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ABSTRACT 

Cycle times are of order of ten weeks in most semiconductor wafer fabrication facilities (wafer fabs). 
They have to be explicitly considered in production planning. A nonlinear relation between resource 
workload and cycle time can be observed. In this paper, we study data-driven (DD) production planning 
formulations. These formulations are based on a set of system states representing the congestion 
behavior of the wafer fab with work in process (WIP) and resulting output levels. The effects of different 
WIP-output relations and additional capacity constraints in the DD models are investigated. Moreover, 
several methods are proposed to obtain representative sets of system states. The performance of the DD 
variants is compared with the performance of the allocated clearing function (ACF) model using a 
scaled-down simulation model of a wafer fab. Simulation results demonstrate that under certain 
experimental conditions, the DD models lead to similar profit and cost values as the ACF model.  

1 INTRODUCTION 

Wafer fabs belong to the most complex manufacturing systems (Chien et al. 2011). Integrated circuits 
are produced layer by layer on wafers, thin discs made from silicon. Hundreds of expensive machines 
are used in wafer fabs. They are organized in work centers. Lots consisting of up to 25 wafers are the 
moving entities. Different types of processes, i.e. batch and serial, can be found in wafer fabs. A batch 
is a group of lots that are processed at the same time on a machine. Sequence-dependent set-up times, 
auxiliary resources, and tight customer due dates are common process conditions. A large number of 
products and a diverse product mix are typical for wafer fabs. Up to 800 process steps. i.e. operations, 
can belong to a route for advanced products (Mönch et al. 2013). Re-entrant process flows are 
characteristic for wafer fabs, i.e., the same work center is visited up to 40 times by certain lots. Cycle 
time, the time span between material being released into the wafer fab and its emergence as finished 
product is of the order of ten weeks in most wafer fabs. 

Production planning is an important function in wafer fabs (Mönch et al. 2018). Since cycle times 
are long, they must be explicitly considered in production planning models. On the one hand, queuing 
models, discrete-event simulation, and industrial observations show that cycle times increase 
nonlinearly with resource utilization. On the other hand, the release decisions made by planning models 
determine utilization. These observations suggest that cycle times should be treated as endogenous to 
the planning problem. Workload-dependent lead times must be taken into account in production 
planning models. Lead times are cycle time estimates in planning formations. In the present paper, we 
study modifications of the DD formulation proposed by Omar et al. (2017). DD models are based on a 
set of system states representing the congestion behavior of the fab with WIP and resulting output levels. 
They are an DD alternative to planning models based on nonlinear CF. We show by simulation 
experiments that the DD formulations can provide comparable performance to the ACF model of 
Asmundsson et al. (2009) if the set of system states is chosen in an appropriate way. 

The paper is organized as follows. In the next section, we describe the problem and discuss related 
work. Section 3 provides the production planning formulations that are investigated in this paper. This 
includes several DD model variants. Approaches to determine the required system states are discussed 
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in Section 4. Results of computational experiments are presented in Section 5. Conclusions and future 
research directions are provided in Section 6.  

2 PROBLEM SETTING 

2.1 Production Planning for Wafer Fabs 

Production planning involves the allocation of available capacity among the process steps of the 
products to match supply with given demand in some near-optimal manner. Releases into the wafer fab 
are determined. However, we know from queuing theory (Buzacott and Shanthikumar 1993), discrete-
event simulation experiments (Fowler at al. 2015), and industrial observations (Wu 2005) that the mean 
and variance of the cycle time increase nonlinearly with resource utilization, which, in turn, is 
determined by the release decisions made by production planning. The observed circularity implies that 
cycle times are an output of production planning rather than an input. Hence, cycle times are variables 
to be controlled in planning models, rather than exogenous parameters that must be estimated. Most of 
the production planning models in the literature are based on lead times, exogenous parameters 
independent of resource utilization (Voß and Woodruff 2003). This approach leads to computationally 
tractable models based on linear programming (LP), but fails to represent the congestion of the wafer 
fab correctly. Only recently, research is initiated that explicitly addresses this circularity. There are 
several approaches to take into account workload-dependent lead times in production planning models 
which will be discussed next.  

2.2 Discussion of Related Work and Problem Statement 

Iterative methods combine LP models with exogenous lead times with simulation, queuing, or 
scheduling models to update lead times (Missbauer and Uzsoy 2020). However, the convergence 
behavior of these methods is unclear (Missbauer 2020), and they require time-consuming simulation 
runs for planning. Nonlinear optimization models based on queueing concepts to represent the cost of 
congestion form the second class of approaches. Among them CF-based models are popular. A CF 
estimates the average output of a work center in a planning period as a function of its available workload 
in that period. While early CF-based models had difficulties to deal with multiple products, the ACF 
formulation by Asmundsson et al. (2009) addresses this situation. We know from computational studies 
that this formulation outperforms models with exogenous lead times that are an integer or fractional 
multiple of the period length (Kacar at al. 2012; Kacar et al. 2013, Kacar and Uzsoy 2015; Kacar et al. 
2016). This result carries over to rolling horizon settings (Ziarnetzky et al. 2015; Häussler et al. 2020). 
An appropriate parameterization of the CFs is required. One obvious limitation of CF-based production 
planning approaches is that yet no rigorous methodology for estimating CFs from data is known. This 
constitutes a large obstacle to their widespread adoption in planning models (Gopalswamy and Uzsoy 
2019). 

Production planning models based on CFs can be considered as a parameterized approach. 
However, there are DD approaches that make the parameterization effort for CFs to some extent 
obsolete. Omar et al. (2017) propose an alternative DD production planning model. The DD model 
represents a planning approach that utilizes system states. System states consider different products and 
their relations, but take an aggregated view on the resources and process steps of the production system. 
They provide expected output values for discrete average WIP values of all products. It is assumed that 
the system is in steady state, i.e., the distributions of WIP and output are constant over time. Omar et 
al. (2017) and Gopalswamy and Uzsoy (2018) use the Mean Value Analysis (MVA) proposed by Suri 
and Hildebrant (1984) to determine system states. However, process conditions typical for wafer fabs 
such as parallel machines or batching are not taken into account in the MVA.  

In the present paper, system states are determined by terminating simulation runs. We are interested 
in identifying sets of system states that are sufficient to obtain high-quality production plans. Moreover, 
we investigate the effects of different WIP-output relations and additional capacity constraints on the 
performance of the DD approach. In contrast to Gopalswamy and Uzsoy (2018) where the initial WIP 
values for all products are 0, we use initial WIP values obtained from simulation runs since this setting 
is common for the application of production planning models in a rolling horizon setting. This allows a 
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more realistic performance assessment of DD approaches relative to the performance of the ACF 
formulation.  

3 PRODUCTION PLANNING FORMULATIONS 

3.1 ACF Formulation 

For the sake of completeness, we start by recalling the ACF model. We assume that the finite planning 
horizon of length 𝑇 is divided into discrete periods of equal length. The model is given as follows: 
 
Sets and indices 
𝑡:   period index 
𝑔:   product index 
𝐺:   set of all products 
𝑘:   work center index 
𝐾:   set of all work centers 
𝑙:   operation index 
𝑂ሺ𝑔ሻ:  set of all operations of product 𝑔 
𝑂ሺ𝑔, 𝑘ሻ:  set of all operations of product 𝑔 that can be performed on machines of work center 𝑘 
𝐾ሺ𝑔, 𝑙ሻ:  set of work centers that can be used to perform operation 𝑙 of product 𝑔 
𝑛:   segment index 
𝐶ሺ𝑘ሻ:  set of indices denoting the linear segments used to approximate the CF for work center 𝑘 
 
Decision variables 
𝑌௚௧௟:  quantity of product 𝑔 completing its operation 𝑙 in period 𝑡 
𝑌௚௧:   output of product 𝑔 in period 𝑡 from the last operation of its routing  
𝑋௚௧௟:  quantity of product 𝑔 starting operation 𝑙 in period 𝑡 
𝑊௚௧௟:  WIP of product 𝑔 at operation 𝑙 at the end of period 𝑡 
𝐼௚௧:   finished goods inventory (FGI) of product 𝑔 at the end of period 𝑡 
𝐵௚௧:  backlog of product 𝑔 at the end of period 𝑡 
𝑍௚௧௟
௞ :    fraction of output from work center 𝑘 allocated to operation 𝑙 of product 𝑔 in period 𝑡 

 
Parameters 
ℎ௚௧:  unit FGI holding cost for product 𝑔 in period 𝑡 
𝑏௚௧:   unit backlog cost for product 𝑔 in period 𝑡 
𝜔௚௧:  unit WIP cost for product 𝑔 in period 𝑡 
𝛼௚௟:  processing time of operation 𝑙 of product 𝑔 
𝐷௚௧:  demand for product 𝑔 during period 𝑡 
𝛽௞
௡   slope of segment 𝑛 of the CF for work center 𝑘 

𝜇௞
௡:   intercept of segment 𝑛 of the CF for work center 𝑘. 

 
The ACF model can be stated as follows: 

min ෍෍ቌ𝜔௚௧ ෍ 𝑊௚௧௟

௟∈ைሺ௚ሻ

൅ ℎ௚௧𝐼௚௧൅𝑏௚௧𝐵௚௧ቍ                                                                                  

்

௧ୀଵ௚∈ீ

 (1) 

 subject to 

𝑊௚,௧ିଵ,௟ ൅ 𝑋௚௧௟ െ 𝑌௚௧௟ ൌ 𝑊௚௧௟ , 𝑔 ∈ 𝐺, 𝑡 ൌ 1, … ,𝑇, 𝑙 ∈ 𝑂ሺ𝑔ሻ  (2) 

𝐼௚,௧ିଵ ൅ 𝑌௚௧ െ 𝐵௚,௧ିଵ ൅ 𝐵௚௧  െ 𝐼௚௧ ൌ 𝐷௚௧ ,  𝑔 ∈ 𝐺, 𝑡 ൌ 1, … ,𝑇 (3) 
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𝛼௚௟𝑌௚௧௟ ൑ 𝜇௞
௡𝑍௚௧௟

௞ ൅ 𝛽௞
௡𝛼௚௟൫𝑋௚௧௟ ൅𝑊௚,௧ିଵ,௟൯,  𝑔 ∈ 𝐺, 𝑡 ൌ 1, … ,𝑇, 𝑙 ∈ 𝑂ሺ𝑔ሻ, 𝑘 ∈ 𝐾ሺ𝑔, 𝑙ሻ,𝑛 ∈

𝐶ሺ𝑘ሻ  
(4) 

∑ ∑ 𝑍௚௧௟
௞

௟∈ைሺ௚,௞ሻ௚∈ீ ൌ 1,  𝑡 ൌ 1, … ,𝑇, 𝑘 ∈ 𝐾 (5) 

𝑊௚௧௟ , 𝐼௚௧ ,𝐵௚௧ ,𝑋௚௧௟ ,𝑌௚௧௟ ,𝑍௚௧௟
௞ ൒ 0,  𝑔 ∈ 𝐺, 𝑡 ൌ 1, … ,𝑇, 𝑙 ∈ 𝑂ሺ𝑔ሻ, 𝑘 ∈ 𝐾ሺ𝑔, 𝑙ሻ. (6) 

The objective function (1) is the sum of WIP, FGI, and backlog cost over all products and periods. WIP 
variables and WIP balance constraints (2) are included to compute the WIP cost in the objective 
function. The FGI material balance at the end of the line is represented by constraint set (3). The CF 
relates the expected output of each work center in a period to the planned load of the work center in that 
period in constraints (4). The output allocation among operations is modeled by constraint set (5). The 
𝑍௚௧௟
௞ k

gtlZ  variables scale up the available workload of product g  at the beginning of period t  to 

approximate the total workload of all products in that period. This yields an upper bound on the output 
of product g  at work center .k  We refer to Asmundsson et al. (2009) and Missbauer and Uzsoy (2020) 

for the details of the ACF model. 

3.2 DD Formulations 

The model is parameterized by a set 𝑅 of system states that allow for different output configurations for 
each period. A single system state is chosen for each period 𝑡 of the planning horizon through binary 
decision variables Γ௥௧  with the state index 𝑟  such that the total cost is minimized. The following 
additional notation compared to the ACF model is used: 

 
Sets and indices 
𝑟: state index 
𝑅: set of all system states 𝑟 

 
Decision variables 
𝑊௚௧:  WIP of product 𝑔 at the end of period 𝑡 
𝛤௥௧:  binary variable taking on the value 1, if system state 𝑟 is chosen in period 𝑡, and 0 otherwise 

 
Parameters 
𝑄௚௥ : WIP level of product 𝑔 in system state 𝑟 
𝑂௚௥: expected output quantities of product 𝑔 in system state 𝑟. 

 
The basic DD formulation is given as follows: 

min ෍෍൫𝜔௚௧𝑊௚௧ ൅ ℎ௚௧𝐼௚௧ ൅ 𝑏௚௧𝐵௚௧൯

்

௧ୀଵ௚∈ீ

                                                                                                  (7) 

subject to 

𝑊௚,௧ିଵ ൅ 𝑋௚௧ െ 𝑌௚௧ ൌ 𝑊௚௧ ,                                                   𝑔 ∈ 𝐺, 𝑡 ൌ 1, … ,𝑇 (8) 

𝐼௚,௧ିଵ ൅ 𝑌௚௧ െ 𝐵௚,௧ିଵ ൅ 𝐵௚௧ െ 𝐼௚௧ ൌ 𝐷௚௧ ,                         𝑔 ∈ 𝐺, 𝑡 ൌ 1, … ,𝑇 (9) 

∑ 𝑄௚௥Γ௥௧ ൌ 𝑊௚௧௥∈ோ ,                                                              𝑔 ∈ 𝐺, 𝑡 ൌ 1, … ,𝑇 (10) 

∑ 𝑂௚௥Γ௥௧ ൌ 𝑌௚௧௥∈ோ ,                                                            𝑔 ∈ 𝐺, 𝑡 ൌ 1, … ,𝑇 (11) 

∑ Γ௥௧ ൌ 1௥∈ோ ,  𝑡 ൌ 1, … ,𝑇 (12) 

𝑊௚௧ , 𝐼௚௧ ,𝐵௚௧ ,𝑋௚௧ ,𝑌௚௧ ൒ 0,  Γ௥௧ ∈ ሼ0,1ሽ,  𝑔 ∈ 𝐺, 𝑡 ൌ 1, … ,𝑇, 𝑟 ∈ 𝑅. (13) 
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The objective function (7) is the same as (1) taking into account 𝑊௚௧ ൌ ∑ 𝑊௚௧௟௟∈ைሺ௚ሻ . Constraints (8) 
and (9) are the analogues to (2) and (3). Constraints (10) and (11) lead to matching WIP and output 
values by setting the decision variables to values provided by a system state 𝑟 ∈ 𝑅, i.e., system state 𝑟 
corresponds to the pair ሺ𝑄௥௧ ,𝑂௥௧ሻ. Constraints (12) ensure that exactly one system state is chosen per 
period. Finally, constraint set (13) models that the decision variables are nonnegative and binary, 
respectively. 

The period length has to be sufficiently large in relation to cycle times to correctly indicate the 
output levels for the WIP at the end of period 𝑡 within the same period. With equidistant lot releases 
over time as determined by the 𝑋௚௧ quantities, WIP levels eventually reach a suitable distribution and 
matching output quantities. This is not the case anymore if cycle times go beyond the period length. 
While increasing 𝑋௚௧ enables system states with higher WIP values and therefore output values, this 
might decrease output as newly released lots compete for scarce capacity with almost completed lots. 
We expect that with sufficiently high cycle times the WIP pattern at the beginning of 𝑡 or the average 
WIP within a period are more indicative of the expected output levels within period 𝑡. To determine 
output based on the WIP at the beginning of the period, we propose the following two modifications of 
constraints (10): 

∑ 𝑄௚௥Γ௥ଵ௥∈ோ ൌ 𝑊௚଴ ൅ Δ௚ା െ Δ௚ି,  𝑔 ∈ 𝐺 (14) 

∑ 𝑄௚௥Γ௥௧ ൌ 𝑊௚,௧ିଵ௥∈ோ ,  𝑔 ∈ 𝐺, 𝑡 ൌ 2, … ,𝑇. (15) 

The binary decision variables Γ௥௧ determine the WIP levels 𝑊௚,௧ିଵ at the beginning of each period 
𝑡 instead of those at its end in constraints (14) and (15). As 𝑊௚଴ is a parameter and not a decision 
variable, it cannot be adjusted to match a chosen system state. Instead, we want the model to choose a 
state with WIP levels as close as possible to 𝑊௚଴ to approximate the expected output within the first 
period. We therefore introduce the additional decision variables Δ௚ା,Δ௚ି  ൒ 0 to allow for deviations. 
Their values are minimized by adding 𝑀ሺΔ௚ା ൅ Δ௚ିሻ  to the objective function (7) where 𝑀  is a 
sufficiently large number. For a formulation based on the average WIP values within a period we 
substitute (10) with  

∑ 𝑄௚௥Γ௥௧ ൌ
ଵ

ଶ
ሺ𝑊௚,௧ିଵ ൅𝑊௚௧ሻ௥∈ோ ,  𝑔 ∈ 𝐺, 𝑡 ൌ 1, … ,𝑇, (16) 

such that the average of 𝑊௚,௧ିଵ and 𝑊௚௧ corresponds to the WIP pattern of the chosen system state for 
period 𝑡. A different treatment of the first period is not necessary contrary to constraint set (15) since 
system states can be chosen by adjusting 𝑊௚ଵ. We will use the term WIP point to differentiate between 
the relevant period or the average of the WIP for a system state. 

The release quantities in the DD model are limited by the WIP differences of system states for 
consecutive periods plus the corresponding output levels for the same period as defined by constraints 
(8). System states that lead to a large bottleneck utilization (BNU) have a higher WIP to output ratio 
which makes them less desirable in terms of WIP cost per unit of output. However, the transition from 
a low to a high WIP state might lead to congestion as cycle times increase, and it takes a longer time 
relative to the period length for lots to distribute evenly throughout the production system. This also 
leads to a higher deviation from the steady state assumption for the system states which makes the 
predicted output levels less accurate. To mitigate these effects, we add the constraints  

∑ 𝛼௚௞𝑋௚௧௚∈ீ ൑ 𝑚𝐶௞ ,  𝑘 ∈ 𝐾, 𝑡 ൌ 1, … ,𝑇 (17) 

to the model that limit the release quantities 𝑋௚௧ and thereby an increase in WIP between periods. By 
multiplying the 𝑋௚௧  quantity with the total average processing time 𝑎௚௞  for each product 𝑔 at work 
center 𝑘, we obtain a measure of how much capacity will be claimed at 𝑘 in the long run with constant 
release quantities. This value will be bound by a multiple 𝑚 ൒ 1 of the available capacities 𝐶௞. The 
parameter 𝑚 must be chosen carefully, as low values might be infeasible with high cycle time to period 
length ratios where the WIP to output ratios of the system states will be high as well. Note that a decrease 
in WIP levels between periods is already limited by the output quantities connected to the system states 
at that WIP level. 
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With the basic DD model (7)-(13) and the constraints (14)-(16) we have a total of three model 
variants that are summarized in Table 1. The additional input constraints (17) lead to three more variants 
that are abbreviated by DD_Wt_C, DD_Wt-1_C, and DD_Wavg_C, respectively. 

Table 1: DD model variants without constraint set (17). 

Abbreviation Characteristics Model 
DD_Wt The output quantities for period 𝑡  are determined by the WIP 

levels at the end of the period. 
(7)-(13)  

DD_Wt-1 The output quantities for period 𝑡  are determined by the WIP 
levels at the beginning of the period. 

(7)-(9),(11)-
(13), (14), (15) 

DD_Wavg The output quantities for period 𝑡 are determined by the average 
WIP levels of the period. 

(7)-(9),(11)-
(13), (16) 

 
The ACF and DD formulations differ in terms of type and number of decision variables and constraints. 
The ACF formulation is an LP. Instances of this model can be solved efficiently. Nevertheless, the 
computational burden for large-sized instances can be high due to the large number of decision variables 
and constraints. Generating high-quality CFs for an accurate model is subject of ongoing research and 
requires a large amount of simulation time. The DD formulation is a mixed integer linear program 
(MILP) with binary Γ௥௧ variables. We expect that the performance of the DD formulation depends on 
|𝑅|. The number of required system states at the same average distance between adjacant states in each 
product dimension grows exponentially with the number of products. At some point, it will be 
impossible to generate a sufficient number of states or to solve the model with satisfactory accuracy 
within a  reasonable amount of computing time. Contrary to the ACF model, the number of work centers 
and operations per product do not influence the size of the instances. The number of decision variables 
and constraints is much smaller compared to the ACF case. 

4 CHARACTERIZING AND GATHERING SYSTEM STATES 

4.1 Simulation Model 

We use the discrete-event simulation model of Kayton et al. (1997) for the experiments. The model 
represents a scaled-down wafer fab with typical attributes such as reentrant process flows, batch 
processing, machine breakdowns, and multiple products. Eleven work centers are in the model. The 
three products have 22, 14, and 14 operations, respectively. A product mix of 3:1:1 is used. Product 1 
visits the bottleneck work center six times, product 2 four times while product 3 is processed on the 
alternative photolithography work center. The batch machines can process between two and four lots. 
These machines are the main source of variability in addition to the unreliable machines, interrupting 
the flow of arriving lots for subsequent work centers. The processing times are log-normally distributed. 
The lots are processed at each work center using the First-in-first-out (FIFO) dispatch rule. Time to 
failure and time to repair at unreliable work centers follow gamma distributions. An implementation of 
the model for the simulation engine AutoSched AP is publicly available (Kayton Model 2021).  

4.2 Approaches to Determine Appropriate System States 

The WIP and output patterns for system states can be derived from queueing theory, simulation, or from 
data found in shop floor application systems. In the present paper, system states are generated using the 
Kayton simulation model to obtain measures of its steady state behavior. The sample points are defined 
by setting fixed release quantities 𝑋௚ per period within the capacity limit of the model for each product 
such that ∑ 𝛼௚௞𝑋௚௚∈ீ ൑ 𝐶௞ , 𝑘 ∈ 𝐾. Single lots will be released into the simulated system with matching 
constant inter arrival times. After a warmup period, the simulation model runs for another 365 days to 
record the average WIP and output per period for each system state. 

We apply the sampling methods Grid, Vargrid, and Stochastic. The sampling points are evenly 
placed in each product dimension for system state sets of type Grid. Sample points beyond output 
quantities of 80 lots per week for product 1 and 30 lots per week for product 2 and 3 are discarded to 
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limit the cardinality of the system state set. We generate two sets with a step size of 7 and 5, respectively. 
The distribution of output and WIP values for product 1 and 2 for a step size of 5 are depicted in Figure 
1.  

 

Figure 1: System state set of type Grid with step size 5 (Grid5). 

Product 3 is less interesting since it is not processed on the bottleneck work center. Each visible 
point represents one or more system states. The grey line in the left-hand plot marks the product mix. 
While there is a good coverage of possible output values, the density in terms of WIP is low beyond 
values of 20 and 4 for product 1 and 2, respectively. To increase utilization up to the highest levels, 
large gaps in terms of WIP have to be bridged in subsequent periods. 

To increase the density of system states at high utilization and around the product mix, we vary the 
step size of the grid for sets of type Vargrid. Starting with a base value, the step size is halved for each 
of three increasingly restrictive conditions leading to four different regions. Each condition 
〈ሺ𝑋ଵ

௠௜௡,⋯ ,𝑋ሾீሿ
௠௜௡ሻ,𝜌௠௜௡,𝛱௠௔௫ 〉  defines minimum values for release quantities 𝑋௚௠௜௡,𝑔 ∈ 𝐺 , expected 

utilization 𝜌௠௜௡ , and a maximum deviation from the product mix denoted by 𝛱௠௔௫. A sample point is 
within the specified deviation from a given product mix 𝑃𝑀, if 

ଵ

௽೘ೌೣ

௉ெ೒

∑ ௉ெ೒೛∈ಸ∖೒
൑

௑೒
∑ ௑೛೛∈ಸ∖೒

൑ 𝛱௠௔௫ ௉ெ೒

∑ ௉ெ೒೛∈ಸ∖೒
,𝑔 ∈ 𝐺  (18) 

holds. The conditions 〈ሺ0, 0, 0ሻ, 0.0, 2.5 〉 , 〈ሺ0, 0, 0ሻ, 0.5, 1.5 〉  and  〈ሺ0, 0, 0ሻ, 0.7, 1.1 〉  are applied to 
generate two system state sets with a base step size of 16 and 12. The result of the sampling process 
and simulation for Vargrid12 is shown in Figure 2.  

The density gets higher around the product mix with increasing utilization, while combinations of 
low output quantities are still covered for both products. We see from the right-hand plot that the WIP 
levels of system states at high utilization are much closer compared to sets of type Grid. The idea behind 
state sets of type Stochastic is to obtain states with a distribution that resembles that of the expected 
demand for all products. First, we define a number of utilization levels 𝑈 ൌ
ሼ0.5, 0.61, 0.7, 0.78, 0.85, 0.91, 0.96, 1.0ሽ and 

 

Figure 2: System state set of type Vargrid with base step size 12 (Vargrid12). 

calculate corresponding average release quantities 𝑅௚௨ for products 𝑔 ∈ 𝐺 and utilization levels 𝑢 ∈ 𝑈. 
We generate samples  
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𝑋௚௨:ൌ 𝑅௚௨ሺ1 ൅ 𝑟ሻ,𝑔 ∈ 𝐺, 𝑢 ∈ 𝑈, (19) 

where 𝑟 is a realization of the random variable 𝑅~𝑁ሺ0,𝜎ଶሻ with 𝜎 ൌ 0.25. This process is repeated 
until the desired number of samples is reached. The resulting distributions of system states for 400 
samples is shown in Figure 3. 

 

Figure 3: System state set of type stochastic with 400 samples (Stochastic400). 

Table 2 provides an overview of all generated system state sets. Grid-based sets are larger to compensate 
for the higher coverage of areas with low utilization and high deviation from the product mix. 

Table 2: Overview of all generated system state sets. 

Size/Type Grid Vargrid Stochastic 
medium Grid7 (280 states) Vargrid16 (205 states) Stochastic160 (160 states) 

large Grid5 (749 states) Vargrid12 (520 states) Stochastic400 (400 states) 

5 COMPUTATIONAL EXPERIMENTS 

5.1 Design of Experiments 

The ACF model serves as a reference for achievable total cost and profit values. Its computing time is 
less than one second per instance for the Kayton model. We consider a planning horizon of 𝑇 ൌ 15 
weeks. The optimization model is initialized with WIP levels corresponding to the recorded lots from 
long simulation runs at the prescribed BNU level. Three periods are added at the end of the planning 
horizon to account for end of horizon effects. Demand is generated for these periods by taking the 
averages of the previous three periods (Kacar et al. 2016). Moreover, backlog cost is multiplied by 5 
for the last period. Costs are set to 𝜔௚௧ ൌ 35, 𝑏௚௧ ൌ 50, and ℎ௚௧ ൌ 15 while revenue is set to 20 for 
each completed lot. We examine four scenarios with normally distributed demand for a BNU of 70% 
and 90% with a coefficient of variation (CV) of 0.1 and 0.25 with five independent realizations each. 
The models are parameterized with the CF used by Gopalswamy and Uzsoy (2018) or a state set. We 
use 𝑚 ൌ 1 in (17). A computing time limit of 300 seconds per instance is applied. The lots to be released 
in a period are distributed uniformly over this period. We initialize the simulation model with the same 
initial WIP as previously used for the optimization model. Ten independent simulation replications are 
carried out for executing each release schedule to determine expected cost and revenue values. Table 3 
summarizes the experimental design. The experiments are conducted on an Intel(R) Core(TM) i7-8700 
CPU 3.20GHz PC with 16 GB RAM. IBM ILOG CPLEX 12.7.1 is used for solving the planning 
models. The simulation runs are carried out using AutoSched AP 11.3.0. The planning models and the 
infrastructure are coded in the C++ programming language. 
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Table 3: Design of experiments. 

Factor Level Count 
Planning formulation (ACF,) DD 2 

WIP Point Wt, Wt-1, Wavg  3 
Release quantity limit None, Capacity (C) 2 

System state set Grid7, Grid5, Vargrid16, Vargrid12, Stochastic160, 
Stochastic400 

6 

Planned BNU 70%, 90% 2 
CV of demand 0.1, 0.25 2 

Demand realizations  5 
Simulation replications  10 
Total simulation runs  7400 

5.2 Simulation Results 

The performance of the DD variants combined with different state sets is examined relative to the ACF 
model. Table 4 summarizes the realized total cost and profit for all demand scenarios, each being 
averaged over five demand realizations. The total profit considers the realized revenue. To make the 
comparison easier, the sum of the cost and profit values over all demand scenarios are shown in the last 
two columns. The best 30% of the realized value ranges for cost and profit of each scenario are shaded 
in green, darker shades represent better results.  

The ACF model outperforms the DD models for BNU=70%, CV=0.25 as well for BNU=90%, 
CV=0.1. At least one DD variant reaches a lower total cost and higher profit in the other two cases. 
Among all DD variants and system state sets we are not able to identify a variant that is clearly superior. 
Considering the WIP points, Wavg performs worse than Wt-1 and Wt. The WIP levels prescribed by the 
chosen system states for all periods have to be met by the averages of the beginning and end of each 
period. This leads to an undulating progression with high fluctuations in release quantities. While Wt 
works well for low BNU and CV values, Wt-1 performs better in all other scenarios. This is consistent 
with the expectation that the WIP point at the end of the period requires cycle times to be small enough 
compared to the period length to reach steady state within that period. Otherwise the WIP at the 
beginning of that period has a higher influence on the output. The release quantity limit reduces the 
problems with the Wavg setting and leads to slightly better results with Wt. We observe slightly 
increasing total cost for Wt-1. Larger system state sets enable a more exact adjustment of output values 
to the given demand patterns. Grid5, Vargrid12, and Stochastic400 perform better than their smaller 
counterparts, despite a higher computational burden and a time limit of 300 seconds. The overall best 
results are achieved with the Grid5 set, despite a lower density of states for high utilization around the 
product mix compared to the other set types. Analyzing the results in more detail, we notice that the 
performance of the DD variants and system state sets is closely related to how much the average WIP 
cost obtained by the simulation replications deviates from the optimization model values. 

The actual WIP cost is only 1.98% higher than expected for DD_Wt-1_Grid5, whereas it is 5.32% 
and 6.06% higher for DD_Wt-1_Vargrid12 and DD_Wt-1_Stochastic400. While a higher density of 
system states might enable a better adjustment to demand, it might also lead to more variability and 
transient behavior with an increased WIP cost to output ratio. How to consider this in the model and 
mitigate its adverse effects on performance is part of future research. Differences in computing time 
and MIP gap as a result of factor level variations are depicted in Figure 4. The values are calculated by 
averaging over all DD variants and state sets for the respective factor levels. A positive gap implies that 
an optimality proof was impossible for at least one problem instance within the given time limit. The 
computing time is higher for the larger state set of each type. Solving instances with set type Stochastic 
takes longer than with Vargrid, which takes longer than those with Grid, despite an increasing set size. 

 



Völker and Mönch 
 

 

Table 4: Results of the ACF model and the DD variants for all demand scenarios. 

Model 
State 
Set 

WIP 
Point 

X 
Limit 

u70 cv10 u70 cv25 u90 cv10 u90 cv25 Sum 
Cost Profit Cost Profit Cost Profit Cost Profit Cost Profit 

ACF       8930 15016 9499 14039 17575 13037 20685 9507 56689 51599 

DD 

G
ri

d7
 

Wavg 
  10280 13642 10701 12943 21543 8955 26057 3882 68580 39422 
C 10292 13652 10402 13204 21029 9606 23300 6839 65023 43301 

Wt-1 
  9423 14566 9887 13741 18544 12142 20914 9411 58768 49861 
C 9414 14588 9895 13731 18815 11896 20917 9370 59041 49586 

Wt 
  9576 14394 9877 13752 19444 11163 22376 7876 61272 47185 
C 9548 14428 9907 13734 18332 12346 20236 9908 58023 50416 

G
ri

d5
 

Wavg 
  9877 14014 10374 13221 23968 6632 24561 5445 68781 39312 
C 9716 14218 10359 13185 19236 11482 21204 9094 60516 47979 

Wt-1 
  9193 14777 9823 13726 17782 12989 20247 9953 57045 51445 
C 9048 14915 9865 13695 18319 12455 20221 9989 57454 51053 

Wt 
  9113 14833 9844 13676 19662 10961 21373 8776 59993 48246 
C 9072 14873 10002 13552 19228 11411 20885 9290 59188 49125 

V
ar

gr
id

16
 Wavg 

  9974 13912 10670 12943 21464 8942 23420 6610 65528 42406 
C 9761 14208 10409 13165 19248 11404 20911 9302 60329 48079 

Wt-1 
  9058 14886 9894 13629 18472 12113 20477 9740 57901 50368 
C 9091 14858 9883 13625 18349 12278 20504 9704 57828 50465 

Wt 
  8803 15139 9822 13684 18781 11787 20893 9219 58299 49829 
C 8792 15136 9867 13660 19088 11484 20602 9472 58348 49751 

V
ar

gr
id

12
 Wavg 

  10019 13815 10947 12572 21906 8521 23235 6881 66106 41789 
C 10022 13836 10489 12999 18688 11862 21479 8663 60677 47360 

Wt-1 
  8870 15055 9865 13638 18074 12516 20354 9795 57163 51004 
C 8860 15046 9818 13688 18066 12532 20655 9516 57400 50783 

Wt 
  8877 15041 10026 13475 19024 11513 21064 9044 58991 49073 
C 8847 15076 9893 13608 18731 11867 21248 8838 58719 49388 

S
to

ch
as

ti
c1

60
 

Wavg 
  9727 14177 10423 13204 21798 8752 23341 6698 65289 42831 
C 10367 13429 10212 13329 18758 11893 21456 8825 60793 47477 

Wt-1 
  9159 14792 9979 13547 18394 12235 20251 9918 57784 50491 
C 9162 14796 10158 13375 18062 12607 20423 9789 57805 50567 

Wt 
  8982 14951 10075 13422 19137 11532 21051 9094 59246 48999 
C 9075 14848 10015 13453 18875 11805 20447 9680 58412 49786 

S
to

ch
as

ti
c4

00
 

Wavg 
  10576 13272 10417 13101 22179 8246 22626 7428 65798 42047 
C 10481 13373 10228 13337 18485 12198 21880 8351 61074 47259 

Wt-1 
  8979 14955 10017 13456 18010 12606 20066 10078 57072 51095 
C 9039 14882 10056 13461 18210 12368 19951 10232 57255 50943 

Wt 
  8883 15018 9751 13758 19214 11367 21492 8647 59340 48791 
C 8797 15130 9774 13704 18339 12275 21437 8713 58347 49823 

 

 

Figure 4: Factor level influence on computing time and MIP gap. 
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The largest MIP gap occurs for Grid5, despite Vargrid12 and Stochastic400 have higher computing 
times. Wavg takes longer to solve and has a larger MIP gap compared to the other WIP point settings. 
The dependency of WIP values in subsequent periods makes it harder to solve. Interestingly, all problem 
instances with Wt-1 are solved to optimality whereas an average gap of 1.3% remains for Wt. The main 
difference in terms of computational tractability seems to be the different determination of the system 
state for the first period. It is fitted to the initial WIP in the Wt-1 variants while for Wt-1 it is chosen to 
minimize the total costs. The limit for release quantities does not change the computing time, but 
increases the average MIP gap slightly. 

6 CONCLUSIONS AND FUTURE RESEARCH 

We discussed DD formulations for wafer fabs. Several modifications of the basic DD formulation of 
Omar et al. (2017) were suggested. Moreover, different methods to determine system state sets were 
proposed. The planning models were assessed by executing the production plans using a simulation 
model of a scaled-down wafer fab. The simulation results demonstrated that variants of the DD model 
under certain experimental conditions are able to provide production plans having a very similar 
performance as the corresponding production plans obtained by the ACF model.  

There are several directions for future research. It is desirable to repeat the experiments for a 
simulation model of a large-scaled wafer fab and for more general demand pattern including correlation 
between products and across periods. This includes experiments for multi-product settings. As a second 
research avenue, we are interested in modifying DD formulations in such a way that they can deal with 
the situation that the period length is smaller than the average cycle time. More research is also needed 
to determine for given demand minimal sets of state sets that lead to high-quality production plans. We 
believe that machine learning can be used for this task. A final direction is given by extending DD 
models towards integrated planning formulation for production and engineering activities (cf. 
Ziarnetzky and Mönch 2016). 
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