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ABSTRACT

We consider multi-objective batch scheduling in the complex flexible job shop problem applied to semi-
conductor wafer fabs. Batches have different operating costs and consecutive steps of a job are constrained
with timelinks. We also consider several other process aspects that arise in semiconductor wafer fabrication
facilities such as flexible machine downtime, incompatible job families, different job sizes and parallel
machines. The aim is to minimize the total weighted batching cost, queuing time, and the number of
violations of timelink constraints. We present a hybrid two-stage solution strategy, combining Mixed
Integer Linear Programming (MILP) models and heuristics. At a high level, the proposed approach can
be broken down into “constructive” and “improvement” steps. The comparison of Flexciton schedules
evaluated under uncertainty against factory schedules when solving large industrial instances shows the
significant improvements that our solution can bring.

1 INTRODUCTION

The world is currently witnessing a global semiconductor chip shortage; a crisis so considerable that
the world’s largest tech companies are suspending the launch of their products (Sweney (2021)). This
shortage is a result of many factors including an increasing demand, lack of raw materials, and the limited
production capacity of semiconductor facilities. According to the Semiconductor Industry Association,
global semiconductor sales increased 6.5% to $439 billion in 2020 according to SIA (2021), showing
a significantly growing demand for chips from automakers and tech giants. Multi-billion dollar wafer
fabrication plants run round-the-clock. Yet the semiconductor manufacturing is a very capital intensive
industry; adding significant new wafer fabrication capacity can take years and billions of dollars. For
most semiconductor companies, one of the best ways to capitalize on this surge in demand is to cultivate
efficient production processes in order to decrease production costs and increase the time-to-market ratio.
Efficient production control and advanced scheduling are vital in modern wafer fabs as a method to increase
throughput, reduce queuing time, and reduce rework and scrap.

In order to improve the high level Key Performance Indicators (KPIs) of a fab, many state-of-the
art schedulers and dispatching algorithms will focus on scheduling the Work-In-Progress (WIP) either
immediately in transit to the toolset or already on the rack at the toolset. Such an approach allows for these
techniques to scale across large numbers of toolsets easily as they don’t need to consider the knock-on
impact of their localised scheduling decisions. That said, improving upon this “local scheduling” of toolsets
can still realise significant gains for a fab where the decisions made at each toolset are independent. In
Kopanos et al. (2020) Flexciton reported a significant reduction of more than 43% in cycle times for high-
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priority wafers, a reduction of about 9% in total cycle times, and a 7% increase in throughput; compared
to the simulation scheduler for the metrology toolsets at Seagate’s Springtown facility. Having shown
improved efficiency at a toolset level where each toolset is optimized separately, in this paper we outline the
efficiency of Flexciton’s solution at a global level, taking into consideration different schedulable toolsets
simultaneously. We present a hybrid two-stage solution strategy based on job decomposition comprised
of an MILP solution and local improvement loop. This solution is used for solving the global scheduling
problem; also known as the general scheduling problem with time constraints.

2 PROBLEM DESCRIPTION

Wafer fabrication is one of the most complicated manufacturing processes in the modern world. A single
lot of wafers may go through over 1,000 steps in different work areas resulting in complex constraints and
major dependencies.

2.1 Timelink Constraints

Timelink constraints (also known as time lags in scheduling literature) occur when a set of consecutive
process steps must be completed within a fixed time window. In a highly complex wafer fabrication
environment, these constraints add significant complexity; even the most advanced fabs struggle with
scheduling time constraints.

A silicon wafer undergoes a fabrication process by entering multiple production steps, where each
step is performed by different, highly sophisticated tools. Optimizing the transition and waiting time of
the lots has a huge impact not only on a fab production performance but also on its profitability. As
an example, by introducing time constraints at the wet etch and furnace process steps, we prevent the
likelihood of oxidation and contamination. Failing to do so risks contact failures, low and unstable yields,
the consequence of which is either rework or the wafers must be scrapped. Such problems are difficult to
discover during wafer processing, and to run special monitoring lots would be a considerable effort.

Yield optimization has long been considered to be one of the key goals, yet difficult to achieve
in semiconductor wafer fab operations. As the semiconductor manufacturing industry becomes more
competitive, effective yield management is a determining factor to deal with increasing cost pressures.
Timelinks between consecutive process steps are one of the most difficult constraints to schedule, with a
significant impact on yield management.

Some factories avoid the problem by dedicating tools to each process group that requires a previous
cleaning or etch step. The disadvantage of this strategy is the higher demand from the wet tools, which
leads to higher investment, more cleanroom space, and ultimately to lower capital efficiency. The tradeoff
between increasing throughput and a higher likelihood of violating lots’ time constraints is an everyday
battle for fab managers trying to meet yield targets.

An example of time constraints for a single lot is illustrated in Figure 1. It shows a timelink system
between four consecutive process steps. In this example, we can see that the lot has timelinks constraining
Step 2 to Step 4 as well as from Step 3 to Step 4, with overlapping timelink phases. This means that after
completing process Step 3, the lot begins a new timelink phase (Time Link 3) whilst already transitioning
through an existing timelink (Time Link 2) started upon completion of Step 2. As you might expect, the
need to simultaneously look ahead and consider future decisions whilst also being constrained by past
decisions is not trivial to model well in a heuristic or as dispatch rules.

Timelink constraints are already difficult to navigate, but nesting them adds yet another layer of
complexity for heuristics. Different types of timelink constraints are analyzed and discussed in Klemmt
and Mönch (2012). In Figure 1, if the final Step 4 cannot be brought forward, scheduling Step 3 too close
to Step 2 may make it impossible to meet the “Time Link 3”. This is because the time between Steps 3
and 4 is now greater than the maximum allowed. This would not be a problem if the timelink constraints
were not nested and we only have to schedule according to the “Time Link 2”.
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Figure 1: An example of timelink constraints for a single lot.

2.2 Global Scheduling with Timelink Constraints

Timelink constraints endorse the necessity for a global fab scheduler. These production constraints mean
that toolsets become tightly coupled and must be optimized as a single entity. Without doing so, the WIP
flow cannot be controlled well and we may end up creating bottlenecks at downstream tools, thus resulting
in timelink violations due to a queue build-up.

For example, maximising throughput at the upstream toolset may cause too much WIP to arrive at
the downstream toolset to process before the timelink expires. These lots end up queuing in front of the
downstream toolset and ultimately violate their timelink due to waiting too long before processing. It is
therefore common to see large queuing times of lots at the toolsets where timelink constraints commence
and very little queue time in front of the remainder of the downstream toolsets.

On one hand, the WIP needs to flow freely through downstream toolsets with minimal queuing however
on the other hand, we cannot afford to be overly conservative and stifle throughput as a result of keeping
downstream tools unnecessarily idle waiting for transiting lots. This problem enforces the need for so-called
“global” scheduling of the fab that considers upstream and downstream toolsets simultaneously.

Global fab scheduling problem can be modelled as a complex flexible job-shop-scheduling problem
with timelink constraints. A flexible job-shop-scheduling problem is an extension of classical job-shop
problems that permit an operation of each job to be processed by more than one machine Chan et al.
(2006). The most common solution approaches can be found in the literature are integer programming
and metaheuristics. A simple heuristic that sequentially schedules the jobs in a list scheduling manner
and a decomposition approach based on mixed integer programming are proposed in Klemmt and Mönch
(2012). The problem was simplified and reduced to a flexible flow shop scheduling problem. The authors
in Yu et al. (2013) presented a two-stage lot scheduling mixed integer programming (MIP) approach
with time constraints for small problems and an efficient solution procedure for larger problems. This
procedure decomposes the jobs into two subsets, whereby only one subset of jobs is scheduled by the
MIP and the other one scheduled with dispatching. The suggested MIP model solutions problems having
up to 25 lots. Population based metaheuristic are also frequently found in the form of genetic algorithms
and tend to provide acceptable results. A two-stage genetic algorithm for a flexible job-shop scheduling
problem with sequence dependent attached/detached setup, machine release date and lag-time is developed
in Defersha and Rooyani (2020). A simpler list-based scheduling heuristic from Sadeghi et al. (2015)
and Klemmt and Mönch (2012) offered an interesting compromise between solution quality and scalability
and did not limit the way time constraints are modeled. Knopp et al. (2017) developed an algorithm
applying Simulated Annealing embedded in a Greedy Randomized Adaptive Search Procedure (GRASP)
and provided a good approximated solution in short execution times. Nattaf et al. (2019) proposed an integer
linear programming model and a constraint programming model, as well as two improvement procedures
of existing two heuristics. For the sake of simplicity, most of these works do not consider the important
operational sides of the problem; batch scheduling, job incompatibilities and/or machine downtimes are
often ignored.

2.3 Multi-Objective Optimization

Scheduling of semiconductor wafer fabrication is a complex system usually involving multiple and conflicting
objectives. Although multi-objective scheduling problems have been widely studied in the literature, a
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minor number of papers considered multi-objective scheduling in semiconductor industry. Baez Senties
et al. (2006) and Senties et al. (2010) proposed an artificial neural network based-technique embedded
into a multi-objective genetic algorithm for a multi-decision scheduling problem in a semiconductor wafer
fabrication environment. In a recent work Tamssaouet et al. (2021), the authors introduced two a priori
multi-objective extensions of Simulated Annealing using a combination of a lexicographic order and weights
embedded in a GRASP based approach. In their preference model, trade-off is only allowed between some
criteria.

In this paper we consider the optimization of three of the most important objectives in semiconductor
industry:

• Minimize the number of violations to timelink constraints: as pointed out in section 2.1, violating
those constraints might result in rework, scrap or longer cycle time. In some circumstances, due to
limited capacity a minimal number of violations may be unavoidable. Therefore, they are treated
as “soft” constraints; allowed to be violated and modelled by heavily penalising their violation in
the objective function.

• Maximize the batching efficiency weighted by tool. This is to model the relative cost to the fab of
running batches on certain tools over others. It also allows the optimizer to distinguish worsening
the batching efficiency at upstream toolsets to realise even greater gains at the more expensive
downstream toolsets.

• Minimize the queuing time of lots. This naturally translates to a reduction in cycle time which is
often a fab’s key objective.

The number of late lots deliveries is not optimized as an objective. Instead, a maximum number of late
lots is treated as hard constraint such that their number must be no worse than the baseline scenario in all
cases.

2.4 Weighted Number of Batches

In semiconductor manufacturing, the effective monetary cost of running a batch of lots can vary greatly
across different tool groups. Therefore the creation of batches is penalized according to a hierarchy of
three costs:

• Clean tool (batches are inexpensive)
• Cheap furnace tool (batches are eg. x5 more costly)
• Expensive furnace tool (batches are eg. x10 more costly)

To the best of our knowledge, batch scheduling with different batch costs and job timelink constraints
in a multi-objective context has never been addressed in the literature. Furthermore, it seems that most of
the academically motivated papers do not consider different batching costs and mostly focus on minimizing
makespan or number of late lots. In this paper, we address the optimization of three of the most important
KPIs in semiconductor manufacturing while considering complex process conditions found in wafers
fabrication facilities.

3 SOLUTION STRATEGY

The Flexciton solution strategy for solving global scheduling problems consists of a hybrid of MILP models
and heuristics. At a high level this strategy can be broken down into two constructive and improvement
stages. The constructive step produces a high-quality schedule quickly, typically within 2-3 minutes. The
improvement step refines this schedule carefully, leading to a better solution for a further 2-3 minutes.
These two steps are encapsulated within a distributed processing environment of multiple threads processing
tasks in parallel. The modelled process is showed in Figure 2.



Elaoud, Williamson, Efeoglu Sanli, and Xenos

Figure 2: Summary of Global Scheduling solution strategy.

3.1 Constructive Step

The constructive step is focused around an iterative process of adding decreasingly important lots into the
schedule. All the lots are ranked according to a combination of criteria, ϕ(lot). They are then scheduled
in N subsets, a predefined number of iterations. Higher priority is allowed to jobs with earliest due date,
more timelink constraints and higher number of steps to be scheduled. This constructive step is a modified
version of the extension of the list scheduling procedure Klemmt and Mönch (2012) where jobs are sorted
in non-decreasing order with respect to their due dates. Adding the number of timelink constraints and the
number of steps to schedule gives a better view on the priority of a job. Increasing the priority of these
lots results in scheduling them in earlier iterations where there is more freedom in the schedule. We also
ensure to consider all future and timelinked steps of a lot simultaneously in the iteration for which it is
selected.

In taking a job decomposition approach, we iteratively solve smaller subproblems where each subproblem
contains only a subsets of the total number of jobs. This reduces the total complexity of the problem,
which is principally derived by the number of jobs to be scheduled. Subproblems are iteratively solved
using MILP.

Inspired by the efficiency of the list scheduling procedure Klemmt and Mönch (2012), the algorithm
of this constructive step can be described as follows:

1. Determine the bottleneck toolsets coupled by timelink constraints
2. Build an MILP model encompassing these coupled toolsets
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3. Rank all lots according to ϕ(lot) in descending order
4. Split the ranked jobs into N chunks of equal number of schedulable steps
5. Solve the MILP problem of each iteration, adding each chunk of jobs in successive iterations

During the iterative solutions of the MILP, jobs of previous iterations are not allowed to move batches
however they may still change their timing and/or sequencing. The maximum running time of this stage is
evaluated according to the number of jobs to be scheduled. The division of the total time limit is skewed
towards earlier iterations as these are typically more complex subproblems to solve due to the ranking
criteria of lots. The advantage of this step is the possibility of including all timelink constraints of jobs
in each chunk. Otherwise, solving the full problem with coupled timelink constraints for industrial size
datasets would not be possible in a reasonable amount of time.

3.2 Improvement Step

The second and final phase of the solution strategy consists of cycling through the bottleneck toolsets
considering one toolset at a time. Given a full MILP model of the entire fab, we only allow decision
variables related to the toolset at hand to be modified by the solver in any given iteration. In doing so,
the problem size is effectively reduced however we ensure the impact on the timing of the steps on other
toolsets is also still considered in the objective function of this toolset.

Furthermore, we allow lots to move within a “close neighbourhood” of candidate batches. This
neighbourhood is defined for a given batch B as any other batch B∗ that has been pre-assigned the same
recipe and starts or ends within α minutes of the candidate batch. To simplify this search, batches that are
already full on toolsets with a high maximum batch size are considered immutable; their lots are excluded
from this local neighbourhood search. We also allow the search to move lots between tools of a toolset.
This improvement step procedure continues iterating until either all toolsets have successfully returned an
optimal solution in a single pass or the predefined time limit has been exceeded.

3.3 Lexicographic Objective Function

Another facet of this solution strategy is the objective function that is used for the MILP model. A linear
weighted sum of different objectives is typically how objective functions with many different KPIs are
composed. In this instance, however, the objectives have significantly different priorities and having linear
weights that are several orders of magnitude different can cause the optimizer to become unstable.

For this reason, we elect to change the objective function to be hierarchical; optimize first objective
f1(x) only, then optimize the second objective f2(x) such that f1(x) does not worsen by µ% (typically
0-10%). This is especially useful when dealing with different orders of magnitude in the objective terms
of considerably different coefficients because only one subproblem is considered at a time. This further
enables us to model the timelink constraints via an objective function penalty term and once the number
of timelinks has been minimized without considering any confounding KPIs, the remaining terms can be
optimized given that number of timelink violations. Optimizing timelinks is best suited to a lexicographic
objective for three reasons:

1. Infeasibility: Should timelinks be treated as hard constraints, the problem may end up being
infeasible due to potential limited fab capacity. Hence we minimize them as part of the objective
function instead of disallowing any violations at all.

2. Importance: Additionally, a lexicographic objective gives us the ability to highly prioritise this
objective term above all else. Since the cost of violating a timelink is so great to a fab (due
to potentially scrapping a wafer or performing rework), any improvements in the other KPIs are
overshadowed by this term.

3. Automation: The Flexciton solution is deployed in a live application where the time available for
decision making and human interventions is limited, therefore relevant objective preferences should
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be set up-front and optimized accordingly.

We therefore setup the objective function with the following ranking as outlined in 2.3:

1. Above all else, eliminate all timelink violations as much as possible
2. Secondarily, maximise the batching efficiency weighted by tool
3. Finally, minimize the queuing time of lots

Notably, solving the problem in this fashion could lead to a situation where the queueing time of lots
suffers at the expensive of optimal batching efficiency and timelink violations; the solution is not the same as
if all terms were optimised together. In using such an approach, we have also considered that the objectives
are in order of “freedom”. That is to say that when optimising the third term, a constrained number of
timelink violations and batching efficiency still allows a large number of solutions to be explored. We have
not constrained precise jobs in the way that optimising queueing time (or say, job end times) first would
do. That said, there is certainly scope for future work in this area of fine-tuning the lexicographic order
of our objective function.

3.4 Parallel Computing

As the modelling parameters need to be decided a priori, we utilise parallel computing to launch similar
computations with subtly different configurations and inspect the results upon completion. Typically we
run approximately 10 different parallel threads whose output schedules are assessed according to a success
criterion chosen by the parent thread.

4 BENCHMARK STUDIES

To benchmark the scheduler, we focus on the optimal multistage scheduling of single-recipe batching
machines with timelinks. In order to appropriately consider the timelinks, we also model the toolset(s)
triggering the start of the timelink constraints. An example of such an area is the diffusion (aka furnace)
and clean toolsets of the semiconductor fab.

In order to accurately model the upstream toolsets, we must also consider their WIP that is not
subsequently entering a timelink. To exclude this WIP would overestimate the capacity of that toolset
to schedule timelink WIP. These lots are modelled via a pre-specified delivery date prior to which they
must reach their downstream toolset. This ensures that the lots are scheduled in a timely manner without
explicitly modelling their downstream toolset(s).

4.1 Assumptions

• All scheduling data are assumed to be deterministic. The scheduler estimates uncertainties by
modelling various distributions and suitable values are sampled from these distributions before
optimizing.

• Multiple processing steps are considered per available wafer and all of these are known with
certainty. There are no conditional steps.

• Batch loading and unloading times do not depend on recipes or wafers.
• No preemption is allowed, i.e., once a batch starts, it cannot be interrupted.

4.2 Results

To assess the performance of the proposed approach, we consider ten benchmark datasets of varying
levels of throughput (ie lot moves), and online machines such that each dataset represents a different fab
state. Descriptive metrics of the benchmark datasets are given in Table 1. The second column reports the
throughput level for each data set, ranging from 59 to 704 wafer steps. Since not every lot-step can be
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Table 1: Dataset descriptive metrics.

Dataset Num. wafer steps
(throughput)

Avg. candidate lot
steps per machine

Num. pairs of steps
linked with time
link constraints

1 59 6.82 5
2 77 9.00 5
3 135 12.21 1
4 196 24.11 40
5 483 35.33 97
6 520 39.11 135
7 589 45.46 156
8 630 45.96 195
9 627 46.80 164
10 704 51.11 191

processed on every machine, the average number of eligible lot-steps per machine is shown in the third
column. Although a reduced number of valid lot/machines combinations results in a reduced number of
binaries in the MILP model, it also reduces the potential to improve schedule quality. The last column
reports the number of pairs of steps linked with timelink constraints. The number of machines ranges from
50 to 70 for all data sets.

The baseline case results are created using simulation techniques involving heuristic rules derived from
the current state-of-the-art in scheduling this toolset group. These heuristic rules are akin to the standard
practice of real-time dispatch systems in a live fab. For the timelink toolset group in question, this involves
a pull approach for order release whereby when an upstream toolset is idle or near-idle, it requests lots
to be dispatched at the upstream toolsets. For details of such an approach see Mönch et al. (2013). This
is a common state-of-the-art approach for dispatching algorithms to deal with timelink constraints albeit
inefficiently.

The optimized case must schedule the same number of moves as the baseline case; throughput must
be the same for both cases in each dataset.

In Table 2, we report results comparing the percentage change in the three optimized objectives
between the baseline schedule and the optimized schedule. The third column of the table shows the
improvement percentage of the first objective in the lexicographic order as stated in §3.3. Datasets with
-100% violated timelink change means that the proposed approach managed to provide a solution with
zero timelink violations, i.e. all violations that were present in the baseline schedules were removed in
the optimised version. On average, the proposed solution eliminated 72.2% of timelink violations across
all datasets. A lower level of detail is given for the batching efficiency objective (columns 4-6) where
percentage improvement in batch throughput is given for each of the various cost levels. The weighted
batching objective can easily be derived by aggregating different batching improvement percentages. The
last column shows the change in queuing time for all wafers. A negative percentage indicates a lower
total queuing time for the proposed solution. Overall, results in Table 2 show that the baseline solution is
dominated by the optimized schedule in all objectives simultaneously in almost all datasets. Finally, the
number of late lot deliveries is not reported in the table as it was zero for all baseline cases except for
Dataset 7 where it was 2 lots. The optimized case saw no change to these results.

In general, as the throughput increases, the opportunity to improve batching increases due to simply more
batches being present overall. The expensive batching column in Table 2 present the lowest improvement
rates as the number of expensive batches is originally low across all datasets. In general there is higher
utilization of moderate and cheap batching toolsets which explains the higher average improvement rates
compared to the most expensive batches and tools. This also accounts for the unusually high queuing time
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Table 2: Solution performance (percentage change compared to the baseline schedule).

Dataset
Num. wafer

steps
(throughput)

Violated
timelinks
% change

Num. batches % change Queuing
time

% changeExpensive Moderate Cheap

1 59 0.0 Nil batches 0.00 -18.2 -89.7
2 77 0.0 0.0 0.00 -23.1 -79.5
3 135 0.0 0.0 -33.3 -16.7 -48.7
4 196 0.0 0.0 -18.2 -35.7 -59.0
5 483 0.0 4.8 -16.9 -26.2 -36.1
6 520 -100.0 0.0 -15.9 -18.3 -48.9
7 589 -100.0 -8.7 -18.2 -6.6 -30.6
8 627 -100.0 -4.3 -21.9 -19.3 -17.5
9 630 66.7 0.0 -11.4 -10.6 -16.5
10 704 0.0 -3.3 -15.2 -11.6 -35.3
Average -72.2 -2.0 -17.0 -16.2 -39.0

reductions in the low WIP scenarios. It would be typical of heuristic rules that wait for minimum batch
sizes to cause unnecessarily high queuing times in low WIP conditions.

Results in Table 2 show comparable improvement rates for all data sets, the real cost impact is, however,
more important for higher WIP situations. Despite the number of batches being the primary objective in
this case study, we find that the optimizer still manages to significantly reduce queuing time in addition.
This is a notable finding for optimization techniques; for the same level of batching, queue time can be
decreased without any additional tuning of the solution. This is because the lexicographic approach offers
the ability to the optimizer to assess that if no batching gains can be achieved it focuses on the next most
important KPI without worsening the former objective.

Figure 3: Batch Throughput Improvement.

Figure 3 summarizes the average batch throughput improvement rates broken down by different batching
cost levels. It also shows a significant overall batching improvement across all toolsets. Notably, 15% of
all batches were saved. Since the cost of the batch was dictated by the toolset, it was notably harder to cut
the expensive batches as fewer lot steps were eligible for these toolsets.
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Figure 4: Cycle Time Improvement.

Figure 4 shows the the cycle time improvement split by the five highest throughput datasets against the
lowest five. Overall the solution saves 19% of cycle time compared to the baseline scenario with greater
gains realised in the low WIP cases.

5 CONCLUSION

In this paper we addressed the complex problem of batch scheduling with varying batch costs and job
timelink constraints in a multi-objective context. Three of the most relevant objectives for cost reduction
and production efficiency in a wafer fab are optimised, which notably translate into significant cost savings.
As the benchmark study clearly showed, our proposed hybrid two-stage scheduling approach significantly
outperforms existing traditional heuristic-based dispatch methods. Our scheduling solutions achieved on
average a major reduction of more than 72% of violated timelink constraints, 39% on queuing time and an
average reduction of 15% on the number of created batches. These improvements on the above schedule
metrics are mainly a result of the iterative allocation of jobs to machines in reduced problem size and
the better batching formations that efficiently exploit the timelink dependencies and batching costs. Our
research and development activities will further focus on additional tuning of the lexicographic objective
function, and more efficient decomposition methods to reduce the computational time needed to reach the
same solution and provide a high solution quality for even larger sized problems.
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