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ABSTRACT 

Infineon Technologies Dresden has long used simplified simulation models to optimize production 
planning. However, the simplification is based on the gut feeling of experts who do not have time to analyze 
the various concepts in detail. In this paper, a detailed analysis of the simulation model simplification by 
substituting operations for constant delays was performed under conditions close to the real world. A 
statistical model was developed to calculate the delay values. The simplification results based on the 

statistical model are compared with the results based on the detailed model. The experiments were carried 
out based on the MIMAC dataset 5 model. 

1 INTRODUCTION 

This research was inspired by one of the Winter Simulation Conference (WSC) 2019 reviewers who wrote: 
"my understanding is that the reduction approaches only work for a given workload..." and probably the 
same reviewer at WSC 2020 who wrote, "I am still not fully convinced that reduction approaches can work 

well." Therefore, this paper considers the problem of building simplified simulation models in conditions 
close to real ones, i.e., when using a changing product mix. For this purpose, it is proposed to use a 
simplified (hybrid) model, in which a part of the tool sets is simulated in detail, and the other part is 
substituted for delays derived from a statistical model (metamodel). Usually, metamodels are used to 
replace the entire simulation model (e.g., Albey et al. 2017). The main feature of this paper is the joint use 
of detailed simulation model elements and metamodel elements. If further developed, we believe that this 

approach will help to perform optimization based on such simplified models. This paper's main contribution 
is that using the proposed statistical models does not lead to a significant deterioration in the accuracy of 
the simplified models compared to the simplified models based on the detailed model. 

Indeed, in previous papers, we considered a steady-state (static product mix), which is relatively rarely 
used in the industry. However, it was suitable for working out a method to simplify simulation models by 
substituting tool sets for constant delays and for analyzing the accuracy measurements used. This paper 

discusses the dynamic product mix and has the following goals: 1) to describe the simulation model 
simplification approach, which uses a statistical model that predicts the behavior of a detailed model in the 
future (scenario α2); 2) compare the results of the developed approach (α2) with the baseline (scenario α1 – 
using a detailed model to get information about its future behavior). Note that the primary goal of the 
considered simulation model is to predict lot cycle times, but not the behavior of the tool sets. As in previous 
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papers, MIMAC dataset 5 (MIMAC datasets 1997) was used. Due to many experiments to date, it has only 
been possible to carry out investigations for the FIFO dispatching rule. Autosched AP from Applied 
Materials, version 11.5, was used for modeling. R (R Core Team 2019) was used for output data analysis. 

This paper is organized as follows. Related works are presented in Section 2. The design of the 
experiments, including the creation of initiating data and description of the α2 scenario, are given in Section 
3. The specific features of the α1 and α2 comparison are described in Section 4. Section 5 includes 
experimental results. 

2 RELATED WORK 

A review of papers on simulation model simplification can be found in (Van der Zee 2019) and (Mönch et 

al. 2018). Let us mention the papers that served as sources of inspiration and ideas for our experiments. 
Hung and Leachman (1999) reasoned for using constant delays rather than random delays for simplification 
because of the negative correlation in cycle time between subsequent process steps. Therefore, we use 
constant delays in our experiments. Völker and Gmilkowsky (2003) introduced the concept of a sieve 
function, which we also use in our work, increasing the number to ten. The sieve function is a work center 
criticality index according to which the given tool sets are ordered for substitution for delays. Sprenger and 

Rose (2010) conducted a series of experiments to obtain information about the behavior of the detailed 
model under different workloads, which they used to build a simplified model. Therefore, we considered 
the different workloads for different tool sets when building a forecasting model. In one of the figures, Jain 
et al. (2000) showed a dependence of cycle time on model time, which inspired using aggregated indices 
to evaluate the models' accuracy. Duarte et al. (2007) presented a parametrization methodology for supply 
chain nodes, which was then extended by Ewen et al. (2017) for the entire supply chain. Its essence is the 

use of empirical distribution of the capacity for simplification. The statistical model we developed is a 
further evolution of this thought. One of the differences in our research is using MIMAC dataset 5 with 11 
products instead of MIMAC dataset 1 (2 products). This was probably the reason for the need to develop a 
more complex statistical model in our case. 

There are many ways to build a forecasting model (Wang et al. 2020). It is interesting to note that Wang 
et al. (2020) consider big data analytics as an alternative to simulation. There is also a view where simulation 

is the source of data for training a neural network, which is then used for prediction (Huang et al. 2016). 
This paper proposes using a simulation model to build a forecasting model, which is then used again to 
build a simplified model. A similar approach can be found in the literature for constructing clearing 
functions (linear programming). An extensive review can be found in (Missbauer and Uzsoy 2020. For 
example, Albey et al. (2017) considered the use of multi-dimensional clearing functions. However, they 
used a very simple model consisting of 6 machines, 4 products, 12 operations without batching. On the 

other hand, we consider MIMAC5, which has 83 tool sets (174 machines), 11 products, 2178 operations, 
and batching. Therefore, it can be assumed that the method we developed is easier to adapt to large 
simulation models. However, the main reason for developing our own method was the need to integrate it 
with previous developments in simulation model simplification. This was easier to do when using statistical 
models. Besides, Infineon already has experience in using such models in real production planning (Beeg 
2004), and it will be easier for us to convince the management of the solution feasibility. To evaluate the 

accuracy of the simplified models, we used the results of (Stogniy and Scholl 2020). 

3 DESIGN OF EXPERIMENTS 

To implement the experiments in this work, the previously developed automated experimental environment 
was used. This allowed to build graphs based on 6640 experiments to analyze simulation model 
simplification, such as those given at the end of this paper (five seeds for each experiment, the total sum of 
the simulation model runs is 33200). Each experiment represents the substitution of one tool set for a 

constant delay. Additionally, 14000 runs were performed to calculate delays (2000 for scenario α1 and 
12000 for scenario α2). Because of the large volume of experiments, it was possible to carry out experiments 
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only with the FIFO dispatching rule. For a detailed description of the design of the experiments, see 
(Stogniy and Scholl 2020). This section describes mainly the important additions. 

In this study, we used the following sieve functions: ζ1 = IDLE%; ζ2 = IDLE% + PROC% – 

PROC%(BSAVG / BSMAX); ζ3 = (100 – IDLE%) / IDLE#; ζ4 = QTAVG; ζ5 = QTAVG / PTAVG; ζ6 = QLAVG; ζ7 = 
QLAVG / BSMAX; ζ8 = CTSD

total; ζ9 = CTSD
total / CTAVG

total; and ζ10 = TH. The following model statistics based 
on weekly standard model reports were used: IDLE%/IDLE# – the percent of time/the number of times a 
tool set entered the idle state; PROC% – the percent of time a tool set entered the processing state; BSAVG – 
the average of batches processed (batch size); BSMAX – the maximum quantity of pieces allowed in a batch; 
QTAVG – the average time lots waited at the tool set (queue time); QLAVG – the average number of pieces in 

front of the tool set (queue length);  PTAVG – the average of the lot processing time for the tool set; CTAVG – 
the average lot cycle time for the tool set (CTAVG = PTAVG + QTAVG); CTSD – standard deviation of the cycle 
time for the tool set (CT2

SD = PT2
SD + QT2

SD); TH – throughput for the tool set (Stogniy and Scholl 2020).  
As in the previous paper, process step based delays (η1) were also used. But instead of tool set based 

delays (η2), its improved version, hybrid delays (η3), was used: 

𝜂3
𝑋 =

𝑅𝑃𝑇𝑋

𝑤. 𝑎𝑣𝑔. 𝑅𝑃𝑇
𝜂2 =

𝑅𝑃𝑇𝑋 ∙ ∑ 𝑙𝑜𝑡_𝑛𝑢𝑚𝑖
𝑛
𝑖

∑ (𝑅𝑃𝑇𝑖 ∙ 𝑙𝑜𝑡_𝑛𝑢𝑚𝑖)
𝑛
𝑖

𝜂2 

where RPTX is Raw Processing Time of Xth process step which belongs to the given tool set which has 

tool set based delay η2; lot_numi is the number of lots/week for ith process step; n is the total number of 
process steps corresponding to the given tool set; w.avg.RPT is weighted average RPT (used in section 
3.2.2). Since we consider a dynamic product mix, the delays were calculated for each week of model time. 

3.1 Making input data 

The MIMAC model contains only data for the steady-state. Therefore, it is necessary to develop the input 
data by ourselves. For this purpose, a specially developed algorithm was used, which consists of the 

following. In the first 10 weeks, there are no changes (warm-up period). In week 11, two process flows are 
selected (14 and 15), for which the number of lots per week will decrease, and process flow 8, for which 
the lots/week will increase. In subsequent weeks the next process flows are chosen to increase (week 
numbers were selected manually). Each week IDLEOEE is recalculated for each tool set so that the minimum 
value is in the range (0.5%, 6.0%). IDLEOEE is the sum of operational and rate efficiency losses in terms of 
(SEMI E79-0200, 2000). This ensures high model load on the one hand and prevents overloading on the 

other hand. Then the algorithm moves the process flow from the list of increasing to the list of decreasing 
if it exceeds 31 lots/week or if it cannot grow further for a long enough time (several algorithm work cycles). 
The results are presented in Figure 1. 

 

Figure 1: Experimental input data. 

In the MIMAC5 model, 79 of 83 tool sets have no setup. Therefore, the following is applied to them: 

𝐼𝐷𝐿𝐸𝑂𝐸𝐸 = 1 − 
𝑀𝑇𝑇𝑅

𝑀𝑇𝑇𝑅 + 𝑀𝑇𝑇𝐹
− 𝑃𝑅𝑂𝐶𝑂𝐸𝐸 = 1 − 

𝑀𝑇𝑇𝑅

𝑀𝑇𝑇𝑅 + 𝑀𝑇𝑇𝐹
− ∑

𝑙𝑜𝑡_𝑛𝑢𝑚𝑖 ∙ (𝑅𝑃𝑇𝑖 + 𝐿)

𝐵𝑆𝑚𝑎𝑥 ∙ 𝑇𝑆_𝑛𝑢𝑚

𝑛

𝑖
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where for a particular tool set MTTR – Mean Time To Repair, MTTF – Mean Time To Failure,  L – 
Load time, BSmax – maximum batch size, TS_num – number of the machines in the tool set; lot_numi – 
number of lots/week for ith process step; n – total number of process steps for the given tool set; PROCOEE 

– processing time from the Overall Equipment Efficiency point of view (used in section 3.2.2).   
To calculate IDLEOEE for the other four tool sets, it is necessary to have information about the number 

of setups. However, since the model uses the same setup rule, the number of setups will tend to zero as the 
load increases. Thus, we can ignore setup to calculate the approximate workload limit of the model. On the 
other hand, we use PROCOEE instead of IDLEOEE to build statistical models in section 3.2.2 for these four 
tool sets. 

3.2 Two experimental scenarios (α1 and α2) 

In previous studies, we used a detailed model to calculate the delays. This involved 2000 model runs for a 
given product mix (see Figure 2 scenario α1 "Present"). However, this scenario is only suitable for research 
but not for practical use because it makes no sense to make a simplified model if we can afford 2000 runs 
of the detailed model for each product mix. Therefore, another scenario was developed α2 ("Past + Future"), 
which assumes 12000 runs of the detailed model, but can be used for any product mix. This is accomplished 

by constructing and using the statistical forecasting model described below. The essence of the experiments 
in this paper is to compare the two scenarios (comparison Δ1 and Δ2 in Figure 2). The input data is the 
incoming lots' start rate and the simulation model structure. See formulas in subsection 3.2.2. 

 

Figure 2: Two scenarios: α1 (“Present”) and α2 (“Past + Future”). 

The statistical forecasting model is based on a similar concept to the operating curve, namely that for 
each tool set we can calculate delay = Cycle Time = f(IDLEOEE). However, difficulties have arisen in using 

this approach. When varying the model product mix, for several tool sets this dependence looks like a plane 
(w32, w27) while we expect a curve (w57, Figure 3). Obviously, there are some additional factors on which 
the Cycle Time (CT) depends. An investigation of these factors is beyond the scope of this paper. However, 
section 3.2.2 will show its results.  

 

Figure 3: Simulation data CT(IDLEOEE). 
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The construction of a statistical forecasting model consists of the following steps: 1) construction of 
initiating data and 12000 runs of the detailed model in steady-state, 2) statistical approximation of the 
resulting output data, and 3) throughput evaluation for correct use under transient state conditions. The 

following three subsections briefly describe each of them. 

3.2.1 Initiating data building 

The initiating data is the input data for 12000 runs of the detailed simulation model in steady-state mode. 
The main goal is to obtain the widest variety of product mixes to cover all possible cases. After several 
preliminary experiments, it was decided to use 12 distributions to make this happen (Figure 4). Both 
individual distributions (e.g. a = Beta(0.15, 1)*65) and mixture distributions (e.g. l = 2/3* Beta(0.15, 1)*65 

+ 1/3*Uniform(0, 44.84)) were used. The distributions' parameters were chosen in order to ensure that the 
mean was approximately 8.5 (a priori estimation) and to provide the widest variety of product mixes. Figure 
4 shows that in order to provide a product mix in which some products have very high demand and others 
very low, a mixture distribution had to be created. In this case, beta and uniform distributions were used for 
the right part to avoid getting "long tails" and thereby move the second part of the mixture distribution to 
the right as much as possible. Especially since the first three distributions already have "long tails". 

Then, a product mix was generated based on each distribution. In the final initiating data, 1000 product 
mix combinations from each distribution were selected that provided IDLEOEE in the range (0%, 5%). In 
this way, the emphasis is on the high loading of the model. On the other hand, since in the MIMAC5 model, 
different tool sets correspond to different products, it is also possible that some tool sets are very heavily 
loaded while others are very weakly loaded. For this purpose, the distributions h, i, k, and l were used. Thus, 
we get the wide variety of loadings needed to build the statistical model for each tool set. However, more 

research is needed to determine whether this approach is exhaustive. For example, (Yang et al. 2007) 
suggested response surface modeling. This can be used as an alternative approach. 

 

Figure 4: Initiating data. Probability density functions. 

3.2.2 Statistical approximation 

Since the Cycle Time (CT) data obtained using the initiating data cannot be described as a function of 
IDLEOEE (Figure 3), additional factors had to be introduced. After several experiments, the following 

expression was obtained (Figure 5): 

𝐶𝑇 = 𝑓(𝐼𝐷𝐿𝐸𝑂𝐸𝐸  𝑜𝑟 𝑃𝑅𝑂𝐶𝑂𝐸𝐸 , 𝑤. 𝑎𝑣𝑔. 𝑅𝑃𝑇, 𝑏𝑎𝑡𝑐ℎ_𝑒𝑛𝑡𝑟𝑜𝑝𝑦, 𝑠𝑒𝑡𝑢𝑝_𝑒𝑛𝑡𝑟𝑜𝑝𝑦) 
The formulas for IDLEOEE, PROCOEE, and w.avg.RPT are given above. PROCOEE was used only for 4 

tool sets with setups. The variables w.avg.RPT, batch_entropy, and setup_entropy handle with the product 

mix variability estimation. Our primary interest is those tool sets that have process steps with different 
characteristics. Two different process steps belonging to the same tool set can differ in the following 
parameters: Raw Processing Time (RPT), Batch ID, and Setup ID (MIMAC datasets 1997). We consider 
the number of lots that pass through a given tool set and have a particular parameter value. Since different 
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process steps can belong to different process flows, the w.avg_RPT value gives us additional information 
about the product mix. For the other two variables, entropy was chosen because Batch ID is an identifier 
that tells us how the batch was formed but not the processing time. In other words, the batch information is 

a set of identifiers for lots passing through a given tool set. Similar logic was used for the Setup ID. 

𝑏𝑎𝑡𝑐ℎ( 𝑜𝑟 𝑠𝑒𝑡𝑢𝑝)_𝑒𝑛𝑡𝑟𝑜𝑝𝑦 = −∑
𝑙𝑜𝑡_𝑛𝑢𝑚𝑖

∑ 𝑙𝑜𝑡_𝑛𝑢𝑚𝑘
𝑛
𝑘

𝑛

𝑖
∙ 𝑙𝑜𝑔 (

𝑙𝑜𝑡_𝑛𝑢𝑚𝑖

∑ 𝑙𝑜𝑡_𝑛𝑢𝑚𝑛
𝑛
𝑘

) 

where n is the number of Batch ID/Setup ID for the tool set, lot_numi (k) is the number of lots for ith (kth) 
Batch ID/Setup ID for the given product mix. 

 

Figure 5: Tool set w27. 4D plot CT = f(IDLEOEE, w.avg.RPT, batch_entropy). 

As a result of this approach, using the same data for the tool set w27 instead of the 2D plot (Figure 3), 

we can draw a 4D plot (Figure 5) in which CT is shown in color. Note that Figure 3 is a projection of the 
4D plot of Figure 5 onto the coordinate axes (IDLEOEE, CT). It can be seen that Figure 5 better describes 
the properties of CT. In particular, the projection in the plane (IDLEOEE, w.avg.RPT) clearly shows the 
dependence of CT on these two parameters simultaneously. The R-package "mgcv" was used to build a 
statistical approximation based on the developed data model (Wood 2021). 

3.2.3 Throughput evaluation 

To use the statistical model built in the previous step, it is necessary to calculate the values of the factors 
using the formulas above. The most important input parameter is throughput (or lot_num in the formulas 
above). The problem is that for different tool sets, throughput at a given time (original TH) can be different 
from initial lot releases (initial TH). Note that the original throughput is derived from 2000 runs of the 
detailed model. Here we use it to illustrate the problem of evaluating the throughput. For example, for tool 
set w4, the detailed model shows a shift to the left for the initial TH relative to the original TH (Figure 6 

a). On the other hand, there is no significant shift for the tool set w41 (Figure 6 b). This is explained by the 
different process steps associated with these tool sets. If the process steps are at the beginning of the process 
flow, there will be no shift. 

Two approaches were developed to estimate throughput: 1) overall moving average (OMA); 2) 
processing step throughput adaptation (PSTA). The first approach consists of calculating for all process 
steps a simple moving average for initial lot release: 𝑇𝐻_𝑂𝑀𝐴 = ∑ 𝑇𝐻𝑖 𝑘⁄𝑛

𝑖=𝑛−𝑘+1 , where n is the current 

week number, k is the number of previous weeks. Then the throughput for all process steps belonging to 
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the given tool set is summed up. For simplicity, it is assumed that k is the same for all process steps. In the 
second approach for each process step, we calculate such values of weights (�⃗⃗� = {𝑤1, 𝑤2, … , 𝑤𝑛}) and 
quantity of previous weeks l, which give the minimum value of the function: 𝑡ℎ(�⃗⃗� , 𝑙) =
∑ 𝑤𝑖 ∙ 𝑇𝐻𝑖 𝑙 → 𝑚𝑖𝑛⁄𝑛

𝑖=𝑛−𝑙+1 . Then for each process step, a simple moving average is applied: 𝑇𝐻_𝑃𝑆𝑇𝐴 =
∑ 𝑡ℎ(�⃗⃗� , 𝑙)𝑖 𝑘⁄𝑛

𝑖=𝑛−𝑘+1  and the parameter k is estimated. The meaning of the second step is explained further 
(Figure 7). In this paper, the calculation of 𝑡ℎ(�⃗⃗� , 𝑙) was based on a detailed model since the main point was 
to test the principle feasibility of this approach. Nevertheless, it is possible to calculate 𝑡ℎ(�⃗⃗� , 𝑙) based on a 
special statistical model, the development of which is beyond the scope of this paper.  

 

Figure 6: Throughput. 

The purpose of the throughput evaluation is its use in the simulation model, i.e., it is not the throughput 
itself that is important, but its effect on the simulation model performance. Therefore, additional 
experiments were carried out with the detailed model to determine the parameter k (quantity of previous 
weeks), which would give the minimum value of the summed up for all tools set Mean Absolute Error 
(MAE) of Cycle Time (CT), Work-In-Process (WIP) and Throughput (TH). The results of the experiments 
are shown in Figure 7. 

 

Figure 7: Throughput evaluation comparison: black (0) – OMA, red (x) – PSTA. 

When analyzing the results of the experiments, it was observed that the tool set CT to a smaller degree 
than WIP reflects the accuracy of the model behavior as a whole. In particular, if only a few lots per week 
pass through a given tool set, they can have a significant variation in CT, which causes only a small variation 
in WIP (see Figure 6 b, c, and d). However, WIP takes into account not only the number of lots but also CT 
(Little's Law: WIP = CT*TH). Therefore, it was decided to use WIP as a criterion for the choice of 

parameter k. This decision leads to the following results: OMA(k = 5), and PSTA(k = 2). It can be seen that 
PSTA outperforms OMA in accuracy (Figure 7). Therefore, the PSTA(k = 2) method was used for the 
experiments described below. 
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4 EXPERIMENTS 

The above-described statistical forecasting model was used in the simulation model simplification 
experiments. The main purpose of these experiments is to compare the results of the developed approach 

(α2) with the baseline (α1). An important issue is the method of comparison. In the paper (Stogniy and Scholl 
2020), we discussed the use of accuracy measurements using a steady-state case. In this paper, we use the 
same accuracy measurements, but we need to make the necessary additions since we consider a changing 
product mix. The point is that for the steady-state, we calculate the values based on the entire runtime minus 
the warm-up period (i.e., 114 - 10 = 104 weeks). We call this approach "all". However, in the case of the 
changing product mix, we have time-varying data. Therefore, there is another approach to estimation: 

calculate the values based on the data calculated for each of the 104 weeks, and then aggregate them in 
order to obtain the average value of the index for the experiment (the "weekly average" or "w.avg" 
approach). Later in this section, we consider both approaches using two configurations as examples: {ζ2, 
η1} and {ζ9, η1}. The first configuration is an example of close α2 and α1, the second of distant ones (see 
Table 1). 

Figure 8 shows graphs of two accuracy measurements: Summarized Absolute Divergence (SAD) and 

Kolmogorov-Smirnov test (KS). It should be noted that we consider the output distributions of a lot CT. 
𝑆𝐴𝐷 = ∑ |𝑃𝐸(𝑥) − 𝑃𝐹(𝑥)|𝑥 , where PE(x) is the probability density function (PDF) of sample 1 (detailed 
model), and PF(x) is the PDF of sample 2 (simplified model). 𝐾𝑆 =  max|𝐸(𝑥) − 𝐹(𝑥)|, where E(x) is the 
empirical cumulative distribution function (ECDF) of sample 1 and F(x) is the ECDF of sample 2 (Stogniy 
and Scholl 2020). 

Figure 8 illustrates the comparison of α1 (black lines) and α2 (red lines). The upper row of graphs is the 

"all" approach. The lower row is the "w.avg" approach. All four graphs for the same accuracy measurement 
(e.g., SAD: a, b, e, f) are drawn at the same scale. It is interesting to note that in all graphs, the red and 
black lines are quite close to each other, and the differences between the configuration {ζ9, η1} and {ζ2, η1} 
can also be easily observed. Based on the visual comparison, we can conclude that for the {ζ2, η1} 
configuration, the developed statistical forecasting model (α2) works well in general. 

 

Figure 8: Comparison of α1 (black solid) and α2 (red dashed).  

However, it is essential to consider and understand the differences between these graphs in order to 
choose the right way to compare α1 and α2. The first difference between the two calculation approaches: the 
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upper row of graphs ("all") has a much smaller scale and flatter curves than the lower row of graphs 
("w.avg").  The second difference: "w.avg" has a rather high value of SAD and KS for small experiment 
numbers. To understand the reasons for the differences, it is necessary to consider the formulas for the 

accuracy measurements (see above) and to the input data for the calculations (Figure 9): probability density 
function (PDF) and empirical cumulative distribution function (ECDF). 

 

Figure 9: {ζ9, η1}. Comparison of “all” and “w.avg”. 

Let us consider the first difference. Figure 9 shows the PDF and ECDF for the "all" approach (a and e) 
and for the three weeks (11, 51, and 101) of the "w.avg" approach (b-d and f-h). The lot CT distributions 
of the detailed model (baseline) are shown in green. Black and red show exp #60 for α1 and α2, respectively. 

Let us consider the top row (PDF). It can be seen from Figures 9b and 9c that the lot CT can vary greatly 
in different weeks: the peaks of the PDF curve shift to the right/left. This leads to a "blurring" of the total 
PDF (a) with regard to the PDF of each week (b-d). In addition, as we showed in the previous paper, there 
is a lot CT mean shift for large numbers of experiments (e.g., exp #60). This can be seen in the example of 
the right-hand PDF peak: week 11 – shift to the right, week 101 – small shift to the left. As a result, these 
shifts will compensate each other and will be almost invisible at PDF all (lot CT 400-700 hours). The 

situation is similar for ECDF. Here the difference between the forms of ECDF all and ECDF week 11, 51, 
and 101 can be seen even more clearly. 

Let us consider the second difference: the high value of SAD and KS for small numbers of experiments 
in the "w.avg" approach compared to "all". Proceed in detail with the first two experiments: exp #1 and #2 
(Figure 10). In this case, only one and two tool sets, respectively, were substituted for constant delays. As 
a result, the shift of the mean lot CT due to simplification cannot occur, but we see it for the right-hand 

peak PDF exp#2 week 11 (Figure 10c). In this case, the reasons for the shift are the butterfly effect and the 
small sample. The butterfly effect is a rearrangement of lots occurring even with a small change (Stogniy 
and Scholl 2020). It can be observed on the bottom row of scatter plots (base vs. exp). For exp #1, it appears 
insignificantly, and there is only a small scatter of points around the bisector (Figure 10e and 10f). However, 
for exp #2, the scatter of points is more significant (Figure 10g and 10h). Additionally, the small sample 
(only 5 seeds) leads to the fact that for exp #2 week 11, the lots with CT (450-600 hours) on average have 

higher CT than the same lots in the detailed model (base).  



Stogniy, Scholl, and Ehm 

 

 

 

Figure 10: Comparison. 

This work is part of a large exploratory study, and we could not have done more seeds as it would have 
significantly increased the overall experimentation time. However, according to our observations, this effect 

appears for all experiment numbers. Therefore, we can consider it as a systematic error, which we can 
neglect in our exploratory study. Moreover, in a more detailed study, the impact of this effect will weaken 
as the number of seeds increases. On the other hand, the first difference (Figure 9) does not depend on the 
number of seeds and has a significant impact on evaluating the simplified simulation model. Therefore, we 
conclude that the "w.avg" approach should be used to evaluate the results of the α1 and α2 approaches.  

5 EXPERIMENTAL RESULTS 

We illustrated two accuracy measurements above SAD and KS. However, in the paper (Stogniy and Scholl 
2020), we considered four more: Anderson-Darling (AD) and Cramer-von Mises (CVM), Two Sample Test 
(DTS), and Wasserstein distance (WASS). Therefore, we use all six measures below (Table 1). We used 
the following formula to estimate the closeness of α1 and α2: 𝑋_𝑖𝑛𝑑𝑒𝑥 =  100 ∙ (∑ 𝑋𝑖

𝛼2
𝑖 − ∑ 𝑋𝑖

𝛼1
𝑖 )/

∑ 𝑋𝑖
𝛼1

𝑖 , where 𝑋𝑖
𝛼1(𝑋𝑖

𝛼2) is the value of the X index in ith experiment for α1 (α2). 
 The table shows that the values of the indices correlate with each other. However, the correlation is not 

100%. The reason for this is the presence of a lot CT mean shift that occurs during simplification. SAD and 
KS are less sensitive to the shift than the other accuracy measurements (Stogniy and Scholl 2020). On the 
other hand, SAD is more sensitive to the butterfly effect, which leads to a high denominator value in the 
formula above, and as a result, less scatter for the X_index. Therefore, we believe that KS is the most 
appropriate criterion for evaluation. Those configurations for which KS_index ≤ 3% are highlighted in green 
in the table, and those for which KS_value >10% are highlighted in red. This table shows that the 

configurations associated with ζ2, ζ3, and ζ6 show sufficient closeness of α1 and α2. On the other hand, the 
configurations ζ9 and ζ10 lead to poor results. The reason seems to be the different manifestations of the lot 
CT mean shift for the different configurations. However, this issue requires further investigation. In general, 
we can admit that the developed statistical model within the α2 scenario works satisfactorily. This fact 
brings us closer to the use of simplified models in a real industry.  
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Table 1: Configuration comparison, %. 

ζ η SAD KS AD CVM DTS WASS ζ η SAD KS AD CVM DTS WASS 

1 1 1.4 6.6 16.6 19.8 4.6 6.5 6 1 0.4 2.6 9.5 9 2.7 2.8 

1 3 1.7 6.3 13.9 17.2 3.2 4.8 6 3 1.1 3 8.5 8.3 2.4 2.8 

1f 1 1 3.2 10.7 11 2.9 3.5 6f 1 0.8 2.5 7.8 7.2 2.1 2.3 

1f 3 0.8 2.7 7.5 8.1 1.5 2.1 6f 3 0.7 2.1 7 6.6 2.5 2.6 

2 1 0.8 1.7 8.1 6.5 2.6 2.5 7 1 1.3 3.1 10.8 9.6 3.3 3.8 

2 3 1 2.7 10.8 10.2 2.8 2.8 7 3 0.8 3.1 10.6 9.6 2.2 2.6 

2f 1 1 2.1 7.4 5.8 3.3 3.3 7f 1 1.3 3.1 10.1 8.6 3.3 3.5 

2f 3 1 2 9 6.9 2.4 2.4 7f 3 1 2.8 10.3 8.8 2.9 3 

3 1 0.8 2.7 9.2 8.1 3.7 4.2 8 1 2.3 7.7 22.1 25.4 7.4 9.3 

3 3 0.3 0.5 -3.2 -3.8 -0.7 -0.2 8 3 1.1 3.8 7.8 12.2 1.7 3.6 

3f 1 0.9 2.9 9.1 8.8 3.7 4.1 8f 1 2.9 9.7 26.8 29.9 9.1 10.9 

3f 3 0.4 1.3 -0.7 -0.8 0.1 0.7 8f 3 1.5 4.9 10.2 13.2 2.5 4.3 

4 1 1.3 3.6 14.2 12.5 3.6 4.2 9 1 5.8 21.1 46 56 15.4 20.4 

4 3 0.1 0.4 -0.9 -1 -1 -0.6 9 3 5.9 20.4 47.1 57.6 16.1 20.5 

4f 1 1.3 4.4 15.1 13.3 5 5.5 9f 1 5.4 20.8 43.4 52.7 15.4 20.2 

4f 3 0.2 0.1 0.8 -0.8 -1.3 -0.9 9f 3 5.7 20.4 46.2 55.1 16.5 21 

5 1 1.4 5.5 19 18.7 5.7 6.3 10 1 3.3 13 27.4 33.5 12.6 15.7 

5 3 2.1 7.4 23.4 24.8 7.6 8.8 10 3 2.6 8.4 12.2 18.8 4.7 8.7 

5f 1 1.8 5.8 19.9 20 5.7 6.5 10f 1 3.2 12.6 26.7 32.8 12 15 

5f 3 2.3 6.9 22.6 22.7 6.9 7.7 10f 3 2.1 7.3 11.4 17.6 4.1 7.8 

6 CONCLUSIONS 

In this paper, we considered using a simplified simulation model under near-real-world conditions, i. e., 
when there is no information about the behavior of the detailed model in the future (scenario α2). For this 
purpose, we created and described a forecasting model that can be used for any product mix. The key 
components of the forecasting model are initiating data, statistical approximation, and throughput 
evaluation. Using the proposed statistical models showed promising results in general. We also refined the 
way of using the previously developed accuracy measurements for the changing product mix scenario and 

described the effects that affect the accuracy of the simplified model: the lot cycle time mean shift and 
butterfly effect. 

Based on our experiments, we can conclude that applying utilization-based (ζ2 and ζ3) and queue length-
based (ζ6) sieve functions leads to acceptable accuracy using the forecasting model (α2) for our case, the 
MIMAC 5 model. However, because of the lot cycle time mean shift influence on the accuracy of the 
simplified model, we cannot claim that for other simulation models, the same sieve functions will show 

good performance. On the other hand, we can almost certainly state that these effects (lot cycle time mean 
shift and butterfly effect) will appear for other models as well. The techniques and methods described in 
this paper will allow future researchers to detect this fact in time.    

In future research, we will consider the application of the above approaches to the Critical Ratio 
dispatching rule. We will also perform a more in-depth analysis of using representative process flows and 
artificial process flows. Additionally, we plan to conduct optimization experiments with simplified models. 

Eventually, these approaches will be implemented in a real Infineon simulation model. 
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