𝑘 , 𝑘 ∈ 𝒦, 𝑡 ∈ 𝒯. (22) 

 𝛼𝑖𝑤𝑡
𝑘 ∈ {0,1}, ∀𝑖 ∈ 𝒩′𝑘, 𝑤 ∈ 𝒲𝑘, 𝑘 ∈ 𝒦, 𝑡 ∈ 𝒯. (23) 

 𝛼𝑖𝑗𝑤𝑡
𝑘 ∈ {0,1}, ∀(𝑖, 𝑗) ∈ 𝒜′𝑘, 𝑤 ∈ 𝒲𝑘 , 𝑘 ∈ 𝒦, 𝑡 ∈ 𝒯. (24) 

 𝛽𝑖𝑤𝑡
𝑘 ∈ {0,1}, ∀𝑖 ∈ 𝒩′𝑘, 𝑤 ∈ 𝒲𝑘 , 𝑘 ∈ 𝒦, 𝑡 ∈ 𝒯. (25) 

 𝛽𝑖𝑗𝑤𝑡
𝑘 ∈ {0,1}, ∀(𝑖, 𝑗) ∈ 𝒜′𝑘, 𝑤 ∈ 𝒲𝑘, 𝑘 ∈ 𝒦, 𝑡 ∈ 𝒯. (26) 

 
Equation (1) includes repair and assignment costs for damaged arcs and nodes, followed by the flow 

costs. Equation (2) represents a weighted operability, which is set as a competing objective in (3). Basic 
flow balance is shown in (4). Multicommodity flow is capacitated and flow is restricted in three different 
ways based on operable start-nodes, end-nodes, and arcs in (5-7), respectively. A repaired asset can become 

operable, as shown in (8-9). Assets can only be repaired once and assigned to one crew, as shown in 
constraints (10-11) and (12-13), respectively. Damaged assets are only repaired after they have been 
assigned and sufficient processing time has occurred, as shown in (14-15). Constraint (16) shows work 
crews may only be assigned to one repair task at a time. 

Constraint (17) represents the operational interdependency constraint, which uses the interdependency 
parameter to determine child node operability. Constraint (18) suggests that a node is proportionally 

operable to the met amount of demand. The constraints (19-26) represent the side constraints based on 
variable definitions. 

4 RESULTS AND DISCUSSION 

This section describes the infrastructure network, the missing telecommunications data, and the results 
when comparing optimization results with full and partial datasets. 

4.1 Simulated Military Base 

Using the CLARC database as a starting point, the data was reduced to about 10% of the original size while 
still preserving the diversity of operations and asset types (T. Sharkey et al. 2018). This was done to recreate 
a representative military base with bi-directional system-to-system interdependencies inherent in the 
CLARC database. The resultant reduced dataset was then constructed in a multiplex fashion, reflecting 
nodes into layers where they had a demand, supply, or transshipment function. 

An issue with the telecommunication infrastructure data was found due to only 4 of 47 different nodal 

asset types having any communication demand. For example, facilities such as Fire Stations, Police 
Stations, Schools, Hospitals, and others had no communication connections (i.e., arcs) and no demand. 
However, these facilities are essential in recovery operations and are controlled largely by communicating 
with an Emergency Control Center (Lee et al. 2007). This issue represents partial infrastructure data within 
a given layer, which was overcome using two different methods. 
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4.2 Overcoming Telecommunications Data Gap with Operational Interdependencies 

The first method to overcome the partial telecommunication data represents working with data owners and 
receiving the necessary data. This was accomplished by creating a geospatial context for the reduced dataset 

and physically drawing each connection to create a full representation of the complete infrastructure 
systems. This became the full dataset. The second method used the partial data provided and created various 
interdependency relationships to influence operability in lieu of acquiring additional infrastructure data. 
This became the partial dataset with additional interdependencies. The cost to produce such 
interdependencies is the time to communicate with stakeholders on the actual or perceived connection and 
dependency to establish the appropriate coupling relationship. The number of additional interdependencies 

needed will be dependent on the amount of infrastructure data missing. 
 An example of overcoming missing infrastructure data by using an interdependency is a Fire Station 
that requires communication to receive 911 emergency calls. If this service is not available, then the 
emergency responders will not respond because they are unaware of the call. Thus, the operability of one 
of two telecommunication nodes (part of the partial telecommunications data) would allow the Fire Station 
to remain as a supply node for the fire and emergency service commodity. However, if both 

telecommunication nodes were inoperable, then the Fire Station would also be inoperable since this 
represents no ability to send and receive 911 emergency calls. While actual systems have additional 
backups, this is used for illustration purposes and as a proof of concept.  

This example of the Fire Station depending on the telecommunication network is an example of a 
one2any coupling based on a cyber (i.e., data and information flow) type interdependency. This process 
was applied to every node that should have a communications demand within a full dataset. The result was 

three variations of the network: 1) dataset with full telecommunication data, 2) dataset with partial 
telecommunication data and additional interdependency relationships, and 3) dataset with partial 
telecommunication data without additional interdependency relationships. The third set serves as a basis to 
judge the addition of interdependent relationships to overcome infrastructure data gaps. 

4.3 Comparison of Optimization Results 

Comparing the full dataset and the partial dataset with additional interdependencies shows the use of 

interdependencies as a viable option for overcoming partial data. The time horizon for this comparison is 
12 8-hour time periods. While not the primary focus of this research, the model was programmed in GAMS 
v31.1.1 and used CPLEX 12.10. All tests were conducted on a desktop computer with an Intel Xeon CPU 
E5-1620 operating at 3.60 GHz with 16 GB of RAM. The average computational time for the tests with 
partial data and additional interdependencies averaged at less than 8 mins, while the tests with the full 
dataset averaged at 18 mins. 

 Table 3 summarizes the number of nodes, arcs, and interdependent relationships between the two 
different simulations. The full dataset represents 227 more nodes and arcs than the partial dataset, whereas 
the partial dataset with additional interdependencies represents 102 more interdependency relationships 
than the full dataset. The same damage was simulated in both simulations, even though additional arcs or 
nodes that were not in the partial dataset could have been damaged in the full dataset. 

Table 3:  The full dataset represents more nodes and arcs, while the partial dataset represents more 

interdependency relationships. 

Feature Full Dataset Partial Dataset 

Nodes 507 432 
Arcs 886 734 
Interdependencies 123 225 

 
 The two different datasets were evaluated over varying objective function weights, establishing Pareto 
optimal values or a Pareto front. Due to the disparity in the number of assets, the overall operability 
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objective value for the full dataset was 1.25 times higher than that of the partial dataset across the Pareto 
fronts. There was one anomaly when cost was weighted the most and operability the least (i.e., 𝜇𝐴 =
0.9, 𝜇𝐵 = 0.1), which resulted in the operability objective function value being 1.57 times greater than the 

partial dataset. After acknowledging the slight difference in the magnitude of the operability objective 
function values, the overall trends were identical. 
 In the case with balanced objective functions (i.e., 𝜇𝐴 = 𝜇𝐵 = 0.5), the full dataset showed an increase 
in operability from 65.8%, representing immediate operability following the disruption, to 68.1% within 
the first four time periods. Then the model showed a significant jump in operability at time period 5 to 
89.4%, where it remained for the time periods being evaluated. This signifies that the bulk of the optimal 

recovery trying to balance operability and cost was achieved by time period 5, or 40 hours following the 
disruption, based on 8-hr time periods. The partial dataset showed similar trends, with slight deviation in 
the percent operable. The partial dataset showed an increase in operability of 65.6% to 68.2% in the first 
four time periods and an increase to 91.8% at time period 5 and beyond. The partial dataset deviation from 
the full dataset in the first four time periods ranged from -0.2% to +0.3%. With the jump in operability at 
time period 5 the percent deviation also increased to +2.6% from time period 5 on. Partial data without the 

additional interdependencies underestimated the recovery from as great as -6.0% to as little as -3.8%, never 
achieving as accurate results as the partial dataset with additional interdependencies. Figure 5 illustrates 
how the partial dataset with an increased number of interdependency relationships closely approximates 
the operability of the system during recovery. The final operability percentage in these scenarios ranged 
from 86.1% to 91.8% and didn’t progress to 100% operability due to the presence of redundant flow 
pathways and the desire to balance cost and operability. Additionally, nodes and arcs that have extremely 

low value, denoted by 𝜇𝑖𝑡
𝑘  or 𝜇𝑖𝑗𝑡

𝑘 , and high costs repair costs, denoted by 𝑞𝑖𝑡
𝑘  or 𝑞𝑖𝑗𝑡

𝑘 , tend to be excluded 
from optimal results. This can be beneficial to emergency repair crews to ensure emphasis on the critical 
aspects of the system, prior to addressing non-critical components. 

  

Figure 5:  Partial data simulation with additional interdependencies more closely approximated a full dataset 
than the partial data without additional interdependencies. 

 The partial dataset employed only one2one and one2any coupling strategies since this most accurately 

reflected the same relationships that existed in the full dataset. The partial dataset scenario was also run by 
modifying the MIP to restrict the operability variables, 𝑦𝑖𝑡

𝑘  and 𝑦𝑖𝑗𝑡
𝑘 , to binary values with no significant 

changes to the operability objective value, being within 3% at the greatest point of deviation. In fact, the 
strict adherence to the one2one, one2any, and one2all coupling strategies may be best seen when operability 
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is modeled as binary variables. If operability is modeled as binary variables, the same formulation as 
presented above holds for all coupling strategies except one2many, which inherently is incompatible with 
binary operability variables.  

 In contrast, the inclusion of all the coupling strategies with a non-binary operability variable, as in the 
current work, also becomes problematic when desiring strict adherence to all the coupling strategies. The 
use of non-binary operability variables means that child node partial operability is possible based on parent 
node partial operability. Effectively this creates an upper bound on child node operability based on full or 
partial parent node operability and the associated coupling strategy. A child node in one2one relationships 
has an upper bound based on the parent node operability. A child node in one2any relationships may be 

fully operable so long as one node is fully operable or the sum of all parent nodes' partial operability amount 
to one or more. A child node in one2all relationships has an upper bound of some fraction of parent node 
partial operability. A child node in one2many relationships has an upper bound of some partial operability 
based on the sum of partial operability of the parent nodes. 
 A comparative example between binary and non-binary operability variables for one2all relationships 
illustrates the difference. A one2all coupling between three parent nodes and one child node results in an 

inoperable child node if any one of the three parent nodes is inoperable when operability is binary. In the 
case of non-binary operability, the node may experience operability up to 2/3 operability based on one node 
being inoperable and the other two being fully operable. To achieve strict adherence to the one2all coupling 
strategy with non-binary variables, a modification is made to constraints (17) by removing the summation 
over the set 𝒩𝑖�̃�𝜓𝜉

𝑘�̃� . This can be accomplished by employing conditional constraint generation when 
programming the MIP. 

 Despite the need to slightly adjust the MIP presentation to accommodate one2all relationships, the use 
of non-binary operability variables adds a significant level of reality to the simulation. In very few instances 
will the termination of telecommunication services result in complete inoperability. Therefore, partial 
operability is a closer approximation to reality. This also allows the use of a pseudo node which can 
establish a baseline operability level regardless of the loss of service. For example, if an industry is still 
80% operable with the loss of internet and telephone services. A one2many relationship can exist between 

𝑖̃ ∈ 𝒩�̃� and any number of nodes 𝑖 ∈ 𝒩𝑘, with 80% of the weight times the cardinality of the set 𝒩𝑖�̃�𝜓𝜉
𝑘�̃�  for 

some interdependency type 𝜓 ∈ Ψ residing in the relationship with pseudo node 𝑖∗ ∈ 𝒩𝑘. 
 An additional scenario was built based on the partial dataset, which included a partial operability 
baseline of 80% despite lack of telecommunication services except for the emergency responders, which 
rely on telecommunications to send and receive 911 emergency calls. This scenario resulted in a near-
perfect match because only three facilities in the power infrastructure system met the conditions to have 

80% operability versus being reduced to zero. A different damage scenario could highlight this better, but 
consistency for comparison was chosen over introducing a different damage scenario.  
 This shows the ability to incorporate all the various coupling strategies and leverage the one2many 
relationship to help model complex relationships that result in some impact to operability but do not render 
a node inoperable. This effectively assigns a lower bound to operability based on interdependencies. 

During the construction of these datasets, it was assumed and then shown in analysis that this model's 

applicability only worked if the actual known telecommunication nodes were damaged or inoperable. 
Suppose the service disruption was from a telecommunication node in the partial and full datasets 
downstream to the point of interest, thereby only belonging to the full dataset. In that case, this method 
could not show similar disruption as can be seen in the full dataset. This lack of granularity points to the 
limitations of using interdependencies in lieu of a full dataset. 

5 CONCLUSION 

This paper detailed issues concerning access to data and then highlighted how interdependencies could be 
leveraged to overcome partial infrastructure data. This was shown in using a representative full and partial 
dataset for a military base-sized system of networks. The results showed comparable operability projections 
between the two methods. Additionally, some flexibility was gained to model complex interactions by using 
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more robust interdependencies. The modification to commonly used interdependency parameters integrated 
multiple interdependency types and coupling strategies, which had not been done as an inherent part of a 
model before this work. Some limitations exist in not capturing the same granularity of knowledge on 

damaged assets that can be gleaned from full datasets. 
This research was completed as part of doctoral research by the primary author. The views expressed 

in this study are those of the authors and do not reflect the official policy or position of the United States 
Air Force, Department of Defense, or the United States Government. 
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