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ABSTRACT

Improving accuracy is a critical component of rocket-based defense systems. Accuracy may become
independent of range when using inertial navigation systems. This is especially true for short-range man-
portable air-defense systems, which are usually composed of portable missiles, whose movement is governed
by non-linear and rapidly changing forces and moments. Effective guidance strategies for these systems
could improve the weapon’s precision. This research introduces a new non-linear neural network-based
controller to improve navigation and control systems by lowering the circle error probable, which is a
measure of accuracy. Nonlinear simulations based on actual flight dynamics are used to train the neural
networks. The simulation results show that the presented approach performs well in a 6-DOF simulation
environment, featuring high accuracy and robustness against parameter uncertainty.

1 INTRODUCTION

Navigation signals from Global Navigation Satellite Systems (GNSS) are widely used in defense systems
nowadays. Regrettably, their reliability usually decreases inversely proportional to mission requirements.
It should be noted that GNSS signal attenuation and loss results in a reduced signal/noise relationship.
Although Inertial Navigation Systems (INS), such as Inertial Measurement Units (IMUs), are independent
of external perturbations, they have significant flaws such as inertial sensor (gyro and accelerometer)
imperfections that cause cumulative errors, incorrect navigation system initialization, and flaws in the
gravity model implemented, especially for long ranged flights. But, in this last case, INS are an excellent
source of navigation information when combined with GNSS receivers, which can reduce INS errors
(de Celis et al. 2017).

Man-portable air-defense systems are shoulder-launched missiles. They are typically guided weapons
that are used to reduce the threat posed by low-flying aircraft, particularly helicopters. Different techniques,
such as infrared and laser, can be used to guide these weapons. These systems can also be used for
surface-to-surface defense where target location knowledge is known and laser or infrared guiding could
not be required. In such a case, INS combined with GNSS receivers can suffice as a source of information.
However, typical man-portable air-defense systems feature short range and flight times, making successful
reception of the GNSS signal impossible. Note that, if there are not additional sources of external information,
due to limitations on costs, project scope, or mission requirements, precision must be achieved using only
on-board systems and loaded information before launch.

Whatever the system’s architecture, cost, precision, and robustness are critical characteristics. They are,
however, diametrically opposed goals. Precision aims to reduce “collateral damage”. High values for this
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damage can make military action unfeasible (Hamilton 1995). Robustness is the result of an all-weather
and all-terrain system, i.e., a system that does not degrade regardless of the operating conditions. It is
always difficult to obtain a system with high precision and robustness at a low cost.

The need for new Guidance, Navigation, and Control (GNC) systems has prompted research into
the stability and controllability of aerial platforms (de Celis et al. 2017). Based on missile proportional
navigation, Zhao and Zhou (2015), Creagh and Mee (2010) presents cooperative strategies for multiple
missiles based on the traditional Proportional Navigation (PN). In Lee et al. (2001), an attitude control
system for a spinning sounding rocket is designed, which includes a proportional, integral, and derivative
(PID) type controller. Proportional-derivative navigation guidance laws for the terminal phase are proposed
in Lechevin and Rabbath (2012), Wang et al. (2015). The line of sight is reconstructed in Nesline and
Zarchan (1985). A finite-time convergent sliding-mode guidance law with terminal impact angle constraint
is presented in Zhang et al. (2012). Theodoulis et al. (2013) presents a complete design for the guidance
and autopilot modules for a class of spin-stabilized fin-controlled projectiles.

If GNSS signals are available, expensive inertial navigation systems can be replaced with less precise
devices to save money while maintaining an acceptable level of precision. This would enable the inertial
system to be updated at a low cost, reducing the growth of errors. In addition, merging the signals of several
low-cost sensors, which improves overall accuracy, can be a good strategy for reducing costs and collateral
damage. The advantages of integrated data fusion have been demonstrated in a variety of antisubmarine,
strategic air, and land warfare applications (Waltz and Buede 1986). Data fusion algorithms for six degrees
of freedom missiles are described in Nguyen et al. (2016). The benefits and drawbacks of using various
types of INS enhanced with GNSS updates have been considered by Schmidt and Phillips (2011). In
addition to INS/GNSS hybridization, a group of nonlinear observers are described by Bryne et al. (2017).
If additional sensors are available, they may be additional contributions to a filter, for example, the Kalman
filter (de Celis et al. 2017).

However, even in GNSS/IMU integrated systems, many scenarios feature high uncertainty, unknown
disturbances, and abnormal measurements, which may be especially prominent during terminal guidance
for low-cost devices. As a result, developing new robust algorithms that can achieve the required accuracy
levels at a low cost during guidance is a critical component of projectile research, even more if GNSS
signals are not available. Modern laser guided ballistic rockets, for example, integrate IMU, GPS, and
laser guidance capability, providing high precision and all-weather attack capability (de Celis and Cadarso
2019; Zhang et al. 2017).

A current need is for new methodologies and algorithms that aim to propose effective and robust
systems that allow for a high level of autonomy and precision at a low cost. A promising methodology in
this regard is what is known as machine learning. It provides a plethora of possibilities and revolutionary
solutions that are particularly appealing for GNC applications, where its foray is still new and shallow,
but undeniably promising. Indeed, using machine learning methods for parameter estimation based on
the dynamics of aerospace vehicles has the advantage that once the algorithm is trained or calibrated, it
is not necessary to understand the physical-mathematical foundations that govern dynamics, but it is the
algorithm that, for the input data, returns the information that can later be used within the GNC algorithm
(Solano-López et al. 2019; Mohamed and Dongare 2018; Alameri 2019; Satir et al. 2021; Diwani et al.
2020).

The goal of this paper is to improve existing control methods by employing an efficient algorithm
based on a neural network. This is achieved by intelligently determining controller parameters during the
flight using only information from IMUs.

1.1 Contributions

This scientific research’s main contribution is the proposal of neural networks to implement guidance,
navigation and control systems for a short-range artillery rocket where GNSS signals are not a viable
option. This is achieved by predicting the required deflection of the rocket actuators solely using data
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provided by an IMU, thereby improving accuracy at the point of impact. The main advantage of this
advancement over the traditional one is that accuracy can be auto-improved during the neural network
learning process.

The proposed method is based on neural networks that predict the required movement of the canard
actuators on the man-pad rocket. The magnitudes measured by the IMU are used as inputs for neural
networks, and the required deflections of each of the four canard actuators are the outputs. This neural
network-based approach is capable of handling the significant coupling between lateral and normal rocket
nonlinear dynamics.

To build a realistic simulation campaign, it is proposed to use a flight dynamics model that reproduces
a highly dynamic rocket and takes into account non-linearities in aerodynamic forces and moments. The
simulation results demonstrate the accuracy and applicability of these algorithms in non-deterministic
environments, launch conditions, and projectile conditions.

This paper is organized as follows: Section II describes the system modeling in detail. Algorithms for
navigation, guidance, and control are covered in Section III. Section IV reveals the outcomes of simulations.
Finally, there is a discussion and conclusion.

2 SYSTEM MODELING

This section focuses on the description of the plant, the non-linear flight mechanics model, actuation and
sensor models used for navigation purposes.

2.1 Rocket Definition

The proposed guidance, navigation and control approach is applied to a 65 mm axis symmetric man-pad
rocket (de Celis et al. 2017). The rocket features extending canard control fins, and stabilizing rear wings
(see Figure 1). The maneuvering mechanism consists of a fuse attached to the tip of the rocket. It is made
up of four canard surfaces, decoupled two by two, to generate a control force in an orthogonal plane to
the rocket section, and its associated moment.

Canard Controls

Body

Wings

Figure 1: Rocket configuration.

Thrust profile is shown in Figure 2 and mass and aerodynamic data for the rocket are shown in Table
1 and Table 2, respectively. Note that Ix0 and Iy0 are initial inertia moments, XCG0 is the initial longitudinal
position of the center of mass (measured from the tip), CD0(M) is drag force linear coefficient, CD

α2 (M) is
drag force square coefficient, α is total angle of attack, CLα

(M) is lift force linear coefficient, CL
α3 (M) is

lift force cubic coefficient, Cm f (M) is Magnus force coefficient, CNq(M) is pitch damping force coefficient,
CMα

(M) is overturning moment linear coefficient, CM
α3 (M) is overturning moment cubic coefficient, CMq(M)

is pitch damping moment coefficient, Cmm(M) is Magnus moment coefficient, Cspin(M) is spin damping
moment coefficient, and CNδ (M) is the canard force coefficient. All the values for these parameters are
based either on experimental measurements, or on fluid dynamics numerical simulations and wind tunnel
verification. To keep continuity and derivability of thrust and aerodynamic profiles, with respect to time
and Mach number, respectively, a cubic spline interpolation is employed.



de Celis and Cadarso

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

time (s)

0

200

400

600

800

1000

T
h
ru

s
t 
(N

)

Figure 2: Thrust profile vs. time.

Table 1: Thrust and mass rocket parameters.

Parameter Initial mass Propellant mass Ix0 Iy0 XCG0 Caliber
Value 7.00 kg 1.50 kg 0.01 kgm2 0.25 kgm2 0.45 m 0.065 m

Table 2: Aerodynamic rocket parameters for different Mach numbers.

M CD0(M) CD
α2 (M) CLα

(M) CL
α3 (M) Cm f (M) CNq(M) CMα

(M) CM
α3 (M) CMq(M) Cmm(M) Cspin(M) CNδ (M)

0.00 0.51 6.87 8.82 -17.51 -0.54 22.88 -4.09 25.75 -30.22 0.88 -9.72 1.74
0.20 0.51 6.87 8.82 -17.51 -0.54 22.88 -4.09 25.75 -30.22 0.88 -9.72 1.74
0.60 0.58 7.04 9.71 -23.35 -0.64 25.92 -4.58 31.80 -35.08 1.05 -10.72 1.93
0.70 0.60 7.12 9.90 -24.27 -0.66 26.64 -4.13 28.95 -36.30 1.09 -10.80 2.03
0.80 0.63 7.21 10.07 -24.91 -0.68 27.42 -3.70 26.41 -37.72 1.13 -10.85 2.10
0.88 0.72 7.24 10.13 -24.98 -0.70 27.95 -3.45 25.08 -38.90 1.16 -10.85 2.10
0.90 0.79 7.23 10.13 -24.98 -0.71 28.13 -3.35 24.61 -39.33 1.17 -10.85 2.10
0.93 0.98 7.15 10.09 -24.93 -0.72 28.25 -3.26 24.13 -39.79 1.18 -10.85 2.10
0.95 1.11 7.11 10.07 -24.91 -0.72 28.41 -3.16 23.63 -40.26 1.19 -10.85 2.10
1.00 1.32 9.95 10.06 -6.45 -0.73 28.79 -2.96 26.42 -41.28 1.21 -10.85 2.10

2.2 Flight Dynamics Model

To construct the flight dynamics model, two axes systems are defined: body axes and earth axes. Sub
index b defines the body axes. xb points forward and it is embedded in the rocket’s plane of symmetry,
zb is perpendicular to xb and points down, also embedded in the rocket’s plane of symmetry. yb forms a
clockwise trihedron. The origin of the body axes is at the rocket’s center of mass. Earth axes, also known
as North-East-Down axes (NED) are defined by sub index e. xe pointing north, ze perpendicular to xe and
pointing nadir, and ye forming a clockwise trihedron. All forces and moments are to be expressed in these
axes, with the aim of obtaining flight dynamics and actuation equations. The following expressions, 1 to
5 have been tested and verified against real ballistic trajectories as it is explained in de Celis et al. (2017),
de Celis and Cadarso (2018).

Total external forces and moments for the rocket are given in 1:

[ −→
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−−→
Mext
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where
−→
D is drag force,

−→
L is lift force,

−→
M is Magnus force,

−→
P is pitch damping force,

−→
T is thrust force,

−→
W is weight force,

−→
C is Coriolis force,

−→
CF is actuators control force,

−→
O is overturn moment,

−→
PM is

pitch damping moment,
−→
MM is Magnus moment,

−→
S is spin damping moment and

−→
CM is actuators control

moment.
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Rocket forces in body axes are described in 2 and 3. They include contributions from drag, lift, Magnus,
pitch damping, thrust, weight, control and Coriolis forces:
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where d is rocket caliber, ρ is air density,
−→
Lb is rocket angular momentum in body axes, Ix and Iy are

rocket inertia moments in body axes, −→xb is rocket nose pointing vector in body axes, δi is the deflection
angle for each canard i, −→nbδi

is the normal vector to each canard i, −→gb is gravity vector in body axes,
−→
Ω

is earth angular speed vector, and −→vb is rocket velocity in body axes.
Rocket moments, which include overturning, pitch damping, Magnus, spin damping and control, are

showed in 4:
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Once the mathematical models for forces and moments are given, the equations of motion dynamics for
the rocket are formulated using a Newton-Euler approach. These equations are shown in 5. To relate the
reference systems, namely flat-Earth coordinate system (denoted by frame e) and the body-fixed coordinate
system b, Euler angles are employed: roll (φ ), pitch (θ ), and yaw (ψ) angles.

Note that all the presented mathematical expressions are nonlinear. For example, aerodynamic linear,
quadratic, and cubic coefficients depend on Mach number, which varies along the rocket flying performance.
Also notice that, it is assumed that fuse mass is negligible, which practically means the reactions between
fuse and aft part of the rocket may be sidestepped.[ −→

Fext ,
−−→
Mext

]
=
[

dm−→vb
dt +−→ωb×m−→vb , d

−→
Lb
dt +−→ωb×

−→
Lb

]
(5)

2.3 Sensors

An IMU sensor is introduced to track the navigation of the rocket. The motivation for introducing this
system is to avoid jamming from external sources, while allowing a good performance.

The sensor is modeled by means of a bias and a random noise, which are added to the calculated
position and attitude. Note that when these kind of systems are employed for short trajectories, accuracy
must be on the order of magnitude of 0.1 mili-g (where g is the modulus of gravity acceleration) for
accelerometers and 0.01 degrees per second for angular speeds.

3 GUIDANCE, NAVIGATION AND CONTROL

This section describes the proposed guidance, navigation and control (GNC) algorithms.

3.1 Navigation

Navigation process refers to the determination of the rocket position and attitude as well as the target
position and velocity during the whole trajectory. The aim is to obtain rocket angular parameters and the
line of sight between rocket and target.
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Using mechanization equations, the IMU calculates position, velocity, and attitude vectors by integrating
accelerations and angular velocities in body axes. (Britting 1971). Consequently, wind angles, namely bank
(µ), flight path (γ) and heading (χ), can be obtained from velocity vector and Euler angles (φ ,ψ,θ) (Hull
et al. 2007). The Mach number (M) can also be estimated using the ISA model (International Organization
for Standardization 1975), together with position, and velocity vector.

Line of sight (
−−−→
LOSe) may be calculated in earth axes by subtracting rocket position (−→re ), determined

by IMU sensors, from target position −→t pe, which may be communicated to the GNC system, e.g., by a
external data link in the launcher.

3.2 Guidance Law

A modified proportional law is proposed for the guidance of the rocket. Guidance is only activated when
the rocket has burnt the fuel on board (de Celis et al. 2017). The mathematical expression for the proposed
guidance is described by equation 6:

[
ndemh

ndemv

]
= N

 d
dt

[
atan

(−−−→
LOSe·

−→
je−−−→

LOSe·
−→
ie

)]
− χ̇

d
dt

[
atan

(−−−→
LOSe·

−→
ke−−−→

LOSe·
−→
ie

)]
− γ̇

 ˙||−−−→LOSe||, (6)

where ndemh and ndemv are horizontal and vertical demanded load factors, respectively, expressed in body
axes and, N is the proportional navigation constant, which has been set to three (note that this value has
been obtained from experimental results).

3.3 Control System

The proposed control system is based on modern control theory. Its bases are as follows. Firstly, the system
is linearized on the working point. Secondly, a closed loop feedback, which features tuneable gains, is
implemented. Thirdly, a neural network is implemented to aid the system finding the most suitable gains
to keep high levels of stability and performance. Finally, the actuator strategy is presented.

3.3.1 Linearization

The system is linearized at each of the Mach numbers in Table 2. It is also linearized at five different
points during rocket fuel burn, i.e., for different rocket masses. When linearizing equations 1, 2, 3, 4, and
5, the following assumptions hold:

• Rocket movement is restricted to the horizontal (Xe−Ye) plane.
• The body of the rocket is axis-symmetrically perfect.
• Flight angles are small enough such that trigonometric functions may be linearized.

Note that due to the geometry of the rocket, which is axis-symmetric, the linearization of the equations
of motion is only presented for one of the planes of motion, i.e, the horizontal plane. Consequently,
equations 7 approximate rocket motion in the horizontal plane:

ρV 2S
(
CLα

(M)α + d
2V CNq(M)ψ̇ + d

2V CNq(M)α̇ +CNδ δ
)
= 2m(t) ·V · χ̇

ρV 2Sd
(

CMα
(M)α + d

2V CMq(M)ψ̇ + d
2V CMq(M)α̇ +CNδ (M)

CMα (M)
CLα (M) δ

)
= 2Iy(t)ψ̈

ψ−χ = α

ψ̇− χ̇ = α̇,

(7)

where V is rocket speed (note that V = aM, where a is the speed of sound), and α is the angle of attack
(the rest of variables have been previously defined).

The equations in 7 can be rewritten as a matrix equation, as it is shown in 8:
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ψ̇
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 [δ ]−→ Ẋp = Ap(M, t)
−→
Xp +Bp(M, t)

−→
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where Ai and B j are functions aerodynamic coefficients and mass for i = 1, ...,6 and j = 1,2, which basically
means they are functions of Mach number and time.

In rocket guidance, command input to the control system is usually a load factor, ndem, which may be
expressed as a function of χ̇: ndem = χ̇V/g. Note that load factors may be measured by the accelerometers
in the IMU. Similarly, ψ and its derivative can be measured by the IMU. From n, ψ and ψ̇ , χ̇ can be
easily determined (Hull et al. 2007). The equation of measurements in 9 allows its calculation.

 n
ψ

ψ̇

=

 V
g A1(M, t) V

g A2(M, t) V
g A3(M, t)

0 1 0
0 0 1

 χ

ψ

ψ̇

+
 V

g B1(M, t)
0
0

 [δ ]−→−→Yp =Cp
−→
Xp +Dp

−→
Up (9)

3.3.2 Closed-loop Feedback System

Analyzing the system in 8, three poles may be identified. Consequently, a modern theory based closed-loop
controller is proposed. Its scheme is shown in Figure 3.

𝛿
∫+/+ B C

A

K

+/−
𝑛𝑑𝑒𝑚 𝑛

Figure 3: Closed-loop feedback scheme.

Robust pole placement techniques are used to determine the values of K in the linearization points
(see Chilali et al. (1999) for more details on this). After that, to determine the values of the controller
constant matrix K outside the linearization points, and to provide a self-programming method, the following
machine learning techniques, which are based on neural networks, are implemented.

3.3.3 Neural Network

The calculation of K outside the linearization points is based on neural networks. The aim is to get a high
accuracy on its determination process by combining the calculated values at the linearization points with
a self-learning process.

Machine Learning techniques have already been used in both traditional and modern GNC applications
(see Yu et al. (2004), Jankovic et al. (2016), Mohamed and Dongare (2018), Villa et al. (2020)). Regarding
neural networks, its main advantage against other approximations consists of their ability to learn flight
dynamics equations. This capability enables flight prediction without knowledge of the application’s
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physics (Yadav et al. 2015). Therefore, it is possible to replicate the determination process of K outside the
predefined operating points. It should be noted that the use of neural networks to solve nonlinear equations,
even when there is uncertainty, has been demonstrated to be successful (Yadav et al. 2015).

A neural network is employed to estimate the values in the K matrix to be used in the controller
closed-loop. The network features two-layers with one hundred standard sigmoid hidden neurons and a
linear output neuron. The number and shape of neurons, as well as the amount of training and validation
data chosen, are based on a review of the literature (specifically Yadav et al. (2015)) and a hyperparametric
study. As a result, the number of 100 was obtained to be significant as the number of neurons, while
sigmoid activation functions were employed. Other settings were tested. However, the obtained results
were significantly worse (by more than a 10%) as compared to the results provided by the proposed settings.

The input vector of the neural network is composed of two components, time and Mach number. The
target is composed of all the components of the K matrix, i.e., K1,1, K1,2, and K1,3. Consequently, the
training aims at replicating flight dynamics: for each time instant and Mach number of flight, the optimal
values for K1,1, K1,2, and K1,3 are to be calculated. Table 3 shows an example of the available 108 rows
of data, which are obtained from ten thousand shot simulations, where initial and contour conditions are
varied to minimize bias and avoid overfitting. The architecture of proposed neural network is showed in
Figure 4.

Levenberg-Marquardt backpropagation algorithm is used to train the network with 70% of the available
data, which is presented to the network during training, and the network is adjusted according to its
error (Kanzow et al. 2005). Note that a representative amount of input and target data are left aside for
validation purposes. In this case, as current practice, 15% of the available data is used to measure network
generalization, and to halt training when generalization stops improving. Finally, the remaining 15% is left
for testing, which has no effect on training and so provides an independent measure of network performance
during and after training.

The performance of the training algorithm can be quantified by means of the Mean Squared Error (MSE)
and the Regression (R2) parameter values. The MSE is defined as the average squared difference between
the outputs and the targets. Lower values are preferable. There is no error if the value is zero. R2 values
quantify the relationship between outputs and goals. An R2 value of one indicates a close relationship,
while a value of 0 indicates a random relationship. Other indicators (such as Mean Average Error, MAE)
can also be used to monitor and validate the training while over-fitting is avoided. The training process is
considered complete when the MSE stops improving.

After 1000 iterations and a validation process, a MSE value of 2.1 ·10−4 and a R2 value of 0.997 are
obtained. As shown in the numerical simulations in the next section, these results are sufficient for the
studied application, as circle error probable is reduced. In addition, the trained neural network is tested
with the independent data (15% of the collected data), producing similar MSE and R2 values.

Table 3: Neural network input and target values.

Inputs Target
t(s) Mach K1,1 K1,2 K1,3

0.700 0.7668 0.0291 -0.5542 0.856
1.011 0.006 -0.711 0.006 0.824

... ... ... ... ...

3.3.4 Actuator Strategy

Previous two dimensional controller is implemented twice, i.e., for vertical and horizontal control. Controller
outputs, which are canard deflections, are set to be a specific value before fuel burnt is ended. During fuel
burn horizontal canard deflection is set to 0 and vertical is set to a fixed value, which varies depending on
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Figure 4: Neural network scheme.

target location according to a linear law. The further the target is, the higher the initial canard deflection.
This approximation has been done to set the rocket initial launch angle as a constant.

4 NUMERICAL SIMULATIONS

The proposed nonlinear equations of motion are integrated forward in time. A fixed time step Runge-Kutta
scheme of fourth order is used to obtain a single flight trajectory. The validation of this approach for
ballistic flights is shown in de Celis et al. (2017). To demonstrate the accuracy of the results provided by
the proposed novel approach, which is based on neural networks, they are compared to the results obtained
from a conventional controller method, e.g., the one in de Celis et al. (2017). MATLAB/Simulink R2020a
on a desktop computer with a Intel i9 processor and 32 GB RAM is employed in the simulations.

The rest of this section is divided in three subsections. Firstly, non controlled ballistic trajectories are
presented. Secondly, controlled Monte Carlo simulations are showed. Finally, comparison of conventional
controller against the proposed solution here is conducted.

4.1 Ballistic Trajectories

To test the developed algorithms, three nominal trajectories will be employed. A total of 10,000 simulations
are conducted. Nominal impact points are set to 750 m, 850 m, and 950 m. In order to reach these ranges,
initial shot angles have been set using artillery shot tables for projectile. Initial lateral correction is set to
compensate Coriolis and gyroscopic forces. Results of the simulations are shown in Figure 5. Each of
the three subplots represents, from left to right, the ballistic shots trajectories for impact points at 750 m,
850 m, and 950 m, respectively. As it can be observed, dispersion at impact point is significant. Numeric
results are shown in Table 5.

Figure 5: Ballistic flights for different impact points.

4.2 Monte Carlo Simulations

Monte Carlo analysis is conducted to determine closed-loop performance across a full spectrum of uncertainty
at initial conditions, sensor data acquisition, atmospheric conditions, thrust properties and aerodynamic
coefficients. Uncertainty in aerodynamic coefficients should always be carefully addressed. Aerodynamics
are usually modelled by means of analytical and simulation methods, with limited experimentation, and
accuracy of estimated values could slightly differ from reality, but in any case controller is designed to
avoid this problem. Uncertainty model details are provided in Table 4, where Nom. stands for nominal
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value. Note that uncertainty model for sensors is defined in Section 2.3. A set of 10,000 shots is performed
for each of the following: ballistic shots, conventional controller shots and neural network based controller
shots. Then, a total of 30,000 simulations are performed. Note that this simulation campaign is different
from one employed for neural network training.

Table 4: Monte Carlo simulation parameters.

Parameter (deg) Initial φ Initial Pitch Wind Speed Wind Direction Thrust Initial azimuth
Mean 0◦ Nom. 10 m/s 0◦ T(t) Nom.

Standard Deviation 20◦ 0.01◦ 5 m/s 20◦ 10 N 0.01◦

Parameter (deg) CD0(M) CD
α2 (M) CLα

(M) CL
α3 (M) Cm f (M) CNq(M)

Mean Nom. Nom. Nom. Nom. Nom. Nom.
Standard Deviation 10% of Nom. 5% Nom. 10% of Nom. 5% of Nom. 10% of Nom. 10% of Nom.

Parameter (deg) CMα
(M) CM

α3 (M) CMq(M) Cmm(M) Cspin(M) CNδ (M)

Mean Nom Nom. Nom. Nom. Nom. Nom.
Standard Deviation 10% of Nom. 5% of Nom. 10% of Nom. 10% of Nom. 10% of Nom. 10% of Nom.

4.3 Discussion

Results for ballistic trajectories, neural network based controller and conventional controller approaches are
shown in Figure 5, Figure 6 and Figure 7, respectively. Each of them are composed of three sub-figures,
representing trajectories, from left to right, for impact points set to 750 m, 850 m, and 950 m. Note
that controlled flights are only IMU assisted. The circular error probable (CEP) for each of the impact
points and for each of the trajectories, namely ballistic, conventional controller and neural network based
controller, are shown in Table 5. Note that even with an conventional or neural network based controllers,
there are still errors associated to the aerodynamic response of the rocket. As a general remark, controlled
flights exhibit tighter impact groupings, getting similar results for both controllers. Note that improvements
or reductions on the CEP of 99% are obtained. The main advantage of the proposed approach is that it
can achieve high levels of precision in the presence of uncertainty and disturbances without the use of
expensive components.

Figure 6: Detailed shots for neural network controlled trajectories.

Table 5: Circular Error Probable for different algorithms.

Nom. Impact Point (m) Ballistic (m) Conventional controller (m) Neural network Controller (m)
750 124.27 0.54 0.55
850 127.44 0.51 0.50
950 131.18 0.58 0.52
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Figure 7: Detailed shots for conventional controlled trajectories.

5 CONCLUSIONS

A novel approach has been developed that is based on an innovative neural network-based controller. The
proposed method aims at improving the precision of man-portable air-defense systems during guidance,
thereby improving the precision at the impact point. Small errors of less than one meter have been achieved
in IMU systems. It is proposed to use a modified proportional navigation law, which is integrated with the
previously described novel control technique based on neural networks.

The novel proposed methodology demonstrates that accuracy levels can be improved or matched when
compared to other methodologies, while exhibiting higher levels of precision in the presence of uncertainty
and disturbances without the use of expensive components.

Future research will focus on hardware in the loop testing. This additional testing will demonstrate
in real settings the effectiveness of the presented approach. In addition, the methodology could be used
in other aerial platforms. In this case, it would be necessary to reformulate the dynamics model and to
recalculate all the masic and aerodynamics parameters.
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Solano-López, P., R. de Celis, M. Fuentes, L. Cadarso, and A. Barea. 2019. “Strategies for high performance GNSS/IMU
Guidance, Navigation and Control of Rocketry”. In 8th European Conference for Aeronautics and Space Sciences. July
1st-3rd, Madrid, Spain.

Theodoulis, S., V. Gassmann, P. Wernert, L. Dritsas, I. Kitsios, and A. Tzes. 2013. “Guidance and control design for a class
of spin-stabilized fin-controlled projectiles”. Journal of Guidance, Control, and Dynamics 36(2):517–531.

Villa, J., J. Taipalmaa, M. Gerasimenko, A. Pyattaev, M. Ukonaho, H. Zhang, J. Raitoharju, N. Passalis, A. Perttula, J. Aaltonen
et al. 2020. “aColor: Mechatronics, Machine Learning, and Communications in an Unmanned Surface Vehicle”. In
Proceedings of 8th Transport Research Arena TRA 2020. April 27th-30th, Helsinki, Finland.

Waltz, E. L., and D. M. Buede. 1986. “Data fusion and decision support for command and control”. IEEE Transactions on
Systems, Man, and Cybernetics 16(6):865–879.

Wang, X., J. Wang, and G. Gao. 2015. “Partial integrated missile guidance and control with state observer”. Nonlinear
Dynamics 79(4):2497–2514.

Yadav, N., A. Yadav, and M. Kumar. 2015. An introduction to neural network methods for differential equations. 1st ed.
Dordrecht, Netherlands: Springer.

Yu, J.-Y., Y.-A. Zhang, and W.-J. Gu. 2004. “An approach to integrated guidance/autopilot design for missiles based on terminal
sliding mode control”. In Proceedings of 2004 International Conference on Machine Learning and Cybernetics (IEEE
Cat. No. 04EX826), edited by IEEE, Volume 1. New York, U.S.A: IEEE.

Zhang, X., Z. Yang, T. Sun, H. Yang, K. Han, and B. Hu. 2017. “Optical system design with common aperture for mid-infrared
and laser composite guidance”. In Second International Conference on Photonics and Optical Engineering, Volume 10256,
102560S. International Society for Optics and Photonics.

Zhang, Y., M. Sun, and Z. Chen. 2012. “Finite-time convergent guidance law with impact angle constraint based on sliding-mode
control”. Nonlinear Dynamics 70(1):619–625.

Zhao, J., and R. Zhou. 2015. “Unified approach to cooperative guidance laws against stationary and maneuvering targets”.
Nonlinear Dynamics 81(4):1635–1647.

AUTHOR BIOGRAPHIES
RAUL DE CELIS is an associate professor in aerospace area at Rey Juan Carlos University. He received his Ph.D. degree
from Universidad Rey Juan Carlos in December 2017. His research interests are model development of aeronautic systems
and navigation and control for aerial platforms. His email address is raul.decelis@urjc.es.

LUIS CADARSO is an associate professor in aerospace area at Rey Juan Carlos University. He received the Ph.D. degree in
Aerospace Engineering from the Technical University of Madrid, Spain. His research interests include operations research ,
navigation, and control for aerial platforms. His email address is luis.cadarso@urjc.es.

mailto://raul.decelis@urjc.es
mailto://luis.cadarso@urjc.es

	INTRODUCTION
	Contributions

	SYSTEM MODELING
	Rocket Definition
	Flight Dynamics Model
	Sensors

	GUIDANCE, NAVIGATION AND CONTROL
	Navigation
	Guidance Law
	Control System
	  Linearization
	  Closed-loop Feedback System
	  Neural Network
	  Actuator Strategy


	NUMERICAL SIMULATIONS
	Ballistic Trajectories
	Monte Carlo Simulations
	Discussion

	CONCLUSIONS

