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ABSTRACT

In this research the impact of job mix selection in each production shift in a job shop production environment is
examined. This is a critical question within photolithography workstations in semiconductor manufacturing
systems. For this purpose, a recently developed Simulation Optimization (SO) method named Evolutionary
Learning Based Simulation Optimization (ELBSO) is implemented to solve a set of designed Stochastic Job
Shop Scheduling problems captured from a real semiconductor manufacturing data set. Experiment results
indicate that the best performance in each shift occurs when machines are flexible in terms of processing
different job operations, and the selected jobs for a certain shift have as equal as possible due dates.

1 INTRODUCTION

The semiconductor industry is characterized by increasing complexity of manufacturing processes due
to elementary operations where finer geometries are realized on chips. This increases the number of
constraints and with an increase in automation (mainly as a result of the increase in disc area), there is
an increase in infrastructure and equipment costs. This, with a higher level of technology renewal rates
places an ever-increasing pressure on the cost of wafers due to worldwide competition, and high customer
requirements in terms of quality (Monch et al. 2018). Within production, a photolithography toolset,
requires high capital investments, is one of the most crucial processes in semiconductor manufacturing. It
is mostly regarded as a bottleneck process due to the layered nature of wafer fabrication, especially for
the case of Application Specific Integrated Circuit (ASIC) fabrication environments with high product mix
portfolios and low volumes. In an ASIC fab, a diverse range of recipes exist due the range of products
produced. Since the circuits are made up of layers, with every wafer passing through the photolithography
area, which maybe up to 40 times, this typically makes photolithography a bottleneck resource. With
the performance of a system determined by the bottleneck resource, optimal capacity allocation and job
scheduling of a photolithography work area ensures improvement in the performance of the whole fab
(Ghasemi et al. 2020).

It is worth mentioning that, similar to many production environments, the photolithography workstation
can be viewed as a job shop production environment. Indeed, job shop scheduling problems are one of the
most challenging problems in most production industries (Zhang et al. 2019). Within the photolithography
workstation, there are two main operational constraints. First, certain machines within the photolithography
tool will be qualified for different recipes (machine process capability constraints). Secondly, for some
critical layers, certain machines within the toolset will be required to be used to ensure the quality of the
integrated circuit (machine dedication constraints) (Ghasemi et al. 2020). Considering these two constraints
semiconductor production planners decide the mix of wafers going through the photolithography workstation
in each production shift. Accordingly, they follow certain strategies to select the production mix for each
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shift, which could be based on due date, processing times, or any other influencing factor of orders. The
question here is about how to define the best strategy for improving the utilization and delivery levels of
the photolithography workstation?

Scheduling of photolithography are large stochastic and complex problems. Explosive growth in
computing power and also recent advances in Simulation Optimization (SO) techniques provides a possible
means of addressing these class of problems. In Ghasemi et al. (2021) an Evolutionary Learning Based
Simulation Optimization (ELBSO) method was presented to solve a stochastic job shop scheduling problem.
The article demonstrated the superiority of ELBSO when compared to three different algorithms in terms
of the quality of solutions and the reduction in computation time. SO methods generally expend a large
amount of computation time to find a solution to the given problem, due to the necessity for the required
number of simulation replications. In ELBSO, which uses Ordinal Optimization (OO), this is negated
where a metamodel is used within the first phase. This greatly reduces the amount of time used to carry out
simulation replication, allowing this computational time to be applied to the optimization of the addressed
problem. The metamodel used within ELBSO is Genetic Programming (GP), which was found to provide
very accurate solutions within the ELBSO algorithm.

The main purpose of this article is to examine the best strategy for wafer mix (job mix) considering their
due dates and routes through photolithography machines to minimize total weighted earliness and tardiness
costs. Moreover, we apply the ELBSO to data extracted from a real photolithography toolset, which, as
stated earlier, can be classified as a Stochastic Job Shop Scheduling Problem (SJSSP). In Section 2, we
will briefly review past work on optimization SJISSPs, then in Section 3, we will describe the relevance
of this research to the photolithography toolset. Section 4 defines the ELBSO implementation procedure.
Experiments and results are provided in Section 5. Finally, Section 7 concludes the paper and looks at
possible follow-on studies.

2 OVERVIEW OF SO OF SJSSPS

Over recent years, a large body of research has been published on Job Shop Scheduling Problems (JSSP),
which are one of the basic models used in manufacturing. JSSP is one of the famous mathematical
optimization problems that has been proved to be NP-hard (Horng et al. 2012). Although stochasticity
has been known as a crucial part of most industrial operations in the scheduling literature, there is little
attention to solving SISSPs, while Deterministic Job Shop Scheduling Problems (DJSSPs) have been widely
researched (Winands et al. 2011).

As stated above, recent advances in SO research and the explosive growth in computing power have
made it possible to optimize complex manufacturing system problems. In fact, Discrete Event Simulation
Models (DESMs) are important tools used as a predictor of performance, allowing examination of the likely
behavior of a proposed manufacturing system under experimental conditions (Trigueiro de Sousa Junior
et al. 2019). While DESMs do not directly provide explanations for the observed system behavior, it is
essentially a trial and error methodology, and although attention to experimental design techniques enhances
its value, it does not provide a method of optimization. On the other hand, optimization techniques are
key tools to improve decisions within almost all systems.

Integrating simulation models with optimization methods could establish promising Decision Support
Tools (DSTs) benefiting from the advantages of both tools. Thus, SO techniques have been known as one
of the most promising techniques to tackle large and stochastic real production problems such as SJSSPs.
Researchers applied SOs to SISSPs to allow an optimizer(s) to seek better solutions when integrated with
DESMs (Figueira and Almada-Lobo 2014).

However, the objective calculated using simulation replications has a high computation cost. Therefore,
most researchers have applied three main techniques to replace the high number of simulation replications.
One approach used by several researchers, such as Horng et al. (2012) and Yang et al. (2014), is to use
a small number of simulation replications executed during the search phase. For instance, although it is
reported by Horng et al. (2012) that 10° simulation replications are enough to ensure the accuracy of
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the objective values, they performed 368 simulation replications to calculate the objective values of the
proposed SJSSP (in the exploration phase, i.e., phase 1 of OO). A second approach is where researchers
such as Shen and Zhu (2016) and Jamili (2019), convert SJSSP mathematical models to deterministic ones
where a level of robustness and/or confidence is achieved when optimized. Typically, evolutionary methods
are proposed to solve the deterministic models. A third approach is where metamodels are used. This was
reported in Horng et al. (2012) where an Radial Basis Functions (RBF) metamodel was used in phase 1
of OO for the optimization of a hotel booking limit problem. The third approach is the most advantageous
one as other methods ignore a series of stochastic scenarios while they do not provide information on
the ignored scenarios. However, due to the highly complex nature of SISSPs, there is no metamodeling
method applied to SJISSPs within the literature.

To metamodel DESMs, researchers have presented a variety of methods and concepts, such as RBF
(Hussain et al. 2002), Kriging (KG) metamodeling (Kleijnen 2009), while Artificial Neural Network (ANN)
has been known as the predominant approach to metamodel DESMs (Dunke and Nickel 2020). Can and
Heavey (2012) compared both GP and ANN in metamodeling DESMs. For the industrial case studies
considered, the results showed that GP outperforms ANN in metamodeling DESMs. Surprisingly, there is
no research in the literature implementing GP-based metamodels to SJISSP DESMs.

This paper contributes to the literature by applying the SO method presented in Ghasemi et al. (2021)
to an SJISSP using case data set from a semiconductor manufacturing photolithography workstation, which
aims to investigate the impact of job mix and due date selection for each production shift on the overall
workstation performance.

2.1 Problem Description

In this section, the mathematical model of SJSSP is detailed. Table 1 summarises the notation used in
this section. According to the scheduling environments notation provided by Pinedo (2016), Graham et al.
(1979), we study a Jyu|Range(p;)|(a x T)+ (B x E) problem. That defines a job shop problem (J) with
NM machines under condition of random processing times, which are between a specified range, and with
the goal of optimizing the total weighted expected tardiness (7") and earliness (E).

According to Shen and Zhu (2016), in SISSP the goal of scheduling all operations of N jobs on NM
machines is to minimize the expected value of total costs. Therefore, the objective function for SJSSP is
as follows:

N
MinF = Min (Z ((MGX{O,C]‘,NM —dj} X CTj) + (Max{O,dj _Cj.,NM} X CEj))) (1)
Jj=1

Shen and Zhu (2016) also provided the following sets of constraints for SISSP: Sequence constraints: a
job on a machine can start processing after completing its previous processing procedure,

SjszJ'?W,]%t‘:/j,jE{1,...,N};W€{1,...,NM} (2)

Resource constraints: a job on a machine can start processing after the completion of the previous job,

Omi > Opy-1+t, ., Where by, w=mwe{l,..NM};l€{l,...,N} (3

Time constraints: each job can be available at time zero,

Siw>0,j€ {1, .N}we {1,...NM} 4)
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Table 1: Notations table.

Indices and Sets

Jj= Jobs index, j € {1,...,|N|}.

i,i' = operations ids, i,/ € {1,...,|[NO|}.

w= operations indices, w € {1,...,|[NM|}.

m= Machine index, m € {1,...,|NM|}.

1= positions on machines index, [ € {1,...,|N|}.

k= Queuing position index, k € {1,...[NO|}.

Q= Precedence orders sets defining the execution precedence of operations of the same jobs.

§= Simulation replication index, s € {1,...,|SL|}.

Parameters

N Number of jobs.

NO Total number of operations.

NO; Total number of operations for job j.

NM Number of machines.

SL Total number of simulation replications indexed by s.

d; Due date of job j.

P Stochastic processing time of operation id i.

o Probability distribution of processing time of operation id i.

t"‘;j Stochastic processing time of operation w of job j.

CE; Earliness cost of job j caused by inventory costs.

CT; Tardiness cost of job j caused by tardiness in delivering the job.

V = (vmi)Nmxn | The process matrix, where v, € {1, ..., IN|} denotes that job v, is processed at machine m in position /.

B = (bjy)nxnm | The operation matrix, where bj,, € {1,...,[NM|} denotes a machine. Elements {b;1,bj2,...,bjno,} in the j" row
represent operations of job j. That is the job j is processed orderly on machines b;1,b2,....bjno;.

Decision Variables

S The starting time of operation w of job j.

O The starting time of /" job processed on machine m.

Ciw The completion time of w" operation of job j.

Omi The completion time of a job processed on /" position of machine m.

Xik If operation id 7 is assigned to the k™ postion of the dispatching queue, then Xy = 1, 0 otherwise.

Tj’\ The stochastic tardiness time of job j in the simulation replication s.

E;; The stochastic earliness time of job j in the simulation replication s.

Functions

fs ‘ The objective calculation function for the simulation replication s.

In this research, the above model is converted to a SO model, where, during the optimization procedure,
values will be obtained from an evaluation model, which will be a metamodel in phase 1 of OO or a
simulation model in phase 2 (Ghasemi et al. 2021). Equation 1 is transformed into Equation 5, for use
with the evaluation model, where f; calculates total costs of solution Xj; by the simulation replication s.
Besides, F' defines the fitness value for an SJSSP solution.

' . 1 SL
Min F = Min SL Y £ (U UG Xa), F) )
s=1

In each solution, Xy, is a binary variable that denotes if operation i is assigned to the k™ position of the
dispatching queue, with the above objectives having the following constraints. Each job should be assigned
to one of the existing dispatching queue positions as follows:

NO
) Xu=1Vie{l,..,NO} (6)
k=1

Moreover, it must be guaranteed that for each existing position in dispatching queue k, at most one operation
is assigned. Equation 7 defines this constraint as follows:

NO
Y Xi=1Yke{l,.,NO} (7)
i=1

Precedence of operations of a job are defined in the set Q. Consequently, Equations 8 and 9 construct a
precedence relationship between two operations i and i/ from the same job j in the SISSP. In other words,
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when operation i (assigned to the position k) precedes operation i/, operation i’ must be assigned to a
position kK’ (K’ > k) on the dispatching queue.

X > X, Viyi' € Q VK € {1,...NO},k <k (8)

X — (XaXow) > Xy, Vi, i' € QVk K € {1,...,NO}, k> K )

Equation 10 defines the decision variable feature in the model:

Xy € {0,1},Vi,k € {1,....NO} (10)

Allin all, Equations 6 to 10 guarantee the feasibility of queue solution Xj; by considering both assignment
and precedence constraints.

3 PHOTOLITHOGRAPHY AREA

The photolithography process includes three main steps. These steps are coat, expose, and develop. First,
the wafer is coated with a thin film of a photosensitive polymer, called the photoresist strip. Then, in the
“expose” step, the wafer is exposed with ultraviolet light (UV) in order to print the circuit pattern onto
the wafer. This is done using a reticle, which is a chrome patterned glass that defines the circuit pattern.
Since the circuits are made up of layers, every wafer passes through the photolithography area up to 40
times to process each layer. Accordingly, there are different layers to be processed on a wafer in the
photolithography workstation. This production environment can be seen as a job shop environment, where
wafers and layers refer to jobs and operations in the job shop scheduling literature, respectively (Ghasemi
et al. 2021).

To process each layer of a wafer, there is a set of eligible machines, where the eligibility essentially refers
to considering both machine process capability and machine dedication constraints. In each production shift,
the production planner decides the wafer mix going through the photolithography workstation considering
different parameters of the system. In this research, we examine the impact of jobs due dates and machines
flexibility in producing different layers (operations) of wafers (jobs) on the shop performance in each shift.
To perform this analysis, the following assumptions are considered within the SJSSP: 1) In a production
shift, an equal number of operations is assigned to all machines. 2) In a production shift, the number of
operations for all jobs are equal. 3) Jobs production plan is predefined considering both machine process
capability and machine dedication constraints (i.e., the assignment of operations to machines in a shift
is predefined considering the mentioned operational constraints). Considering these three assumptions
and the SISSP model presented in Section 2.1, the problem inputs are: Number of Jobs (N), Number of
Operations for each job (NO;), Number of Machines (NM), Due Dates (d;), Operations Processing Times
(t, j), Cost of Earliness (CE;), Cost of Tardiness (CT}), Predefined Operations Assignment to the Machines
(B), while the problem output is the total weighted earliness and tardiness costs for a production shift.
Ghasemi et al. (2021) implemented ELBSO to this problem and examined the impact of CE; and CT; on
the total objective value. In this research, we implement the same method, but we use data sets from a
semiconductor manufacturing system to retrieve processing time distributions, and we examine the impact
of B and Due Dates on the total objective value.

In this research, data was collected for three months from a frontend semiconductor fab with a data
set consisting of 929,178 rows of data. The data set analysis in this research has already been published
in Ghasemi et al. (2020) for a capacity allocation problem in a photolithography area. Here, we use
this data set to parametrize processing times within SISSP. To clarify, these data sets include the size
of lots (TRACKINMAINQTY), photolithography entrance times in each route (TRACKINTIME), and
photolithography exit times in each route (TRACKOUTTIME). Using track in and track out times of
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each lot, the processing time for each lot could be easily calculated. It is worth mentioning here that all
data sets are sampled from the Manufacturing Execution System (MES) at the considered semiconductor
manufacturer and are verified by them before analysis. Since some lots do not require photolithography
in each route, their processing time in the photolithography area equals to zero. Therefore, all jobs with
processing times equal to zero are deleted.

4 ELBSO IMPLEMENTATION

As mentioned above, in this research, we implement the ELBSO algorithm proposed by Ghasemi et al.
(2020) to the photolithography area considered as an SISSP. In ELBSO, after developing a DESM of the
proposed SJSSP, Figure 1 shows the general structure of the ELBSO algorithm. In the GP preparation phase
of the ELBSO algorithm, a data set is produced using the DESM of the SISSP for different replications
and scenarios. Then, using this data set, a GP model is trained to estimate the SISSP objective value. In
phase one, an initial random set pop of population size popsize is generated. Next, a set npop of population
size npopsize of offsprings is created using a Neighborhood Search Function (NSF). All solution objective
values in both pop and npop sets are evaluated using GP in the selection module, and popsize best solutions
are selected for the next generation. These steps are replicated until termination is achieved. Subsequently,
phase two is started by running the simulation model R, times for each solution p € pop (R, defines the
number of simulation replications in phase 2 for each solution). In this phase, a method called Simulation
Budget Allocation (SBA) is used, however other procedures such as Optimal Computation Budget Allocation
(OCBA) or rank and selection could be used. Details of the ELBSO structure are provided in Ghasemi
etal. (2021). As suggested by Ghasemi et al. (2021) the ELBSO parameters are set as follows: the solution
population size (popsize = 1000), offspring solution population size (npopsize = 2000), total number of
simulation replications to calculate each solution’s objective value (SL = 10°), total number of algorithm
iterations (iteration = 100), and as ELBSO is an OO-based evolutionary SO methods, in the second phase
the total number of sub phases executed simulation experiments is equal to six (nSub = 6). Moreover,
ELBSO will be terminated in 2000 seconds. As the results will vary for each execution of the algorithm,
10 replications of each algorithm are used.

5 EXPERIMENTS RESULTS

According to the research question defined in Section 1 (i.e., examining the impact of job mix selection
on the total shop performance), here, we examine the impact of both job due dates and operation routes
through machines on the total weighted earliness and tardiness costs of a production shift. This supports the
photolithography workstation planning procedure by examining different product mix selection strategies.
Thus, considering the discussed case data set, ELBSO is used to tackle SISSP. As mentioned in Section 3,
in each production shift, the production planner selects a mix of jobs to be processed on machines. Then,
considering operational constraints (e.g., machine dedication), the operation routes through machines are
defined. The question here is that: what is the best strategy in terms of operation routes through machines
and job due dates variability to be considered for selecting a job mix for each shift? Here, we consider three
strategies for each of the mentioned factors. We use two measures, Total Flexibility Ratio (7 FR) and Due
Date Standard Deviation (DDS) to study this issue. We introduce three T FR categories: TFR Category 1:
where each machine can process each operation (i.e., the first, second,..., and last operations of jobs which
provides a level flexibility); TFR Category 2: where machine flexibility level is set at a medium level;
TFR Category 3: where machine flexibility is set to the lowest level, where each machine is capable of
processing a certain operation number similar to flow shop production environments. Due dates are also
experimented under three categories: DDS Category 1: jobs have equal due dates; DDS Category 2: there
is a low level of variability in due dates; DDS Category 3: there is a considerable variation between jobs
due dates.



Ghasemi and Heavey

Create random

queue

solutions Estimate

. objective value
Tran 6P using the Metamodel
learned GP
Calculate the
Fitness value
by simulation

GP Preparation

Create random Create
offsprings for Selection termination
pop (npopset) achieved?

Optimizer

YES

Calculate The best

objective values| Update . solution in pop
SBA Procedure by simulation [lpopulation size Seecicn is the ELBSO

solution

termination
achieved?

Running Time

Figure 1: The general framework of the ELBSO algorithm (Ghasemi et al. 2021)

To illustrate the experimentation procedure in this research, Table 2 shows an example of an SISSP
considered. In this research, we consider 10 jobs and 10 operations for each job to be processed on 10
photolithography machines. As discussed in Section 3, the processing time of each operation follows the
Gamma[16.98,2.448] distribution. To provide a targeted experimentation enabling us to provide a useful
and unique sensitivity analysis on SJSSP, we solve different SISSPs, which are essentially different in terms
of job due dates and operation routes through machines. As shown in Table 2, each job has a specified
due date and route between machines. For instance, the first operation of job two should be processed on
the second machine (M;). Consider R, as the operation of job j assigned to machine m. Thus, FR,, is
calculated as follows:

N
Y R,
FR,, = Zf]; " Yme NM (11)

where, FR,, defines the mean of operation numbers assigned to machine m. Accordingly, FRS,, provides
to the standard deviation of operations assigned to machine m as follows:

N 2
! R,i—FR
FRSm:\/ X Aj” . n) Vm e NM (12)

Another metric that we consider in this research is Total Flexibility Ratio (T FR) of the operation
numbers assigned to each machine in a particular SJSSP, which is equal to:

TFR= ), |FRy— = (13)
m=1
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Table 2: Problems Environment Example with TFR = 14.6, DDM = 68, and DDS = 33.2.

Jobid Due Date Operations Route

M, M, M; My Ms Mg M; Mg My M

1 30 1 2 4 3 7 8 9 6 5 10
2 40 2 1 3 4 7 8 9 6 5 10
3 25 4 1 3 2 7 8 9 10 5 6
4 55 6 1 3 9 7 8 2 10 5 4
5 75 7 8 3 9 6 1 2 10 5 4
6 105 2 8 3 1 6 9 7 10 5 4
7 95 6 5 3 1 2 9 7 10 8 4
8 35 1 5 4 6 2 9 7 10 8 3
9 105 4 3 1 7 2 9 6 10 8 5
10 115 2 8 1 5 4 9 6 10 3 7
FR,, 35 42 28 47 5 78 64 92 57 5.7
FRS,, 21 28 09 28 21 23 24 16 16 24

To illustrate this equation further, we use Table 2. Accordingly, if operations are assigned to machines
where each machine will process a unique operation from a job then TFR =0, i.e., FR, will equal
( fili)/N in all cases. Using Equation 11, 12, and 13, FR,, FRS,,, and TFR values are calculated,
respectively, with calculations of the Due Date Mean (DDM) and Standard Deviation (DDS) of the job due
dates. To make it clearer, consider the first machine (M;) in Table 2, FR; = 3.5. However, if all operation
numbers from one to 10 from different jobs were assigned to M, then the FR; value would equal 5.5 (i.e.,
((14+2+43+...4+10)/10 =5.5)). Instances exist, where for the example given in Table 2 FR, = 5.5,
for example, where half the operations equal five and the other half equal six. In this case, FRS,, for the
same machine will show this deviation of operation numbers on a machine. 7FR will give information on
the FR,, deviation of machines from 5.5. This indicates the total machines flexibility level in processing
different operation numbers of jobs in a SISSP instance.

Table 3 describes nine generated SISSPs and experiment results in this research. The nine problems are
divided into three categories based on their 7FR levels. The mean due dates (DDM = 500) equate across
all none problems, while examining the standard deviation of the due dates (DDS) one can see that they
vary. Table 3 shows the result of solving the defined SISSPs. That includes both the mean and standard
deviation of the SJSSP objective value (F) in 10 replications for each problem. Full details for Problem
3 (see Table 4) and the flow time results (see Table 5) from Table 3 are given in Appendix A. Note that
the full details of the SJSSP instances and results in this research are available at the following link: Data
Sets and Results. As stated earlier the ELBSO ran for 2000 CPU seconds.

6 DISCUSSION

As it is clear from Table 3, the best results obtained for the TFR Category 1 job shop environment with the
Mean(F) between 807.4 and 2151.4. On the other hand, increasing the due dates variability in each group
caused a sharp increase in Mean of the objective value. To analyze further the results, we used a Taguchi
Design Of Experiment (DOE) method using Minitab application (Minitab 2021). This method is based on a
special set of arrays called orthogonal arrays to conduct the minimum number of efficient experiments that
could give insights on all factors that affect the performance measure. After executing the test, the main
effects plots for both TFR and DDS are shown in Figure 2, where 1 corresponds to TFR Category 1, etc
and for DDS 1 corresponds to DDS Category 1, etc. Figure 2 shows how each factor affects the response
characteristics (Signal Noise (SN) ratio, means, slopes, and standard deviations) (here minimizing the total
cost objective). A main effect exists when different levels of a factor affect the characteristic differently.
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Table 3: SISSP instances in this research and experiments results.

Problems
Machine id Metric TFR Category 1 TFR Category 2 TFR Category 3
1 2 3 4 5 6 7 8 9
1 FR 5.5 5.5 5.5 7.7 7.7 7.7 1 1 1
FRS 2.8 2.8 2.8 2.5 2.5 2.5 0 0 0
) FR 55 5.5 5.5 54 54 5.4 2 2 2
FRS 2.8 2.8 2.8 2.7 2.7 2.7 0 0 0
3 FR 5.5 5.5 5.5 4.7 4.7 4.7 3 3 3
) FRS 2.8 2.8 2.8 1.8 1.8 1.8 0 0 0
4 FR 55 55 5.5 4.9 4.9 4.9 4 4 4
FRS 2.8 2.8 2.8 2.6 2.6 2.6 0 0 0
5 FR 5.5 5.5 5.5 5.9 5.9 5.9 5 5 5
FRS 2.8 2.8 2.8 3 3 3 0 0 0
6 FR 5.5 5.5 5.5 54 54 54 6 6 6
FRS 2.8 2.8 2.8 2.6 2.6 2.6 0 0 0
7 FR 55 5.5 5.5 5.2 5.2 5.2 7 7 7
FRS 2.8 2.8 2.8 3.1 3.1 3.1 0 0 0
8 FR 5.5 5.5 5.5 5.8 5.8 5.8 8 8 8
FRS 2.8 2.8 2.8 2.7 2.7 2.7 0 0 0
9 FR 5.5 55 5.5 5.6 5.6 5.6 9 9 9
FRS 2.8 2.8 2.8 2.8 2.8 2.8 0 0 0
10 FR 5.5 5.5 5.5 4.4 4.4 4.4 10 10 10
FRS 2.8 2.8 2.8 33 33 33 0 0 0
TFR 0 0 0 6 6 6 25 25 25
DDM 500 500 500 500 500 500 500 500 500
DDS 0 207.3  317.6 0 207.3  317.6 0 207.3  317.6
Mean(F) 807.4 1407.2 2151.4 | 1840.4 21233 2711.7 | 2250.4 2510.1 3244.2
STD(F) 137.7 284 132.4 97.4 31.9 67.9 202.2  265.6 607.7

For instance, for a factor with two levels, you may discover that one level increases the mean compared to
the other level. This difference is a main effect. Accordingly, as it is shown, the best results are achieved
when both 7FR and DDS factors are in their first state indicating that TFR Category 1 and DDS Category 1
are the best job mix strategy in our research. That indicates the best job shop performance occurs when
the job mix in each shift is selected in a way that all machines process different operation numbers of jobs
and due dates of jobs are as equal as possible. Considering photolithography workstations, it means that,
considering operational constraints such as machine dedication, the production planner should select the
wafer mix in the way that machines could process different layers from different wafers, and job due dates
are as equal as possible. Indeed, our findings are clearly against line production, which refers to processing
each layer of wafers on a certain machine.

7 CONCLUSIONS

In this paper, we examined the impact of job mix selection on the performance of the job shop in a
production shift. That is one of the main concerns within photolithography workstations in semiconductor
manufacturing systems. Accordingly, job due dates and routes between machines are considered as the
influencing factors. Thus, different sets of SJSSP using a photolithography case data were proposed. To
solve the designed SJSSPs, we used an SO method named ELBSO proposed by Ghasemi et al. (2021).
While the analysis had many limitations in that it did not model machine process capabilities, machine
dedication constraints, or reticle constraints, and examined a workstation rather than the complete fab, it
does provide some guidance in how planners could select jobs for a shift. However, experiment results
show that the best job shop performance occurs when each machine in a production shift produces different
layers of wafers, and the assigned wafers to a shift have as equal due dates as possible. As an extension to
this research, we would like to examine the impact of mask availability constraints on the job mix selection



Ghasemi and Heavey

Main Effects Plot for SN ratios

Data Means
TFR DDS
62
e
63 \
\
\ e

64 \ \\
0 - \
o
‘g \ \\
- A
=z 65 \ AN
(7] \ AN
N \ \
°
S 66 AN ‘\
P \ N\
= \\ \\

67 . \

. \\\
‘\\\ \\
-68 -
. o
69
1 2 3 1 2 3

Figure 2: Results main effects plot for the SN ratios.

and qualification of machines. Moreover, we would like to modify ELBSO by using innovative heuristics
such as the ones proposed by Beheshtinia and Ghasemi (2018), Beheshtinia et al. (2017).

REFERENCES

Beheshtinia, M. A., and A. Ghasemi. 2018, September. “A multi-objective and integrated model for supply chain scheduling
optimization in a multi-site manufacturing system”. Engineering Optimization 50(9):1415-1433.

Beheshtinia, M. A., A. Ghasemi, and M. Farokhnia. 2017, December. “Supply chain scheduling and routing in multi-site
manufacturing system (case study: a drug manufacturing company)”. Journal of Modelling in Management 13(1):27-49.

Can, B., and C. Heavey. 2012, February. “A comparison of genetic programming and artificial neural networks in metamodeling
of discrete-event simulation models”. Computers & Operations Research 39(2):424-436.

Dunke, F., and S. Nickel. 2020, February. “Neural networks for the metamodeling of simulation models with online decision
making”. Simulation Modelling Practice and Theory 99:102016.

Figueira, G., and B. Almada-Lobo. 2014. “Hybrid simulation-optimization methods: A taxonomy and discussion”. Simulation
Modelling Practice and Theory 46:118-134.

Ghasemi, A., A. Ashoori, and C. Heavey. 2021, July. “Evolutionary Learning Based Simulation Optimization for Stochastic
Job Shop Scheduling Problems”. Applied Soft Computing 106:107309.
Ghasemi, A., R. Azzouz, G. Laipple, K. E. Kabak, and C. Heavey. 2020, January. “Optimizing capacity allocation in semiconductor
manufacturing photolithography area — Case study: Robert Bosch”. Journal of Manufacturing Systems 54:123—137.
Graham, R. L., E. L. Lawler, J. K. Lenstra, and A. H. G. R. Kan. 1979, January. “Optimization and Approximation in
Deterministic Sequencing and Scheduling: a Survey”. In Annals of Discrete Mathematics, edited by P. L. Hammer, E. L.
Johnson, and B. H. Korte, Volume 5 of Discrete Optimization II, 287-326. Elsevier.

Horng, S.-C., S.-S. Lin, and E-Y. Yang. 2012, February. “Evolutionary algorithm for stochastic job shop scheduling with
random processing time”. Expert Systems with Applications 39(3):3603-3610.

Horng, S.-C., E-Y. Yang, and S.-S. Lin. 2012, August. “Embedding evolutionary strategy in ordinal optimization for hard
optimization problems”. Applied Mathematical Modelling 36(8):3753-3763.

Hussain, M. F., R. R. Barton, and S. B. Joshi. 2002, April. “Metamodeling: Radial basis functions, versus polynomials”.
European Journal of Operational Research 138(1):142—-154.

Jamili, A. 2019, February. “Job shop scheduling with consideration of floating breaking times under uncertainty”. Engineering
Applications of Artificial Intelligence 78:28-36.

Kleijnen, J. P. C. 2009, February. “Kriging metamodeling in simulation: A review”. European Journal of Operational
Research 192(3):707-716.

Minitab 2021. “Data Analysis, Statistical & Process Improvement Tools”.

Monch, L., R. Uzsoy, and J. W. Fowler. 2018, July. “A survey of semiconductor supply chain models part III: master planning,
production planning, and demand fulfilment”. International Journal of Production Research 56(13):4565-4584.



Ghasemi and Heavey

Pinedo, M. 2016. Scheduling: theory, algorithms, and systems. Fifth Edition ed. Cham Heidelberg New York Dordrecht London:
Springer. OCLC: 945375528.

Shen, J., and Y. Zhu. 2016, June. “Chance-constrained model for uncertain job shop scheduling problem”. Soft Comput-
ing 20(6):2383-2391.

Trigueiro de Sousa Junior, W., J. A. Barra Montevechi, R. de Carvalho Miranda, and A. Teberga Campos. 2019, February.
“Discrete simulation-based optimization methods for industrial engineering problems: A systematic literature review”.
Computers & Industrial Engineering 128:526-540.

Winands, E., I. Adan, and G. van Houtum. 2011, April. “The stochastic economic lot scheduling problem: A survey”. European
Journal of Operational Research 210(1):1-9.

Yang, H.-a., Y. Lv, C. Xia, S. Sun, and H. Wang. 2014. “Optimal Computing Budget Allocation for Ordinal Optimization in
Solving Stochastic Job Shop Scheduling Problems”. Mathematical Problems in Engineering 2014:1-10.

Zhang, J., G. Ding, Y. Zou, S. Qin, and J. Fu. 2019, April. “Review of job shop scheduling research and its new perspectives
under Industry 4.0”. Journal of Intelligent Manufacturing 30(4):1809-1830.

AUTHOR BIOGRAPHIES

AMIR GHASEMI is a Postdoctoral Researcher in the School of Engineering at the University of Limerick. He published papers
in the field of Simulation, Optimization, and Machine Learning-based Decision Support Tools for operations, transportation,
and supply chain planning. His research interests include designing Simulation, Optimization, and Machine Learning-based
Smart Agents in order to replace and/or support the human in decision making applied to both manufacturing and service
sectors. His email address is: Amir.ghasemi@ul.ie.

CATHAL HEAVEY is an Associate Professor in the School of Engineering at the University of Limerick. He is an Industrial
Engineering graduate of the National University of Ireland (University College Galway) and holds an M. Eng.Sc. and Ph.D.
from the same University. He has published in the areas of queuing and simulation modeling. His research interests include
simulation modeling of discrete-event systems; modeling and analysis of supply chains and manufacturing systems; process
modeling; and decision support systems. His email address is Cathal.Heavey @ul.ie.


mailto:Amir.ghasemi@ul.ie
mailto:Cathal.Heavey@ul.ie

A Problem Data
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Table 4: Problem 3 for job mix selection.

Machines
1 2 3 4 5 6 7 8 9 10 | Due Date
1 1 2 3 4 5 6 7 8 9 10 60
2 10 1 2 3 4 5 6 7 8 9 160
3 9 10 1 2 3 4 5 6 7 8 220
4 8 9 10 1 2 3 4 5 6 7 310
& 5 7 8 9 10 1 2 3 4 5 6 420
S| 6 6 7 8 9 10 1 2 3 4 5 530
7 5 6 7 8 9 10 1 2 3 4 640
8 4 5 6 7 8 9 10 1 2 3 700
9 3 4 5 6 7 8 9 10 1 2 810
10 2 3 4 5 6 7 8 9 10 1 1150
FR | 55 55 55 55 55 55 55 55 55 55 500
FRS | 2.87 2.87 287 287 287 287 287 287 287 287
Table 5: Total cost results.
Replication
1 2 3 4 5 6 7 8 9 10 | mean(F) | STD(F)
11021 614 715 776 1015 752 780 653 968 780 807.4 137.79
2 | 1366 1434 1432 1433 1371 1439 1431 1405 1374 1387 | 1407.2 28.46
311946 2071 2001 2319 2199 2314 2191 2052 2331 2090 | 21514 132.49
% 411751 1672 1951 1950 1815 1722 1941 1816 1934 1852 | 1840.4 97.40
?5 512118 2172 2096 2139 2072 2141 2132 2143 2071 2149 | 2123.3 31.93
& | 62823 2677 2759 2573 2677 2758 2731 2691 2655 2773 | 2711.7 67.96
7 12356 1950 1966 2543 2338 2264 2508 2002 2254 2323 | 22504 202.26
8 | 2782 2553 1967 2776 2261 2537 2740 2253 2443 2789 | 2510.1 265.60
9 | 2330 2995 4414 3077 3305 3716 2616 4018 3137 2834 | 32442 607.76
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