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ABSTRACT

Based on areal-life use-case, this paper discusses a manufacturing scenario where different jobs be processed
by a series of machines. Depending on its type, each job must follow a pre-defined route in the hybrid
flow shop, where the aggregation of jobs in batches might be required at several points of a route. This
process can be modeled as a hybrid flow shop problem with several additional but realistic restrictions.
The objective is to find a good permutation of jobs (solution) that minimizes the makespan. Discrete-event
simulation can be used to obtain the makespan value associated with any given permutation. However,
to obtain high-quality solutions to the problem, simulation needs to be combined with an optimization
component, e.g., a discrete-event heuristic. The proposed approach can find solutions that significantly
outperform those provided by employing simulation only and can easily be extended to a simheuristic to
account for random processing times.

1 INTRODUCTION

An intensification of global business, an ongoing digitization, and a growing demand for customized
products are shaping the competitive situation for manufacturing companies today. An economically
optimal utilization of the production chains was often considered the essential goal in the past. During
the last years, however, this goal has increasingly shifted towards a more customer-oriented production.
Therefore, the main focus is now on the timely fulfillment of promised delivery dates by the respective
production company. Accordingly, operational production planning deals with questions around the latest
possible release of a certain batch, so that it can still be manufactured and delivered on time. A high and
constantly increasing complexity of production systems, in conjunction with a high degree of automation,
repeatedly pose challenges for the respective production company. This is specially the case in the field
of semiconductor manufacturing. The use of simulation-optimization approaches (Amaran et al. 2016)
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could provide a more differentiated answer. In planning, design, and ramp-up, these methods are well
established, but are not frequently used yet for operational support in decision-making.

In real-life applications of scheduling, it is possible for jobs to take different paths through the production
system. The specific path might depend upon a particular specification or parameter, which defines the
machines to be visited by the job. The existence of different paths through the production system might
cause the order in which the jobs leave the system to be different from the order in which the jobs entered
it. Consequently, this can lead to problems in the context of the planning of batch-related insertion dates,
especially if batch processes are also found within the production system. In this paper, a multi-path
version of the permutation flow shop scheduling problem (Tosun et al. 2020) is analyzed. This version also
considers two batch processes at the same time, and it is based on a real case from a German manufacturing
industrial partner.

Accordingly, the main contributions of this work can be stated as follows: (i) the modeling of a
permutation flow-shop scheduling problem with different pre-determined paths, which depend upon a
particular specification or parameter; (ii) an original discrete-event-driven heuristic, which allows us to
deal with the complexity of the system in a natural way; (iii) its extension into a biased-randomized
algorithm; (iv) a review of related work in the existing scientific literature; and (v) a series of computational
experiments that illustrate the application of the proposed methodology for solving such a challenging
flow-shop scenario. Discrete-event driven heuristics combine concepts of discrete-event simulation to
guide a constructive heuristic. They have been employed in problems where synchronization issues where
relevant (Fikar et al. 2016). Biased-randomized algorithms allow us to obtain alternative solutions based
on a constructive heuristic (Juan et al. 2009). In a nutshell, they make use of Monte Carlo simulation and
skewed probability distributions to introduce a non-uniform random behavior into a constructive heuristic.
Thus, the heuristic is transformed into a more powerful probabilistic algorithm, which can be run in
virtually the same wall-clock time as the original heuristic if parallelization techniques are employed. Some
applications of these algorithms include flow shop problems (Ferrer et al. 2016), integrated routing and
facility-location problems (Quintero-Araujo et al. 2017), and vehicle routing problems (Dominguez et al.
2016; Belloso et al. 2019). To the best of our knowledge, this is the first time that both techniques are
hybridized to solve a complex flow shop problem as the one analyzed here.

The remainder of the paper is organized as follows. Section 2 provides a more detailed description
of the scheduling problem studied in this paper. Section 3 reviews related work on similar flow shop
problems. Section 4 proposes a novel optimization heuristic that incorporates concepts from discrete-event
simulation. Section 5 carries out a series of numerical experiments to test our methodology. Section 6
analyzes the obtained results. Section 7 discusses some preliminary managerial insights derived from our
work. Finally, Section 8 summarizes the main findings of this paper and points out some future research
lines.

2 A DETAILED DESCRIPTION OF THE PROBLEM

Figure 1 shows an example of a production scenario in which different jobs have to be processed by a
number of machines. Following this, jobs arrive in the system at the source on the left side, are processed
in machine M/ and are subsequently forwarded to various predefined paths depending on their product
type. Accordingly, jobs of product types A/ and A2 pass through machines M2, M4, and M5 before jobs
of product type A2 have to pass through machine M9 as well. In contrast, jobs of product types B/ and B2
are both processed in machine M3 before the processing paths differ again depending on the product type.
While the jobs of product type Bl are processed in machine M6, the jobs of product type B2 pass through
machines M7 and M8. The jobs of both product types Bl and B2 then enter a batch process Bal, which
processes six jobs each — regardless of their product type — simultaneously. The same applies subsequently
in a batch process Ba2, which processes ten jobs simultaneously and includes the jobs of all four product
types before the jobs are finally processed in machine M0 and then leave the production system.
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Figure 1: An example of a production scenario with multiple paths and different product types.
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The fact that jobs are processed on different predefined paths, depending on their product type, makes
it possible for jobs to overtake others during processing, i.e.: the order in which the jobs leave the system
might differ from the order in which the jobs were placed in the system. The lower part of the figure
contains a first comparison of the order in which the jobs enter the system and the order in which the jobs
leave it. For example, job I enters the system at position I and leaves at position I, while job 2 enters the
system at position 2 and leaves at position 7. The aim of the methodology described below is to find a
permutation of jobs (solution) that reduces the makespan, which depends on the order in which the jobs
are placed in the system.

3 RELATED WORK

Since Johnson (1954) published the first approach solving flow shops, a large number of flow shops with
and without parallel machines per stage have been analyzed in the literature. Flow shops with multiple
machines on at least one of the processing stages are defined as flexible or hybrid flow shops (Ruiz
and Vézquez-Rodriguez 2010; Pinedo 2016). Ribas et al. (2010) and Lee and Loong (2019) show that
hybrid flow shop problems of different application areas can be modeled as mixed integer programming
problems and solved using exact methods, heuristics, or even simulation. Gupta (1988) proves that even
a two-stage hybrid flow shop with only two identical parallel machines on one of both stages, and one
machine on the other stage, is NP-hard. So it can be assumed that the presented problem is also NP-hard.
In contrast to exact optimization methods, heuristics cannot verify the optimality of a solution. Rather, they
can provide approximated solutions. However, solving real-world problems using heuristics is much less
time-consuming than solving exact mathematical models for these complex real-world problems. Heuristics
can also be used as an iterative way of exploring the solution space and attempt to improve initial solutions
with respect to the objective function (Naderi et al. 2010).

Configurations of (hybrid) flow shops that include machines needing different types of jobs to start
their production are often categorized as assembly flow shops (Komaki et al. 2019; Nikzad et al. 2015).
On the contrary, (hybrid) flow shops that include machines that process more than one job of the same
type simultaneously (see machine Bal and Ba2 in Figure 1) are mostly categorized as hybrid flow shops
with batching machines (Morais et al. 2013). Literature overviews of assembly flow shops are provided by
Komaki et al. (2019) and Nikzad et al. (2015). Morais et al. (2013) has specialized his literature review
on the integration of batching components in hybrid flow shops. As we focus on the makespan objective in
our paper, Komaki et al. (2019) and Lee and Loong (2019) show that makespan and time-based objectives
are dominating in their analyzed papers of hybrid flow shops. Hence, it can be assumed that the makespan
is one of the most relevant objectives in both applications and theory.

In the following, some examples of studies with hybrid flow shops including batching machines and
the makespan objective are presented. Wilson et al. (2004) use a genetic algorithm for a hybrid flow shop
with batching machines. In their problem, jobs can also skip stages — like in our problem formulation
(see Figure 1). To generate an initial solution for their genetic algorithm, they partly use a combination
of a longest processing time algorithm for the permutation. The following stages are scheduled using the
earliest completion time concept. Logendran et al. (2006) also consider a hybrid flow shop in which not
every stage has to be visited by every job. They develop a tabu search for their problem. In each iteration,
two jobs are swapped. The tabu list consists of the pairs of jobs exchanged in the previous steps of the
algorithm, so that they are not reused in the following steps. These authors compare three constructive
heuristics for generating an initial solution for their tabu search algorithm. The first heuristic orders the
jobs numerically or alphabetically, and schedules them in order on the machines that become available.
The other two heuristics use variations of longest processing times, with the sum of the processing times
over all stages per order. However, in comparison, none of the constructive algorithms yields significantly
better results than the others. He et al. (2007) analyze a shortest processing time heuristic with polynomial
runtime for a two-stage hybrid flow shop problem. A specificity of the problem is that jobs can only be
processed by one dedicated machine during the first stage. In the second stage, all jobs are processed
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on the same machine in batches. In their heuristics, they work in the first processing stage according to
the shortest processing time. In the second processing stage, they employ a combination of the earliest
completion time and a minimization of the processing times for all batches.

Due to the high complexity of the problem considered in our paper, a large number of possible
permutations needs to be explored. Therefore, although simulation can be useful for modeling the framework,
it needs to be combined with optimization components in order to generate high-quality solutions.

4 A DISCRETE-EVENT HEURISTIC

Figure 2 shows a conceptual schema of the solving approach. It relies on a multi-start framework that
iteratively calls a biased-randomized heuristic inspired by the well-known NEH heuristic for the permutation
flow shop scheduling problem (Nawaz et al. 1983).

The NEH heuristic works as follows: (i) consider each job as if it were the only one in the system,
and compute the total time it requires to process the job by all the machines in its path; (ii) create a list
of jobs and sort it from higher to lower total times; (iii) iteratively select the next job from the sorted
list, and allocate it in each of the possible locations of the emerging solution (permutation of jobs) to find
out which is the best position for the new job. Particularly, we have used the idea of processing the jobs
from higher to lower total times, due to its providing good results in terms of makespan. Additionally,
we have extended this technique by introducing a balancing mechanism, which modifies the job-selection
order based on the type of job and on the current status of each path — this avoids collapsing any of the
paths while the other is idle. In our case, the balancing mechanism consists in simply selecting, from the
sorted list, the next job that can be routed to the path containing the lowest number of jobs at the time of
the selection. Moreover, in order to introduce a non-uniform randomization into the constructive heuristic,
we apply biased-randomization (BR) techniques during the job-selection process. These techniques make
use of skewed probability distributions to transform a deterministic heuristic into a probabilistic algorithm
able to generate many ‘good-quality’ solutions to the problem in short computational times. In our case, a
geometric probability distribution, driven by a single parameter o (0 < & < 1), is used to induce this skewed
behavior. Among other applications, these techniques have been recently applied in solving different flow-
shop scheduling problems (Ferrer et al. 2016), vehicle routing problems (Belloso et al. 2019; Dominguez
et al. 2016), capacitated location routing problems (Quintero-Araujo et al. 2017), and even to extend and
enhance traditional metaheuristic frameworks (Ferone et al. 2019).

One of the main challenges of this problem is to compute the makespan in a multi-path flow shop
scenario with batch processing at some machines. Notice that this computation is not straightforward
due to the fact that some jobs must be oriented towards the right path at several cross-paths, and also
that some machines might need to wait until all jobs in a batch become available. Hence, in order to
compute the makespan associated with a given solution (permutation of jobs) generated by the constructive
biased-randomized algorithm, we employ a discrete-event deterministic simulation. Three types of events
are considered: (i) the starting of a job i in a machine j at time 7, denoted as (,i,0, j): (ii) the ending of a
job i in a machine j at time ¢, denoted as (7,4, 1, j); and (iii) the arrival of a job i to a cross-path j at time
5, denoted by (1,7,2, j). The discrete-event list is initialized by considering the ending events generated by
the list of jobs (1,2,...,n) that reach the first machine or cross-path node. Then, the simulation clock is
started and the next event in the list is extracted from it and processed. On the one hand, ending events
might free the corresponding machine and also schedule new starting events for the associated jobs in case
they have not completed the whole sequence of machines yet. On the other hand, starting events will block
the required machine and will also generate new ending events associated with the starting ones. Finally,
whenever a job reaches a cross-path node, an event is triggered and, depending of the type of the job, a
new starting time in a machine is scheduled. This generation of new events continues until the last job is
processed by the last machine, which defines the solution makespan.

The entire process describe above is repeated in a multi-start framework (Listing 1) insofar as the
elapsed time does not exceed the maximum computational time allowed by the manager (or any other
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def MultiStart (inputs, strategy,maxTime,betal,beta?2) :
#inputs: instance
#betal, beta2: range of beta’s for BR
#maxTime: maximum execution time in seconds
#strategy: 0 ——> FIFO, 1 -—> TT

start = ElapsedTime.systemTime ()
elapsed = 0.0

bestSol = br_heuristic (inputs, strategy, betal, beta2, False) # greedy heuristic (
BR 1s switched-OFF)
print ("Initial Solution Makespan:",bestSol.getCosts())

while elapsed < maxTime:
newSol = br_heuristic(inputs, strategy, betal, beta2, True) # BR is swiched ON
if newSol.getCosts () < bestSol.getCosts():
bestSol = copy.deepcopy (newSol)
elapsed = ElapsedTime.calcElapsed(start, ElapsedTime.systemTime ())
print ("New Best Solution Makespan:",bestSol.getCosts())
elapsed = ElapsedTime.calcElapsed(start,ElapsedTime.systemTime ())
return bestSol

Listing 1: MultiStart Framework

finishing criterion). Because of the biased-randomization effect, each iteration is likely to provide a different
solution. Once this maximum time is reached, the best solution found (the one with the lowest makespan)
is returned by the algorithm.

5 COMPUTATIONAL EXPERIMENTS

The proposed algorithm has been implemented using Python 3.7 and tested on a workstation with a multi-
core processor Intel Xeon E5-2650 v4 with 32GB of RAM. To the best of our knowledge, there are no
public instances for the proposed problem. Hence, we have generated a set of instances, which are publicly
available at http://dx.doi.org/10.13140/RG.2.2.12173.05601. This set is based on the production scenario
defined in Section 2, which is composed of 9 processing machines and 2 additional batch machines, which
are distributed in 4 different paths. A total of 4 types of jobs have been considered, each type being
processed by a specific path. The total number of jobs varies from 200 to 5040 — depending on the instance
—, and each job j has associated a processing time of p;; units at each machine i. Note that, each instance
has been performed 2 hours and the determination of the best production sequence for all machines needs
the exploration of n! sequences — the number of possible job permutations at each machine. Thus, the
higher the number of jobs that compose the instances, the more challenging to find optimal or near-optimal
solutions to the problem.

Table 1 displays the results for some instances with different number of jobs. The first column of
the table identifies the instances. Each instance is characterized by the following nomenclature ixx_j.m.t.b,
where: ixx is a sequential identifier used to identify the instance in an easy and comprehensive way; j is
the total number of jobs to be processed; j is the total number of machines; ¢ is the different types of jobs,
which match the number of total number of different paths of the machine; and b is the total number of
batch machines. Notice that the number of batch machines is included in the total number of machines
(parameter m). Subsequently, the next four columns display the obtained results, considering the different
sorted strategies used in our algorithm to compute the makespan. Thus, the second column of the table
presents the computed makespan when the jobs are processed in the system using a first-in-first-out (FIFO)
strategy. In this case, the jobs enter in the system without any logical ordering, i.e., following the order as
they are in the processing queue. The third column reports the makespan when the jobs are selected using
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the previous FIFO strategy combined with biased-randomization techniques. In this sense, this allows us
to enter jobs in the system in a different order at each iteration of the algorithm. In our case, a geometric
probability distribution, driven by a single parameter ¢ (0 < & < 1), is used to induce this skewed behavior.
The value for this parameter was set after a quick tuning process over a random sample of instances,
establishing a good performance whenever ¢ falls between 0.3 to 0.4 (i.e., any random value inside this
interval will generate similar results). Similarly, the next two columns show the computed makespan when
a new sorting strategy is employed. This strategy consists in sorting the jobs according to their total
processing times (from highest to lowest). This way, the longest jobs are prioritized to be processed at
the very beginning of the process. The fifth column shows the computed makespan using this strategy,
while the sixth column displays the makespan when this strategy is combined with biased-randomization
techniques. Finally, the last three columns of the table report the gaps for the different strategies with
respect to the initial FIFO strategy.

Table 1: Results across different scenarios.

Sorting Strategies

Original (FIFO) Total Time (TT) Gap (%)
#Instance Heuristic [1] | BR [2] | Heuristic [3] | BR [4] | [1]-[2] | [1]1-[3] | [1]-[4]
i01.200.4.11.2 2778.5 2760.0 2711.0 2705.0 0.67 2.43 2.65
i02.200.4.11.2 2714.0 2668.0 2605.0 2599.0 1.69 4.02 4.24
103.200.4.11.2 2798.5 2730.5 2654.0 2641.0 2.43 5.16 5.63
i04_.200.4.11.2 2800.0 2744.0 2680.0 2669.5 2.00 4.29 4.66
105.200.4.11.2 2876.5 2822.0 2747.5 2737.0 1.89 4.48 4.85
i06.400.4.11.2 5112.0 5112.0 5015.0 5005.0 0.00 1.90 2.09
107.400.4.11.2 5192.0 5146.5 5075.0 5069.0 0.88 2.25 2.37
i08.400.4.11.2 5534.0 5523.0 5429.0 5417.0 0.20 1.90 2.11
109_.400.4.11.2 5307.0 5194.5 5137.0 5131.0 2.12 3.20 3.32
110_800.4.11.2 11047.0 10976.0 10893.0 10891.0 | 0.64 1.39 1.41
111.800.4.11.2 10918.5 10856.0 10789.0 10785.0 | 0.57 1.19 1.22
112_800.4.11.2 10870.0 10810.5 10701.0 10697.0 | 0.55 1.55 1.59
i13.800.4.11.2 10521.0 10436.5 10359.0 10357.0 | 0.80 1.54 1.56
114.5040.4.11.2 65900.5 65858.5 65759.0 65755.0 | 0.06 0.21 0.22
i15.5040.4.11.2 65256.5 65186.5 65115 65104 0.11 0.22 0.23

Average | 0.97 2.38 2.54

6 ANALYSIS OF RESULTS

Figure 3 summarizes the results provided in Table 1. One can notice that the average gap obtained after
applying a BR technique on the original FIFO strategy is able to enhance the former in about 1% on
the average, with a maximum gap of 2.43% (columns [1]-[2]). Also, the new heuristic, based in sorting
by total time, is able to enhance the original heuristic by 2.38% on the average, with a maximum gap
of 5.16% (column [1]-[3]). Finally, an average improvement of 2.54% is obtained when adding the
biased-randomization technique, with a maximum gap of 5.63% (column [1]-[4]). Notice also that the
batch processing machines can reduce the benefits of the BR techniques. This is due to both delays and
serialization issues that occur during the batching process. Such a behavior can be observed in the largest
instances, i.e., those composed of 5040 jobs, where the use of batch machines are more intensive. When
using BR techniques in these instances, the gain with respect to the constructive heuristic is low.

7 MANAGERIAL INSIGHTS
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While the flow-shop literature is vast, real-life systems are diverse and they generate rich scheduling problems
with special characteristics that, when considered altogether, impose new challenges. The combination of
specific assumptions and limitations have seldom been analyzed in previous works, but originate in real-
world use-cases with a possible high impact. That is the case, for instance, of flow-shops with multi-server
machines and re-entering points. In these complex scenarios, even traditional metaheuristic algorithms
might find difficulties in generating reasonably good solutions due to the unpredictable time dependencies
generated by the combination of loops and parallel servers. However, discrete-event heuristics — like the
one proposed here — can deal with these synchronization issues in a quite natural way and, as shown in
the section above, deliver relevant and improved results. Moreover, by incorporating simulation concepts
inside a heuristic optimization framework, these simulation-optimization algorithms go beyond classical
simulation-alone methods, which lack the capacity to efficiently explore the solution space.

All in all, these simulation-based heuristics may constitute new managerial tools, that allow even
operational, data-driven decision making in the manufacturing and process industries. Due to the (in
comparison to mathematical optimization) lower computation times for the heuristic approach, an real-life
application for operational decision support can be regarded as realistic. Additionally, with the use of
stochastic input factors, uncertainty known from the real-world setting can be considered in operational
decision making and should lead to better decisions. Here, the simulation-based approach might especially
prove beneficial.

8 CONCLUSIONS AND FUTURE WORK

In this paper, we analyze a challenging multi-path permutation flow shop problem which also includes
batching. The problem discussed here is inspired on a real-life case, and in order to solve it efficiently
we propose a simulation-optimization approach. In particular, our method makes use of a discrete-event
driven heuristic, which is also enhanced by employing biased-randomization techniques. The discrete-event
driven heuristic makes use of a discrete-event simulation list to schedule and trigger new events as the
process goes on. This way, we can compute the makespan associated with any given sorting strategy.
When extended into a biased-randomized algorithm, our methodology is capable of providing high-quality
solutions in relative computing times. In dynamic and connected production systems, such as the ones we
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can find in industry 4.0 environments, this ability to quickly generate a high-quality sorting of jobs might
have a noticeable impact on the system performance.

Some future actions that might be considered in order to extend our work are described next: (i) to
test the algorithm in a real-life manufacturing environment and quantify how it can improve the results
obtained by current industrial practices; (ii) to consider optimization objectives other than makespan, e.g., to
maximize rewards for partially completed jobs, etc.; and (iii) to extend the algorithm into a full simheuristic
one (Chica et al. 2020), so it can also consider stochastic processing times.
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