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ABSTRACT 

The focus on customer orientation as well as on-time production and delivery portray the competitive 
environment for manufacturing companies in the semiconductor industry. Customer-specific products must 
be manufactured due to specified lead times and according to promised delivery dates. In this context, 
questions as to whether the production target is feasible and if all previously promised delivery dates will 
be met are often answered with backward-oriented planning approaches without taking into consideration 
any uncertainty or alternatives, that arise during operations. Regarding complex manufacturing systems 
(here semiconductor with re-entry cycles), these questions can be answered in a more detailed and robust 
by a discrete event-based simulation (DES) approach used in a backward-oriented manner. Research results 
show that the taken approach can be applied successfully for the scheduling of customer-specific orders in 
a real-world setting. 

1 INTRODUCTION 

The intensification of global business and an advancing digital transformation, together with more 
customer-oriented and on-time production and delivery, are defining competitive factors for manufacturing 
companies. The constant development of the vision of Industry 4.0 - in the future also Industry 5.0 (Breque 
et al. 2021) - and the concept of a "smart factory" for customisable products in small batch sizes 
continuously pose new challenges for work preparation as well as operative production planning in 
connection with high cost, time and quality pressure. However, modern, complex and highly automated 
production systems must be operated in an "optimal operating state" as far as possible in order to be 
economically successful. Promised delivery dates and throughput times defined in framework agreements 
must be ensured and require a permanent (effective) adjustment of production planning and control in daily 
execution. All other general conditions of economic production remain unchanged and continue to apply. 

Compared to other industries, the production systems and processes of semiconductor manufacturing 
addressed in this article have an exceptionally high level of complexity. The production technologies used 
in the micro- and nanometre range are very sensitive with regard to process stability, resulting in complex 
control logics. Depending on various characteristics defined in advance, individual production batches also 
require a very large number of production steps (sometimes more than a thousand). In some cases, 
individual production batches within the ordered product mix must be processed several times with a high 
level of automation and under cleanroom conditions using special and sometimes the same machines and 
transport routes (re-entry cycles). The complexity often results in rejects of manufactured products of a 
relevant magnitude, which must be compensated for at short notice by additional infeeds. In most cases, 
questions in the context of detailed production planning can only be answered inadequately or not at all by 
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means of existing tools for generating flow charts and, consequently, conventional planning procedures. 
Incalculable repercussions of such inadequate sequence planning have a considerable influence on the 
overall performance and, in view of the increasing competitive situation and the company's own position 
on the market, hold immense optimisation potential for manufacturing companies in the field of 
semiconductor production as well as in general. 

Within the EU-ECSEL research project iDEV40 (presentation of the overall project at www.idev40.eu), 
application scenarios of backward-oriented material flow simulation in semiconductor manufacturing are 
being developed. Although the basic feasibility of this method at the factory level was proven in relevant 
preliminary work (Arakawa et al. 2002; Graupner et al. 2004), it had to be adapted to the specifics of the 
semiconductor industry and re-tested in the project. As a significant extension to the authors' own previous 
work (e.g. Scholl et al. 2014) and a first publication from the research project with a test model (Laroque 
et al. 2020), this article describes more recent results based on a "real-world use-case" and thus shows the 
potential and limitations of the method more specifically than before. 

After a brief presentation of the scientific state of the art and an explanation of the principle solution 
approach, project results will be described and presented in detail. Finally, a summary describes the next 
steps in the project. 

2 BACKWARD SIMULATION 

In line with ensuring competitiveness, production planning and control (PPC) today focuses on a number 
of key measures. These include, in addition to shortening lead times, meeting quality requirements while 
keeping inventories as low as possible and meeting promised delivery dates, equally increasing throughput 
as well as the current availability and added value of individual production facilities (Overall Equipment 
Effectiveness). The target variables described here and the resulting planning tasks are decisively 
influenced by production planning and scheduling mechanisms, making overarching optimization 
approaches necessary to bring about a noticeable improvement (Jain and Chan 1997). 

Besides conventional methods of mixed-integer optimization, different heuristics or simple forward or 
backward scheduling (with or without capacity constraints), this paper deals with a discrete event-driven 
simulation (DES) approach in terms of backward simulation. Models for DES can represent an exact replica 
of a real system according to its operation over time, are easy to parameterise and take into account the 
variability of reality by allowing random effects to be incorporated into the models via stochastic 
components (Banks 1998; Law and Kelton 2000). In addition, DES can represent equally nested resource 
relationships, maintenance procedures and specific flow, priority, batch or set-up rules. Based on this and 
the input of a concrete production target into such a simulation model, DES can be used to answer questions 
regarding the feasibility of the production target and compliance with previously agreed delivery dates (in 
the best possible way). Such an application is particularly suitable for planning in the field of semiconductor 
production.  

The approach for the analysis of temporally backward planning problems (in the following: backward 
simulation) concretises a reversal of the flow logic of a simulation and the resulting backward execution of 
the same.  According to this, the advantages of simulation also come to bear in the application of backward-
oriented planning (Huang and Wang 2009; Schumacher and Wenzel 2000). According to Jain and Chan 
(1997), backward simulation can be regarded as an efficient tool for implementing backward scheduling. 
Following this, sequencing and scheduling based on backward simulation combines the solution quality of 
conventional scheduling approaches and the execution speed of simulation-based scheduling approaches. 
Initial application studies in which jobs are scheduled backwards using backward simulation have been 
available for more than fifteen years. Watson et al. (1993 and 1997), Ying and Clark (1994) and Jain and 
Chan (1997) use such methods to calculate the release times of orders or lots even under stochastic 
characteristics of the models. 

Modelling a backward execution of a flow simulation requires some careful considerations beforehand 
in order to be able to make a correct reversal in the context of the material flow to be modelled and to break 
away from the mindset of a forward modelling. These considerations relate in particular to a reversal of 
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individual production processes - for example, an assembly into a disassembly - and intended control rules 
(Jain and Chan 1997). However, the latter control rules cannot always be transferred one-to-one to the 
corresponding backward counterpart. Analogous to backward scheduling in PPS systems, backward 
simulation is also carried out in combination with forward simulation runs in order to once again validate 
the resulting plans. According to Graupner et al. (2004), such a combined execution can unite the 
advantages of both simulations and compensate for possible modelling discrepancies of the backward 
simulation. 

Basically, modelling a backward-oriented execution of a flow simulation always entails a reversal of 
the source-sink relationship. In concrete terms, this means that orders or batches are fed into the system at 
the points where they leave it in the forward-oriented execution. Conversely, they leave the backward 
counterpart at the insertion points of the forward-oriented process simulation ("from product to raw 
material"). Nevertheless, the backward simulation is not to be understood as a pure "inverse function" of 
the forward simulation. Forward and backward simulation do not have to have the same state at the same 
calculated simulation time (Ying and Clark 1994). 

In the domain of semiconductor manufacturing, the authors have successfully realised and published 
initial examples in recent years (Scholl et al. 2014; Laroque et al. 2020). Following on from this, the model 
considered in this paper will now also take into account special properties of semiconductor manufacturing 
(see above). 

3 RESULTS 

The modelling of a pre-assembly process from the area of semiconductor manufacturing (Fig. 1) represents 
the starting point for the investigations described below in the course of backward modelling and 
simulation. The model is provided by an industry partner for testing the methodological approach to 
backward simulation and can be considered "valid" (face validity) according to Sargent (2010).   

 

Figure 1: Overview of the model structure of the real model example 

In the selected process section, various machine systems of different complexity are used, which were 
essentially mapped within the main model MAIN. Complex sub-processes in the form of the machine 
systems MONTAGE, PROCESS20 and PROCESS40 were mapped in sub-models of the same name and 
embedded in the main model accordingly. The embedded sub-models follow a developed set of rules that 
is supposed to emulate a so-called same-setup rule and in this way coordinate and process the incoming 
batches within the simulation. Following this, the sub-model MONTAGE, for example, comprises a total 
of four parallel process chains that map the available sub-machines for this process step. Depending on a 
certain batch-related parameter, the incoming batches are then transmitted to a suitable (free) machine. If 
all the machines that are suitable for a specific batch are occupied, a free sub-machine is forced to retool 
and the batch is transmitted accordingly to the model component concerned. The coordination and 
processing of incoming batches is also (additionally) carried out in most parts of the model according to 
the heuristic priority rule procedure First In First Out (FIFO). 
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The starting point of the forward-looking simulation model (starting point of the analysis) are job data, 
which are fed into the model in tabular form over a period from December 2019 to April 2020. The jobs 
are defined by a series of parameters (e.g. processgroup, basictype or producttype) in order to ensure that 
the incoming batches can be assigned throughout the entire simulation run. Accordingly, special routes 
result depending on the product type (parameter producttype) of an job. In the course of this, various 
condition-based divisions of the selected process section into Product A, Product B and Product C as well 
as Product D are possible, for example. 

As a result of modelling a discrete-event backward simulation (Fig. 2), the main model MAIN served 
as the starting point. The embedded sub-models MONTAGE, PROCESS20 and PROCESS40 as well as 
less complex machine systems (for example PROCESS50 and PROCESS60) are considered and modelled 
in reverse order. The used same-setup rule could easily be adopted and integrated into the backward 
modelling. In contrast, the heuristic priority rule procedure First In – First Out (FIFO) is reversed to Last 
In – First Out (LIFO) following a forward-looking view, but in the course of a way of thinking regarding 
the backward flow within a backward-looking execution of the simulation model, it is equally adopted as 
First In – First Out (FIFO). In addition, the resulting discrete-event backward simulation has taken job-
specific information from the forward modelling and served as the basis for various extensive simulation 
experiments in order to be able to best emulate the model behaviour  and to exclude temporal discrepancies 
in the simulation as far as possible. Some of the resulting results will be presented in the following. 

 

Figure 2: Model structure of the discrete-event backward simulation 

The starting point for the experimental trials are delivery dates (due dates) generated by a forward 
simulation run (based on the originally stored job data). As a result of an adjustment, the resulting delivery 
dates form the input data for the actual backward simulation. The necessity of adjusting the resulting 
delivery dates is due to the fact that existing simulation tools look at the underlying planning period of a 
simulation from a forward perspective. A "simple" input of the resulting delivery dates in time-descending 
order into the backward counterpart of the simulation model therefore remains without a positive result, so 
that the delivery dates generated from the forward simulation first had to be adapted with regard to a 
backward execution of the sequence simulation. The adjustment of the resulting delivery dates, which are 
assumed to be "real" delivery dates in the following, resulted in a delay in the start of the simulation time 
(December 2019 to April 2020) compared to the scheduling VWS0, starting from the last completed job 
(job no. 2119). For the further adjustment, the delivery date of the last completed job was then added to the 
difference between its dueDateVWS0 and a dueDateVWS0 of an earlier delivery date. The resulting 
scheduling RWS1 (Fig. 3) was then entered into the simulation model for a backward-calculated execution. 
In the context of a renewed adjustment and a scheduling VWS1 (Fig. 4), an answer can then be given to the 
question of when concrete production jobs are to be scheduled in order to ensure that promised delivery 
dates are feasible and fulfilled in terms of time. According to Sargent (2010), this necessary confirmation 
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through the forward simulation VWS1 simultaneously validates the simulation results (scheduling) from the 
backward simulation RWS1 (event validity). 

 

Figure 3: Adjustment in accordance with a scheduling RWS1 

 

Figure 4: Adjustment in accordance with a scheduling VWS1 

For a categorisation and evaluation of delivery dates resulting from the backward simulation and a 
subsequent forward simulation, the time intervals much earlier, earlier, on time, later and much later were 
defined. These time intervals are each dependent on the original due dates. The time interval much earlier 
is used to categorise all jobs that have a delay t > 6h due to the scheduling of the backward simulation. In 
contrast, the time interval much later categorises jobs that show a delay t > 6h. The time intervals earlier 
and later indicate, analogously, an early arrival or delay of t ≤ 6h as well as t > 3h, while the time interval 
on time includes all jobs within t ≤ 3h around the "real" delivery date. 

In a first step, and with the aim of comparing the solution quality of the scheduling VWS1 determined 
from the backward simulation with competing scheduling methods of capacity-constrained backward 
scheduling, the scheduling from the backward simulation, a backward scheduling RT1 according to the 
difference of dueDatesVWS0 and avCycletimeVWS0 as well as a backward scheduling RT2 according to 
the difference of dueDatesVWS0 and avCycletimeVWS0 are compared according to product type (Tab.1). 

Table 1: Comparison of backward simulation with planning procedures of deterministic backward 
scheduling 

 much 
earlier 

[%] earlier [%] on time [%] later [%] much 
later 

[%] 

VWS1 668 31.49 489 23.06 874 41.21 43 2.03 47 02.22 

RT1 1848 87.13 0 00.00 0 00.00 0 0.00 273 12.87 

RT2 1987 93.68 38 01.79 42 01.98 7 0.33 47 02.22 

 

The results of the contrasted methodological approaches for generating a scheduling by backward 
simulation and competing planning procedures of deterministic backward scheduling indicate that the 
method of backward simulation can make the scheduling in connection with the resulting delivery dates 
much more reliable. Consequently, 41.21 percent of all jobs are completed on time in a time interval t ± 3h 
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according to a scheduling VWS1, while the competing scheduling methods of deterministic backward 
scheduling only achieve a value of 0.00 percent according to a scheduling RT1 and a value of 1.98 percent 
according to a scheduling RT2. In addition, the results show, more or less, clear advantages on the side of 
an scheduling by backward simulation with regard to a time interval t > 6h (before and after the assumed 
"real" delivery date), i.e. that the resulting delivery dates scatter much more precisely around the fixed (or 
assumed) delivery dates. 
In the following, the solution quality of the scheduling VWS1 determined from the backward simulation is 
compared to a scheduling with stochastic backward simulation mSTO (Tab. 2) after several test runs STO1 
to STO10 (mSTO is the mean value of the determined scheduling dates). The resulting values tend to show 
more delays for the test runs with the mean mSTO compared to the deterministic backward simulation. 

Table 2: Results of stochastic backward simulation on average 

 much 
earlier 

[%] earlier [%] on time [%] later [%] much 
later 

[%] 

VWS1 668 31.49 489 23.06 874 41.21 43 2.03 47 2.22 

mSTO 759 27.31 467 22.01 842 39.70 127 5.98 106 5.00 

 

In general, it must be noted that the categorisation of the resulting delivery dates and the associated 
definition of the time intervals described here is not (always) optimal compared to the assumed original 
delivery date. Accordingly, the resulting delivery dates of the jobs, both in relation to a backward simulation 
and according to competing planning procedures of capacity-constrained backward scheduling, sometimes 
arrange themselves only slightly later or earlier in the nearest time interval. 

A subsequent investigation determines, on the basis of the scheduling of stochastic backward simulation 
after several test runs, an additional scheduling according to a certain relative size of an order (Tab. 3). 
Within the framework of the resulting scheduling and the simulation runs KK3 to KK9, the third earliest 
(KK3) to second latest (KK9) scheduling dates from the stochastic backward simulation STO1 to STO10 
are taken over. 

Table 3: Results of stochastic backward simulation after several test runs according to a certain relative size 
of a job 

 much 
earlier 

[%] earlier [%] on time [%] later [%] much 
later 

 [%] 

VWS1 668 31.49 489 23.06 874 41.21 43 2.03 47 2.22 

KK3 1545 72.84 233 10.99 192 09.05 46 2.17 105 4.95 

KK4 1508 71.10 284 13.39 205 09.67 41 1.93 83 3.91 

KK5 1448 68.27 310 14.62 246 11.60 46 2.17 71 3.35 

KK6 1406 66.29 300 14.14 283 13.34 40 1.89 92 4.34 

KK7 1260 59.41 389 18.34 359 16.93 33 1.56 80 3.77 

KK8 1250 58.93 398 18.76 381 17.96 25 1.18 67 3.16 

KK9 1194 56.29 365 17.21 427 20.13 50 2.36 85 4.01 
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The results of a stochastic backward simulation according to a certain relative size of a job and, 
following this, the simulation runs KK3 to KK9 show that the number of on time completed jobs amounts 
to a share between about 9.1 percent and 20.1 percent. With regard to a time window of t ± 6h compared to 
the assumed "real" delivery date, on the other hand, between 22.3 percent and 39.7 percent of the jobs are 
completed. The 39.7 percent refer to the simulation run with the second latest delivery date of each job, 
while the 22.3 percent refer to the simulation run with the third earliest delivery date. This fundamentally 
illustrates once again the previously highlighted advantages of the methodical approach of backward 
simulation, in that the determined delivery dates still scatter precisely around the assumed "real" delivery 
dates than with the two planning procedures of deterministic backward scheduling used. Furthermore, on 
the basis of simulation runs KK3 to KK9, it can be stated that later scheduling (for each job individually) 
results in more reliable delivery dates overall compared to the assumed "real" delivery dates. In the 
following, this paper will now concentrate on a comparison of the onboarding scheduling VWS1 determined 
from the backward simulation and the onboarding scheduling RT2 resulting from the backward scheduling. 

In a direct comparison, 98.4 percent of the jobs are inserted earlier into the test model following an 
scheduling RT2 compared to an scheduling VWS1 determined from the backward simulation. Such an 
earlier scheduling, which is shown in Figure 5 as an example over a period of two weeks, takes place in an 
average time window of 28.7 hours. The remaining 1.6 percent, on the other hand, can be assigned to a later 
insertion date and a subsequent later scheduling within a time window of 10.3 hours on average. 

 

Figure 5: Comparison of a scheduling VWS1 (grey) and a scheduling RT_2 (black) 

As a result, these results once again show clear advantages with regard to a scheduling VWS1 following 
the backward simulation. Accordingly, jobs can be scheduled significantly later on average within a 
scheduling VWS1 and yet 97.8 percent of all jobs on which this study was based meet the assumed "real" 
delivery date. Within a scheduling RT2 and a time interval much earlier up to and including later, the 
number of jobs that meet the assumed "real" delivery date is also 97.8 percent, but most of them have to be 
scheduled twice as early on average as within a scheduling VWS1 - in direct comparison to a scheduling 
VWS0. Whereas according to VWS1, an earlier scheduling compared to an scheduling VWS0 takes place in 
a time window of 8 hours on average and a later scheduling in a time window of 32.5 hours on average, 
according to RT2, an earlier scheduling in this respect takes place in a time window of 16 hours on average 
and a later scheduling even in a time window of 21.5 hours on average. In addition, 93.7 percent of the jobs 
can be assigned to a time interval much earlier, i.e. the jobs are completed according to an early start t > 6 
hours and lead in this context to an increase in stock. The methodical approach to generate a scheduling by 
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backward simulation can contribute noticeably to a reduction of the warehouse stock or to a maintenance 
of low stocks. 

A subsequent comparison of the onboarding scheduling VWS1 determined from the backward 
simulation with onboarding scheduling according to stochastic backward simulation mSTO in the sense of 
several test runs (STO1 to STO10), which is shown once again in Figure 6 as an example over a period of 
two weeks, illustrates that the methodical approach for generating onboarding scheduling by backward 
simulation can also deliver promising results when stochastic influences are taken into account. 
Accordingly, as a result of an scheduling according to stochastic backward simulation mSTO compared to 
an scheduling VWS1, 87.1 percent of the jobs are still inserted into the test model earlier, but such an earlier 
scheduling takes place in an average time window of 4.7 hours. The remaining 12.9 percent can then be 
assigned to a later scheduling date and subsequently to a later scheduling in a time window of 2.8 hours on 
average. Compared to RT_2, this still indicates a clear lead. 

 

Figure 6: Comparison of a scheduling VWS1 (grey) and a scheduling mSTO (black) 

The results within this paper underline the statements formulated in the state of the art in that the 
advantages of simulation also come to bear in the application of backward-oriented planning. Furthermore, 
the determined scheduling indicates the potential of such a methodical approach for answering questions in 
the context of detailed production planning to the specifics of semiconductor manufacturing (as well as 
taking into account stochastic influences). 

4 CONCLUSIONS AND FUTURE WORK 

The results generated on the basis of a "real-world use-case" show that the methodical approach for 
generating a scheduling by backward simulation works under the specifics of semiconductor manufacturing 
and under consideration of stochastic influences and can deliver promising results. Using several models, 
it has now been demonstrated that backward simulation can serve as a powerful tool for onboarding 
scheduling that takes stochastic influences into account. A next step in the project is to integrate and test 
the methodical approach into the operational simulation tool at the industrial partner (AutoSched AP). 

In the future, it would be possible to further develop the procedure used here with various heuristics 
into a simulation-based optimisation (backward-looking). Following on from this, the applicability of the 
procedure itself as well as such simulation-based optimisation combinations should be tested in other 
domains. 



Laroque, Leißau, Scholl, and Schneider 
 

 

ACKNOWLEDGMENTS 

This work has been partially funded by the European project iDEV40. The iDev40 project has received 
funding from the ECSEL Joint Undertaking (JU) under grant agreement No 783163. The JU receives 
support from the European Union’s Horizon 2020 research and innovation program. It is co-funded by the 
consortium members, grants from Austria, Germany, Belgium, Italy, Spain and Romania. The information 
and results set out in this publication are those of the authors and do not necessarily reflect the opinion of 
the ECSEL Joint Undertaking. 

REFERENCES 

Arakawa, M., M. Fuyuki, and I. Inoue. 2002.  A Simulation-based Production Scheduling Method for Minimizing the Due-date-
deviation. International Transactions in Operational Research 9 (2): 153-167. 

Banks, J. 1998. Handbook of simulation: Principles, methodology, advances, applications, and practice. New York: Wiley. 
Breque, M., L. De Nul, and A. Petridis. 2021. Industry 5.0 – Towards a sustainable, human-centric and resilient European Industry. 

Luxembourg: Publications Office of the European Union. 
Graupner, T. D., M. Bornhäuser, and W. Sihn. 2004. Backward simulation in food industry for facility planning and daily 

scheduling. In: Proceedings of the 16th European Simulation Symposium (ESS), 17th-20th October, Budapest (Hungary). 
Huang, C., and H. Wang. 2009. Backward Simulation with Multiple Objectives Control. In: Proceedings of the International 

MultiConference of Engineers and Computer Scientists (IMECS) Vol. II, 18th -20th  March. 
Jain, S., and S. Chan. 1997. Experiences with Backward Simulation Based Approach for Lot Release Planning. In: Proceedings of 

the 29th Winter Simulation Conference (WSC), 7th – 10th December, Atlanta (USA), 773-780. 
Laroque, C., C. Löffler, W. Scholl, and G. Schneider. 2020.  Einsatzmöglichkeiten der Rückwärtssimulation zur 

Produktionsplanung in der Halbleiterfertigung. In: Proceedings ASIM SST. Wien: RGESIM Report AR 59: 397-401. 
Law, A., and D. Kelton. 2000. Simulation Modeling and Analysis. 2nd Edition. New York: McGraw Hill. 
Sargent, R. 2010. Verification and Validation of simulation models. In: Proceedings of the 2010 Winter Simulation Conference 

(WSC), 5th -8th December 2010, Baltimore (USA), 166-183. 
Scholl, W., C. Laroque, and G. Weigert. 2014. Evaluations on Scheduling in Semiconductor Manufacturing by Backward 

Simulation. In: Proceedings of the 2014 Winter Simulation Conference (WSC), 7th -10th  December, Savannah (USA), 2552-
2560. 

Schumacher, R., and S. Wenzel. 2000. Der Modellbildungsprozess in der Simulation. In: Referenzmodelle für die Simulation in 
Produktion und Logistik. Gent: SCS-Europe BVBA:. 5-11. 

Watson, E. F., D. J. Medeiros, and R. P. Sadowski. 1993. Generating Component Release Plans with Backward Simulation. In: 
Proceedings of the 25th Winter Simulation Conference (WSC), 12th-15th  December, Los Angeles (USA), 930-938. 

Watson, E. F., D. J. Medeiros., and R. P. Sadowski. 1997. A simulation-based backward planning approach for order-release. In: 
Proceedings of the 29th Winter Simulation Conference (WSC), 7th-10th December, Atlanta (USA), 765-772. 

Ying, C. C., and G. M. Clark. 1994. Order release planning in a job shop using a bidirectional simulation algorithm. In: 
Proceedings of the 26th Winter Simulation Conference (WSC), 11th-14th December, Orlando (USA), 1008-1012. 

AUTHOR BIOGRAPHIES 

CHRISTOPH LAROQUE studied  business  computing  at  the  University  of  Paderborn,  Germany.  Since  2013  he  is  
Professorof  Business  Computing  at  the  University  of  Applied  Sciences  Zwickau,  Germany. He  is  mainly interested  in  the  
applicationof  simulation-based  decision  support  techniques  for  operational  production  and  project  management.   His  email  
address  is Christoph.Laroque@fh-zwickau.de.  
 
WOLFGANG SCHOLL works as a Senior Staff Expert for modeling and simulation for Infineon Technologies in Dresden 
(Germany). He studied physics at the Technical University of Chemnitz (Germany) and graduated in solid-state physics in 1984. 
From 1984 to 1995 he worked as a process engineer for ZMD in Dresden. In 1996 he joined Infineon Technologies (formerly 
SIMEC) and worked in the field of capacity planning. Since 2003 he has been responsible for fab simulation. He supervises 
development and roll-out projects and is also a member of the Supply Chain Simulation community. His email address is 
wolfgang.scholl@infineon.com. 
 
MADLENE LEIßAU studies  management  (M.Sc.)   at  the  University  of  Applied  Sciences  Zwickau,  Germany. She currently 
worsk as a research assistant in the Team Industry Analytics (www.industry-analytics.de) in the EU-project iDEV40. Her  email 
address  is  Madlene.Leissau.Gel@fh-zwickau.de.  
 



Laroque, Leißau, Scholl, and Schneider 
 

 

GERMAR SCHNEIDER is a Senior Specialist for Factory Integration and Thin Wafer Handling at Infineon Technologies 
Dresden. He holds a Ph.D. in Analytical Chemistry from the University of Ulm, received in 1995. His email address is 
germar.schneider@infineon.com. 


