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ABSTRACT 

A two-stage supply chain is studied in this paper where customers provide demand forecasts to a 
manufacturer and update these forecasts on a rolling horizon basis. Stochastic forecast errors and a forecast 
bias, both related to periods before delivery, are modeled. Practical observations show that planning 
methods implemented in ERP (enterprise resource planning) systems often lead to instabilities in production 
plans that temporarily increase projected demands. From the manufacturer’s point of view, this behavior is 
observed as an outlier in the demand forecast values. Therefore, two simple outlier correction methods are 
developed and a simulation study is conducted to evaluate their performance concerning forecast accuracy. 
In detail, the magnitude of each demand forecast is evaluated and if a certain threshold is reached, the 
forecast is corrected. The study shows that the application of the outlier correction for forecast values leads 
to significant forecast accuracy improvement if such planning instabilities occur. 

1 INTRODUCTION 

Customer provided demand forecasts are often applied for production planning in order to create production 
orders for the respective materials. Intuitively it is obvious that a high forecast accuracy leads to a better 
production system performance as it reduces uncertainty. One of the main assumptions in literature is that 
information quality increase when the due date approaches. However, practical observations show that 
based on the customers’ planning system, there might be temporary fluctuations in the demand forecast 
values that have a high magnitude which lead to instabilities in production plans with negative impact on 
production system performance. In the forecast data this behavior is measurable in form of numerical 
outliers. For example, the customer could occasionally increase the demand forecast for a certain due date 
from 800 to 1200 pieces and reduce the respective forecast some periods later to 800 again. For our 
investigations we consider rolling horizon forecast behavior. This means we are rolling through time and 
forecasts are provided for several periods into the future and updated each period. Such updated demand 
information is usually provided electronically by the customers and such data can be imported into the ERP 
(enterprise resource planning) system of the supplier after a data preprocessing step. Within the ERP 
system, the implemented planning method uses these forecast data to compute the production schedule. For 
planning the production steps the demand information is important, but when forecasts are not accurate and 
rely on outliers they introduce nervousness into production system with negative impact on production 
system performance. From the perspective of the outliers are often intuitively known from past experiences. 
Nonetheless, the production system of the supplier must absorb it with countermeasures like higher safety 
stock or additional capacity. To reduce this forecast introduced uncertainty within the production system 
we develop two simple outlier correction methods and extend the forecast generation process presented by 
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(Zeiml et al. 2020). Our extension to this forecast generation process is the modelling of temporary outliers 
within the demand model and the development of two outlier correction methods. The simplicity and ease 
of use of the developed outlier correction methods supports their integration into, e.g. MRP based, 
production planning frameworks. In this paper the focus lies on the investigation of the performance and 
applicability of the proposed outlier corrections. One specific contribution of this paper is the extension of 
the demand model which mimics the rolling horizon evolution of forecasts with outliers. Based on our 
motivation the following research questions, which are answered with a simulation study, are formulated: 

• RQ1: What is the performance of the developed demand forecast outlier correction methods if 
each update includes an information gain but some are disturbed by outliers?  

• RQ2: What is the performance of the developed demand forecast outlier correction methods if 
some forecast updates are biased related to specific periods before delivery, i.e. not each update 
includes an information gain, and some updates are disturbed by outliers? 

• RQ3: What is the effect of the outlier correction methods, their parameterization and different levels 
of uncertainty on their performance? 

In general, the paper contributes to available literature in extending the available model (see (Zeiml et 
al. 2020)) to create demand forecasts applying a forecast evolution method by integrating the outlier 
creation. From a managerial point of view, RQ1 provides a manager the information which forecast 
correction model works well and what are the risks of applying such a simple forecast correction. The 
specific focus on forecast biases in RQ2 contributes to a better understanding of how such a bias influences 
the performance of the respective outlier correction. Since the outlier correction methods need to be 
parameterized, in RQ3 a sensitivity analysis concerning outlier correction parameters and forecast 
uncertainty is conducted. In the sensitivity analysis different levels of forecast bias and uncertainties are 
tested. The remaining paper is organized as follows. In section 2, we give an introduction to the related 
literature concerning forecast generation and outliers introduced by the customer. Section 3 describes our 
forecast generation model with a simple example followed by the definition of our outlier correction 
methods. In section 4, the simulation model is introduced and a numerical study is conducted in section 5 
to answer the research questions. Finally, we conclude and give an outlook on our further research activities 
related to forecast processing.  

2 LITERATURE REVIEW 

Among other disturbances in demand information companies have to deal with unexpected high or low 
demand values, commonly known as outliers. Outliers in demand information can lead to unreliable and 
poor forecasts. Therefore, the identification of future outlier occurrence is an essential task in time series 
analysis to reduce the average forecasting error (see Chen and Liu 1993; Martínez–Álvarez et al. 2011). 
(Martínez–Álvarez et al. 2011) predict the occurrence of outliers in time series, based on the discovery of 
motifs. They assume motifs as pattern sequences preceding certain data marked as anomalous if data to be 
predicted as motifs, such data are identified as outliers, and treated separately from the rest of regular data. 
They use statistical methods to evaluate the accuracy of the proposed approach regarding the forecasting of 
the occurrence of outliers and their corresponding forecast values. (Ho et al. 2019) focus on the prediction 
of an anomaly to be available to raise an alert before an outlier occurrence happens. The authors mention 
that most of previous publications are limited to detect an outlier after its occurrence and not before. (Taylor 
and Letham 2018)developed a forecasting library called Prophet in Python and R for forecasting time series 
data based on an additive model where non-linear trends are fitted with yearly, weekly and daily seasonality, 
and special or irregular events (outlier) occurs. Their implementation is based on the model of (Harvey and 
Peters 1990). Special events are modeled independently as another additive factor of the used prediction 
model. Their implementation works best with time series that have strong seasonal effects and several 
seasons of historical data available. Prophet is robust to missing data and shifts in trend, and typically 
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handles outliers well. Nevertheless, these models focus on the final order amounts and deal with outliers 
which occur in the final order amounts not in the evolution of forecasts. 

Customer provided forecasts, which are commonly transmitted via electronic data interchange between 
customers and suppliers and which are regularly updated until the realization of the order at the specified 
due date, can be modeled according to the martingale model of forecast evolution (Heath and Jackson 
1994). The papers of (Norouzi and Uzsoy 2014) and (Güllü 1996) integrate the above mentioned 
information of forecast evolution in inventory models to improve the production system performance. 
These authors focus on the development of analytical models, nevertheless also discrete event simulation 
can be an appropriate tool to investigate the influence of different demand model extensions and its 
parameterization on forecast accuracy, or to test the performance of developed forecast correction models. 
Especially discrete event simulation is suitable for the investigation of complex production systems. As one 
example in the simulation study of (Zeiml et al. 2019), customer provided forecasts are investigated with a 
discrete event simulation model. In detail the forecast accuracy of two customer provided forecast 
behaviors, i.e. independent forecast distribution and forecast evolution, are compared to simple moving 
average method (Svetunkov and Petropoulos 2018), which is a classical time series forecasting technique. 
After the discussion of the performance of different forecast error measures with respect to varying forecast 
error parameters the question is answered when customer provided forecasts are advantageous compared 
to the simple moving average method based on the final orders. An additional important finding of (Zeiml 
et al. 2019) is that the forecast error measure MPE is appropriate to show the systematic forecast error, i.e. 
forecast bias, with respect to periods before delivery. Motivated by this finding, a forecast error correction 
model to reduce the negative effects of forecast bias with focus on the forecast evolution is developed in 
(Zeiml et al. 2020). For scenarios with and without forecast bias, the correction model is evaluated. The 
authors find, that whenever there is a significant value of the systematic error, the correction model based 
on MPE improves forecast accuracy. Nevertheless, when the correction model is applied and there is only 
an unsystematic error the correction model is counterproductive.  

On the one hand, the relevant papers above show, that current literature on outliers in demand data 
mainly focusses on the final order amounts and most of them neglect the evolution of forecasts. This means 
that forecasting methods to predict such outliers in final order amounts are developed or observable factors 
related to the outliers which are identified. One the other hand, literature focuses on the evolution of 
forecasts for different demand model extensions, but neglect the identification and correction of outliers to 
improve forecast accuracy. However, this paper addresses that outliers occur in the forecast evolution 
process and not in the final order amount. The combination of outlier detection and forecast evolution and 
the use of simulation to investigated the performance of the developed forecast correction models is the 
contribution of this paper.  

3 DEMAND FORECAST MODEL AND OUTLIER CORRECTION 

In this section, the demand forecast generation model extension to include outliers is derived and the outlier 
correction methods are developed.  

3.1 Demand model and forecast process 

To illustrate the demand model and the forecast process observed by the supplier, test data is generated and 
shown in Table 1. In this table, forecast data examples for four due dates, i.e. weeks, with forecast updates 
each week is illustrated. The table also shows forecast uncertainty and outlier behavior. In our demand 
model we assume to have a constant long term forecast and periodical updates until the due date approaches 
(see (Zeiml et al. 2020)). In detail, the customers start to update their forecasts for j<H periods before 
delivery (PBD) with 𝐻𝐻 = 10  being the forecast horizon. For 𝑗𝑗 ≥ 𝐻𝐻  we assume constant forecasts 𝑥𝑥�𝑖𝑖 
without updates. Based on Table 1, 𝑥𝑥31,5 = 885 means that for due date i = 31 (i.e. week 31), 5j =  
weeks before delivery, the customer submitted a delivery request of 885 items. The information 𝑥𝑥32,0 =
686 means, that in week 𝑖𝑖 = 32 and PBD 𝑗𝑗 = 0 the supplier must deliver 686 items to the customer, i.e. 
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𝑥𝑥𝑖𝑖,0 reflects the final order amount for week 𝑖𝑖 after the last update. The time when the forecast information 
was transmitted can be calculated by 𝑖𝑖 − 𝑗𝑗 . For example for 𝑥𝑥31,5  the respective demand forecast 
information was provided in week 26. Note that the week number 26 is shown as superscript value in Table 
1.  

 

Table 1: Simple forecast data example. 

 Due dates in [weeks] 

j   i 29 30 31 32 

10…n 80019*  80020 80021 80022 

PBD 
[weeks] 

9 64020 62021 71522 78723 

8 75021 64022 82023 158724** 

7 78022 81423 71024 167025** 

6 86023 52524 63325 87026 

5 79324 76125 88526 79727 

4 73725 58326 58327 73828 

3 72726 64527 75628 72529 

2 74527 67728 74429 64430 

1 71928 77229 75030 61631 

0 78429 77330 87331 68632 

*denotes the week of arrived forecast information, **outlier appears PBD 

8 and disappears PBD 6 

 

In (Zeiml et al. 2020) a demand model for rolling horizon forecast updates has been introduced which 
is extended in this paper by an outlier generation to test the performance of the outlier correction. 
Specifically, only the original forecast evolution and the forecast bias from (Zeiml et al. 2020) are applied 
in this paper. The forecast process we rely on (Zeiml et al. 2020) is an extension of the forecast evolution 
process introduced by (Güllü 1996) and (Heath and Jackson 1994). In this model, each forecast update is 
modeled by adding a random term to the previous forecast amount. The basic version from (Zeiml et al. 
2020) we use to compute our forecast values is illustrated in equation (1). Whereby 𝜀𝜀𝑖𝑖,𝑗𝑗, the random update 
term, is a normally distributed random variable with expected value 𝛽𝛽𝛽𝛽𝑗𝑗𝑥𝑥�𝑖𝑖 and standard deviation 𝛼𝛼𝛼𝛼𝑗𝑗𝑥𝑥�𝑖𝑖. 
The long term forecast 𝑥𝑥�𝑖𝑖 for the due dates 𝑖𝑖 can be constant or variable. To parameterize different forecast 
generation scenarios, α and β are varied similar to (Zeiml et al. 2020). The variable 𝛼𝛼 determines the level 
of random error independently of the periods before delivery 𝑗𝑗, however, the 𝛼𝛼𝑗𝑗 values can be applied to 
configure an interrelation between periods before delivery j and the random updates. The variable β 
determines the level of forecast bias independently of the periods before delivery 𝑗𝑗, however, the 𝛽𝛽𝑗𝑗 values 
can be applied to configure an interrelation between periods before delivery j and the forecast bias. The 
variables 𝛽𝛽  and 𝛼𝛼 can be directly compared between scenarios because they are unscaled. We summarize 
that 𝛼𝛼 describes the unsystematic noise of the forecast and 𝛽𝛽  identifies the forecast bias behavior of booking 
systematically too much or too little. 
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The basic demand model according to equation (1) is extended in the current paper by a temporary 
outlier generation. This means that disturbances in the forecast data occur only temporarily. In Table 1, e.g., 
8 periods before delivery, the demand forecast for period 32 increases by 800 pieces (from 787 to 1587) 
and 6 periods before delivery this increase disappears again (from 1670 to 870). Equation (2) shows how 
the outlier generation is modeled: 
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This formulation implies that outliers are randomly generated with probability 𝛾𝛾𝑐𝑐𝑗𝑗 , whereby 𝑐𝑐𝑗𝑗 
represents the link to periods before delivery and 𝛾𝛾 is a scenario specific parameter leveling this probability. 
The amount of an outlier is normally distributed with mean 𝛿𝛿𝑥𝑥�𝑖𝑖 and standard deviation 𝛿𝛿𝛿𝛿𝑥𝑥�𝑖𝑖, whereby δ is 
also scenario specific. As the outliers occur only temporarily, the parameter v  indicates for how much 
periods an outlier occurs. In the example presented above, 𝜆𝜆32,8(𝑥𝑥�𝑖𝑖 , 𝛿𝛿, 𝛿𝛿) = 800, 𝑃𝑃32,8(𝛾𝛾𝑐𝑐8) = 1 and 𝑣𝑣 =
2. Note that this formulation constrains the outlier generation to a fixed and predefined v  value, i.e. outliers 
are random in their amount and occurrence probability but stay always for v weeks. This limitation is 
applied in the current study to simplify the scenario setup and discussion, but can easily be extended in 
further research. 

3.2 Outlier Correction 

To increase forecast accuracy, we try to detect outliers in the forecast data consisting of 𝑥𝑥𝑖𝑖,𝑗𝑗 and correct 
them to smoothen the demand forecasts. The corrected forecast value is represented by 𝑥𝑥�𝑖𝑖,𝑗𝑗. Correction is 
applied during the process of forecast generation for each 𝑥𝑥𝑖𝑖,𝑗𝑗 for all 𝑗𝑗 < 𝐻𝐻. Looking at the possibilities to 
correct the respective outliers in the forecast data stream shows that two decisions have to be taken here. 
Decision 1 is related to the identification of outliers. For this decision, we focus on the mean and variance 
of the final order amounts. Decision 2 concerns the value to which the forecast could be corrected, here 
either the mean order amount from the past is applied or the last forecast before the identified outlier is 
taken.  

3.2.1 Outlier Correction Method 1 (M1) 

In this method, outliers are identified based on the mean and variance of the final order amounts and the 
average order amount is used instead of the original forecast if an outlier is detected. Equation (3) shows 
the corrected forecast calculation: 
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With 𝐹𝐹−1(𝑋𝑋, 𝜇𝜇,𝜎𝜎) being the inverse of the normal distribution at probability X. This means during 
forecast generation the 𝑥𝑥𝑖𝑖,0 are stored, the mean and standard deviation are computed, and the upper bounds 
are evaluated. This upper bound is compared to the current 𝑥𝑥𝑖𝑖,𝑗𝑗 and the forecast is corrected to 𝑥𝑥�𝑖𝑖,𝑗𝑗 if an 
outlier is presumed. Note that m is the number of data points applied, i.e. the representative final order 
amount history. 

3.2.2 Outlier Correction Method 2 (M2) 

In this method, outliers are identified similar to method 1, but the last forecast value for the respective due 
date (in M1 the average order amount is used) is used to replace the original forecast. Equation (4) shows 
the corrected forecast calculation: 
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Assuming that we have an unbiased forecast evolution demand model, method 2 should provide better 
results than method 1. However, we will also study the effects of biased forecasts on the performance. Note 
that 𝑥𝑥�𝑖𝑖,𝑗𝑗 = 𝑥𝑥�𝑖𝑖 is applied for 𝑗𝑗 ≥ 𝐻𝐻. 

4 SIMULATION MODEL FOR FORECAST GENERATION AND OUTLIER CORRECTION 

To evaluate the performance of the developed outlier correction model, a discrete event simulation model 
built with AnyLogic© is used. As a discrete sequence of events (forecast updates) should be created, 
discrete event simulation model is identified as an appropriate solution method. In detail, only at specific 
periodic points in time, a change in the forecast is triggered in the simulation model. Our simulation model 
has implemented the forecast generation process described in Zeiml et al. (2020) and is extended with the 
already described outlier generation as well as the outlier correction methods M1 and M2 according to the 
formulation in Section 3.  

Selecting the appropriate parameters for simulation is an extensive research field. We selected the 
simulation parameters for our numerical study based on preliminary tests with respect to demonstrate the 
usage and limitations of our developed outlier correction method. We decided to use a simulation runtime 
of 520 periods, which are 10 years, as simulation model time are weeks. Weeks are used as time periods as 
they are a common time frame to update forecasts. For the first 20 periods forecast history is not completely 
available, therefore the first 20 time periods are removed from result analysis. This results in 500 complete 
forecast streams for each due date and the full range of observed periods before delivery. As stochastic 
forecast behavior is assumed 20 replications per iteration are used. 

The normalized RSMEj (root-mean-squared-error) is used to measure forecast accuracy with respect to 
periods before delivery j. To enable a distinction between the uncorrected forecasts and the corrected 
forecasts, the notation RMSEj is applied for uncorrected forecasts and CRMSEj is applied for corrected 
forecasts. Equation (5) shows the specific RMSEj and CRMSEj calculation. Note that n is the number of 
forecast streams observed, i.e. number of due dates for which a full forecast history is available. 
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Additionally, a correction effectiveness indicator 𝐸𝐸𝑗𝑗  is introduced in equation (6) to evaluate the 
performance gain (or loss) with respect to forecast accuracy when the forecast correction methods are 
applied. Whenever 𝐸𝐸𝑗𝑗 is positive, the forecast correction leads to an increase in forecast accuracy.  

j j
j

j

RMSE CRMSE
E

RMSE

−
=   

 

(6)  

5  NUMERICAL STUDY 

Based on the previously described simulation setting and the above stated research questions, several 
scenarios to evaluate the performance of the developed outlier correction methods are defined. The 
respective results are discussed in this section. 

5.1  Scenario definition 

To test the performance of the outlier correction methods, the following basic scenarios A (unbiased) and 
B (biased) are identified. Based on these basic scenarios A and B, the parameters α, β, γ, and δ are changed 
to create a range of unbiased (A) and biased (B) forecast evolution scenarios. The basic scenario parameters 
are defined as: 

• 𝛼𝛼𝑗𝑗 = 0.1 for all j, i.e. randomness in forecast evolution stays constant with respect to periods 
before delivery 

• 𝛽𝛽3 = 𝛽𝛽4 = −0.1, 𝛽𝛽5 = −0.2, 𝛽𝛽6 = 0.2, 𝛽𝛽7 = 𝛽𝛽8 = 0.1; i.e. a systematic overbooking occurs 
with a peak 6 periods before delivery (see Zeiml et al. 2020) 

• 𝑐𝑐4 = 𝑐𝑐7 = 0.5, 𝑣𝑣 = 1, 𝛿𝛿 = 0.25; i.e. an outlier can occur 4 and 7 periods before delivery and 
stays for 1 period 

Based on the basic scenario parameters the scenario sets A and B are defined as following:  
• Scenario set A: unbiased forecast updates with outliers: 𝛼𝛼 ∈ {0.5,1,2}, 𝛽𝛽 = 0, 𝛾𝛾 ∈ {0.5,1,2}, 

{ }0.5,1,2δ ∈ ; i.e. 27 scenarios are tested. Basic case is 𝛼𝛼 = 1, 𝛽𝛽 = 0, 𝛾𝛾 = 1, and 𝛿𝛿 = 1. 

• Scenario set B: biased forecast updates with outliers: 𝛼𝛼 = 1, 𝛽𝛽 ∈ {0.5,1,2}, 𝛾𝛾 ∈ {0.5,1,2}, 
𝛿𝛿 ∈ {0.5,1,2}; i.e. 27 scenarios are tested. Basic case is 𝛼𝛼 = 1, 𝛽𝛽 = 1, 𝛾𝛾 = 1, and 𝛿𝛿 = 1. 

• For both basic scenarios a comparison scenario without outliers is generated; i.e. basic a w/o: 
𝛼𝛼 = 1, 𝛽𝛽 = 0, 𝛾𝛾 = 0, and 𝛿𝛿 = 0 and basic B w/o: 𝛼𝛼 = 1, 𝛽𝛽 = 1, 𝛾𝛾 = 0, and 𝛿𝛿 = 0. 

The simulation study can be divided into two parts. In both parts the outlier correction methods are 
applied on the whole forecast stream. In the first part performance and correction effectiveness for the basic 
scenarios are tested. Therefore, the simulation is conducted for the basic scenarios Basic A and B with and 
without outliers (w/o), for X = 0.9 and 𝑚𝑚 ∈ {6,24}. The second part which is the input for the sensitivity 
analysis, consists of 54 scenarios (27 for each scenario set A and B) with 𝑋𝑋 ∈ {0.7,0.8,0.9,0.95,0.98,0.99} 
and 𝑚𝑚 = 24. 

5.2 Correction method comparison for basic scenarios 

In this section the results for unbiased and biased forecasts with and without outliers are presented for the 
basic scenarios A and B for both correction methods M1 and M2. As introduced above, the higher the 
𝑅𝑅𝑅𝑅𝑅𝑅𝐸𝐸𝑗𝑗 value the higher the level of forecast error is. For scenario A Basic, where outliers occur in 𝑃𝑃𝑃𝑃𝑃𝑃7 
and 𝑃𝑃𝑃𝑃𝑃𝑃4, Figure 1 shows, that without correction the 𝑅𝑅𝑅𝑅𝑅𝑅𝐸𝐸𝑗𝑗 is between 0.7 and 0.8 (for j=4 and j=7). The 
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application of correction methods M1 and M2 leads in this case to a 𝑅𝑅𝑅𝑅𝑅𝑅𝐸𝐸𝑗𝑗 reduction of more than 50%. 
Which indicates a good performance of the correction methods when an outlier occurs. Furthermore, Figure 
1 shows that until the first application of the correction methods (j=10 to 8) the 𝑅𝑅𝑅𝑅𝑅𝑅𝐸𝐸𝑗𝑗 is similar with and 
without outlier correction. However, looking at j=3 to 1, shows that the corrected forecasts have a higher 
𝑅𝑅𝑅𝑅𝑅𝑅𝐸𝐸𝑗𝑗 which implies that the outlier correction adds a source of uncertainty. This behavior can also be 
observed for scenario B Basic with outliers and forecast bias in Figure 3. Specifically the results in Figure 
2 show, that without outliers, the correction methods start to overreact and introduce an additional error. 
When forecast bias and random error are present in a setting without outliers (see Figure 4), the outlier 
correction methods can partially diminish the negative effect of the forecast bias. That happens because the 
bias between PBD 8 and 4 is treated like outliers related to the final order amount. Concerning RQ1 and 
RQ2 the tested correction methods show a positive impact on the forecast accuracy and the information 
updates that are disturbed by outliers are smoothened. However, a negative note to RQ1 and RQ2 is the 
negative contribution to the 𝑅𝑅𝑅𝑅𝑅𝑅𝐸𝐸𝑗𝑗  after the outliers disappear or if only random noise is present. 
Furthermore, outlier correction method M2 shows in these scenarios a consistently better performance than 
M1. 

 

  
Figure 1: Scenario A Basic for X=0.9 and m=24. 

 
Figure 2: Scenario A Basic (w/o) for X=0.9 and 

m=24. 

  
Figure 3: Scenario B Basic for X=0.9 and m=24. Figure 4: Scenario B Basic (w/o) for X=0.9 and 

m=24. 

5.3 Performance decrease when no outliers occur 

To further analyze the performance loss if no outliers occur and the correction is still applied, in this section 
an additional experiment with m=6 and m=24 is conducted for scenario A Basic w/o and scenario B Basic 
w/o for outlier correction method M2. Note that m=6 and m=24 show the influence of different lengths of 
forecast history, i.e. the value m=6 means we are using 6 instead of 24 historic order amount values to 
compute the outlier threshold. Figure 5 shows that without forecast bias, the correction effectiveness is 
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negative for all j < 10 (m=24) and j d 10 (m=6) values and the added uncertainty increases with respect to 
decreasing j, i.e. more uncertainty is added when the due date approaches. Figure 6 shows that in general, 
the outlier correction is able to increase forecast accuracy in periods where the bias occurs, however, it adds 
uncertainty whenever no bias occurs. A specifically interesting finding is that a lower number of available 
forecast history streams leads to a higher uncertainty added. This can be observed by the fact, that in Figure 
5 and Figure 6 the correction effectiveness of m=24 is always higher compared to m=6. This means an 
increase in m leads to an increase in the performance of the outlier correction method. Concerning RQ1 and 
RQ2 this shows that outlier correction has to be applied with caution and it is important to identify up front 
if outliers may occur in the forecast stream. 

 

  
Figure 5: Performance decrease M2 X=0.9 scenario 

A Basic w/o. 
Figure 6: Performance decrease M2 X=0.9 scenario 

B Basic w/o. 

5.4 Correction effectiveness related to parameter X 

In this section the influence of parameter X on the correction effectiveness for the scenarios A Basic and B 
Basic with m=24 is observed for j=7 periods before delivery where outliers occur in our setting. The 
parameter X is used for the inverse of the normal distribution to compute the threshold for applying the 
correction method. The higher X is, the higher the threshold becomes and the probability of correction is 
reduced. The results in Figure 7 and Figure 8 show that the correction method M2 has always a higher 
correction effectiveness than M1. For the better method M2, a concave relationship between the correction 
effectiveness and X can be observed. This means that neither very low nor very high X values lead to the 
best results. For both figures it has to be considered, that only j=7 is illustrated and the correction 
effectiveness for the X values can change when discussing other periods before delivery j or calculating an 
average of correction effectiveness for all j values as conducted in the next subsection. Concerning RQ1 
and RQ2 these observations show that the parameter X has an important influence on the outlier correction 
performance.  
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Figure 7: Correction effectiveness A Basic for j=7. Figure 8: Correction effectiveness B Basic for j=7. 

5.5 Sensitivity analysis 

In this section the sensitivity of the results concerning the demand model, i.e. the forecast generation 
process, and the model parameter X is tested in order to answer RQ3. 𝐸𝐸(𝑋𝑋) shown in Table 2 is the average 
over all j values between 1 and 10. This means that the positive effects when an outlier occurs are averaged 
with the negative effects of additional uncertainty when no outlier occurs. Furthermore, Table 2 reports 
only the result for the beneficial method (out of M1 or M2; column method) with the best X value (𝑋𝑋 ∈
{0.7,0.8,0.9,0.95,0.98,0.99}; column X). The results from Table 2 show that M2 performs better than M1, 
which can be expected related to the results from above, however, it is interesting that it outperforms M1 
for all scenarios. This is interesting since for the scenarios with forecast bias, also M1, which applies the 
average order amount for forecast correction, might be a good method. Furthermore, the results show that 
high X values lead to the best results which is not intuitive from the results in section 5.4. However, this 
shows that it is better to have a high threshold value for the outlier identification in order to reduce the 
additional uncertainty induced in periods without outliers. Even though this high threshold value does 
sometimes neglect occurring outliers. With respect to random noise α, the results show that higher random 
noise leads to lower performance of the outlier correction which is intuitive since then outliers are more 
difficult to identify. With respect to the level of forecast bias b, the results show that a higher forecast bias 
leads to a better performance of the outlier correction, which is intuitive since then more biased forecast 
values are identified as outliers and then corrected. With respect to outlier probability γ and outlier amount 
δ, the results both support intuition since an increase in γ and δ leads to an increase in correction 
effectiveness. Overall, a broad range of correction effectiveness values between 1.74% and 28.23% 
depending on the parameters of the forecast generation process can be observed. 
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Table 2: Sensitivity Analysis 

 

6 CONCLUSION 

In this paper two selected outlier correction methods for forecast data are tested. Based on the distribution 
of the final order amount a threshold value is calculated for outlier identification and two different 
corrections methods are compared. The first correction method is simply based on historical data of the 
average final order amount, while the second correction method applies values of the previously shared (i.e. 
j+1) forecast information. To test the performance of the outlier correction methods a simulation study 
using AnyLogic© is performed. The results show that both outlier correction methods perform well and 
provide the expected smoothening of the forecasts values which consequently can reduce nervousness in 
the production system. However, results show that method M2 significantly performance better than M1. 
Furthermore, the results show that outlier correction might add an additional source of uncertainty if no 
outliers occur and therefore, high threshold values for outlier identification are advantageous. In future 
research the outlier identification could be extended to be based on the mean and variance of the forecast 
updates with respect to the periods before delivery instead of the final order amounts. Since simulation 
always treats streamlined systems, a further research activity is identified to conduct a numerical study, 
where the performance of the outlier correction methods with real world forecast data are tested. Another 
research direction is the integration of the presented demand forecast model into a simulation framework 
that mimics a hierarchical production planning system to identify the respective performance increase if 
forecasts are corrected and material requirements planning is applied. 
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