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ABSTRACT 

The assembly process of surface-mount device (SMD) usually requires over hundreds of types of surface-
mount components (SMC). A set of SMCs should be picked in the warehouse to be supplied to the 
production line. We define a storage location assignment problem for SMC considering a periodic 
production plan to improve the efficiency of the SMC-picking operation. We propose a solution approach 
based on Genetic Algorithm (GA) to solve a reduced problem that finds the optimal allocation sequence of 

each type of SMC. We generate the initial population based on the characteristics of the SMCs, such as the 
production plan and the bill of material (BOM). A simulation model based on AutoMod is used to compare 
the performances of the proposed algorithm and some practical legacy methods with the empirical data. 
The simulation results demonstrate that the proposed algorithm is feasible and efficient in terms of picking 
distance. 

1 INTRODUCTION 

 The manufacturing process of surface mount device (SMD) mainly involves an assembly of hundreds 
of types of electronic components onto a printed circuit board (PCB). A set of different types of electronic 
components, which we call surface-mount components (SMCs), should be kitted at the warehouse to be 
supplied to each production line. For kitting the SMCs, workers or retrieval robots are to move to several 
storage locations to pick the required SMCs. The picking operation is usually time-consuming since 
thousands of types of SMCs are stored in the warehouse and each SMD model requires hundreds of different 

combinations of SMCs, according to its bill of material (BOM). Depending on the storage location of SMCs, 
the picking distance or travel time could vary for each model. In practice, the storage location of SMCs is 
determined based on its characteristics, such as material similarity, weights, or supply frequency. This paper 
aims at reducing picking distance with a practical storage location assignment method, considering the 
characteristics of SMCs. 
 There have been a number of studies on warehouse storage assignment (Rouwenhorst et al. 2000; De 

Koster et al. 2007; Roodbergen and Vis 2009; van Gils et al. 2018; Ansari and Jeffrey 2020). Rouwenhorst 
et al. (2000) classified the types of warehouses into production and distribution warehouses. They discussed 
the warehouse design problems at three different levels: strategic, tactical, and operational levels, where 
the storage location assignment problem is classified as the operational level design problem. De Koster et 
al. (2007) investigated a number of practical warehouse storage assignment methods, such as random 
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storage, closest open location storage, frequency-based storage, class-based storage, and family grouping. 
For the random storage rule, an item's storage location is randomly assigned with an equal probability for 
all locations. The closest open location storage is to allocate an item to the closest or the first empty location. 

Frequency-based storage or full-turnover-based storage determines the storage location based on the item's 
demand frequency, and more frequently requested item is located near the In/Out (I/O) points. Class-based 
storage, also referred to as ABC storage, is to classify items into three classes (A, B, or C) based on their 
request frequency and random storage is applied within the same class. Family grouping considers the 
relation between items and place the similar items close to each other. Roodbergen and Vis (2009) provided 
a survey on warehouse design and operational decision problems with a focus on automated storage and 

retrieval system (AS/RS). They discussed the studies on validating the performance of storage assignment 
rules with simulation and analytical analysis. Ansari and Jeffrey (2020) adopted a clustering method to 
improve the performance of multi-picking warehouses. They found that the number of clusters is highly 
correlated to the performance of picking operations. In this paper, we define a storage location assignment 
problem for the production warehouse that stores the SMCs for SMD assembly. Our proposed storage 
assignment method considers the unique characteristics of SMC picking where over a hundred of different 

parts are picked together to be supplied to the production line. We reflect the advantages of both class-
based and family grouping storage method by using the relevant data such as a production plan and a BOM. 
The performance of the proposed algorithm is validated by comparison with existing rules using simulation. 
 Genetic algorithm (GA) has been widely used to improve the operational efficiency in production and 
distribution environment since it was suggested by Holland (1992). Because the storage assignment 
problem is considered to be NP-hard, there have been a number of studies that propose GA-based heuristic 

algorithms. Bazzazi et al. (2009) applied a genetic algorithm to a storage space allocation problem in a 
container terminal to minimize the storage/retrieval times of containers. Bottani et al. (2012) explored a GA 
on allocating new item to improve the order picking operation in a class-based storage system. Ene and 
Ö ztürk (2012) suggested a GA-based storage location assignment, batching, and routing method focusing 
on the application to automotive industry. Pan et al. (2015) developed a genetic based heuristic method to 
solve storage assignment problem by considering picking line imbalance and replenishment of products. Li 

et al. (2016) investigated a dynamic storage assignment problem with a greedy GA considering a mutual 
affinity between products and an ABC storage. Guan and Li (2018) proposed a GA for scattered storage 
assignment problem in Kiva mobile fulfillment system, where pods are carried by automated guided vehicle 
to workstations. 
 There have been few studies on storage location assignment that have considered the production plan 
and the BOM. Xiao and Zheng (2010) developed a multi-stage heuristic for storage location assignment 

problem considering BOM information and production rates. However, the objective of their study was to 
minimize the number of visits to separated zones, whereas our study seeks to minimize total travel distance. 
The contribution of the paper is that we introduce a practical industrial problem of warehouse storage 
assignment, especially considering the characteristics of SMD manufacturing. Another contribution is that 
we propose a heuristic-based genetic algorithm to solve the storage assignment problem in a timely manner. 
We evaluate the performance of the proposed algorithm with the real-world scenario of SMC warehouse 

based on the empirical data. 
 The remainder of the paper is structured as follows. Section 2 describes the storage location assignment 
problem for SMCs and a mathematical formulation for the problem. Section 3 presents a solution approach, 
which is based on a genetic algorithm with a heuristic procedure. In Section 4, we conduct a series of 
experiments to analyze the performance of the proposed algorithm. Finally, Section 5 concludes this paper. 

2 PROBLEM DESCRIPTION  

 We consider a SMC warehouse that have multiple aisles and racks, which is based on a real-world 
environment (Figure 1). Each row of the rack may have multiple layers or floors. According to the 
production plan and the BOM information, a set of SMCs is prepared for each planned SMD model and 
supplied to the production line. We assume that each picker is assigned a list of the SMD models and 
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sequentially picks a set of SMCs for each model. We do not consider situations in which the pickers 
aggregate the quantities of SMCs commonly used in multiple SMD models and pick those kinds of SMCs 
together, because it will take more time after picking to classify and kit the appropriate combination of 

SMCs for each production line. The storage location assignment decision is made periodically or upon 
arrival of new SMC inventory from the upstream. 

 

Figure 1: Illustrative example of SMC warehouse layout. 

We aim to minimize the picking travel distance by optimizing storage location assignment. The actual 
picking distance can be affected by the visiting sequence of each storage location. Based on typical field 
operations, we assume that the pickers travel from the nearest aisle to the far one from the I/O point and 

visit appropriate aisles where the target SMCs are located. Depending on the distance from the I/O point, it 
is assumed that each aisle has a weight or penalty. Using this distance weight, we estimate the SMC picking 
distance for each SMD model as the sum of the weights of the aisles to be visited for picking, based on the 
storage location and the BOM information. The total picking distance is calculated by multiplying the 
estimated picking distance by the production frequency, where the production frequency can be specified 
through the production plan. The objective of our storage assignment problem is to minimize the total 

picking distance for a given production period. In each storage location, which is referred to as bin, only 
one type of SMC is assigned. Additional constraints such as capacity of racks and continuous placement of 
the same type of SMC are to be considered. 
 We define the SMC storage location assignment problem with an integer linear programming 
formulation. The notation and mathematical formulation are shown as follows. 
 Indices: 

  𝑚  Index of SMD models, 𝑚 = 1, 2, … , 𝑀, 
  𝑐  Index of SMC types, 𝑐 = 1, 2, … , 𝐶, 
  𝑎  Index of aisles, = 1, 2, … , 𝐴 , 
  𝑏  Index of bins, 𝑏 = 1, 2, … , 𝐵. 
  

Parameters: 
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  𝑓𝑚  Production frequency of model 𝑚, 
  𝑞𝑐  Storage quantity of SMC 𝑐 (Unit: Bin), 
  𝑤𝑎  Distance weight of aisle 𝑎, 

  𝜆𝑚𝑐  1 if SMC 𝑐 is used for SMD model 𝑚, 0 otherwise, 
  𝜃𝑎𝑏  1 if bin 𝑏 is located at aisle 𝑎, 0 otherwise. 
  

Decision Variables: 
  𝑥𝑐𝑏  1 if SMC 𝑐 is assigned at bin 𝑏, 0 otherwise, 
  𝑦𝑐𝑎  1 if SMC 𝑐 is assigned at aisle 𝑎, 0 otherwise, 

  𝑧𝑚𝑎 1 if SMD model 𝑚 is assigned at aisle 𝑎, 0 otherwise, 
  𝑠𝑐𝑏  1 if the storage location of SMC 𝑐 starts from bin 𝑏, 0 otherwise. 
  

Objective: 
 

 𝑚𝑖𝑛𝑖𝑚𝑖𝑧𝑒 ∑ 𝑓𝑚 ∑ 𝑤𝑎𝑧𝑚𝑎𝑎𝑚  (1) 

  
 Subject to: 

 

 ∑ 𝑥𝑐𝑏𝑏 = 𝑞𝑐   ∀𝑐 (2) 

 ∑ 𝑥𝑐𝑏𝑐 ≤ 1    ∀𝑏 (3) 

 ∑ 𝑥𝑐𝑏
𝑏+𝑞𝑐−1
𝑏 ≥ 𝑞𝑐𝑠𝑐𝑏  ∀𝑐, 𝑏 (4) 

 𝑥𝑐𝑏 − 𝑥𝑐,𝑏−1 ≤ 𝑠𝑐𝑏      ∀𝑐, 𝑏 > 1 (5) 

 𝑦𝑐𝑎 ≥ 𝜃𝑎𝑏𝑥𝑐𝑏     ∀𝑐, 𝑎, 𝑏 (6) 

 𝑧𝑚𝑎 ≥ 𝜆𝑚𝑐𝑦𝑐𝑎     ∀𝑚, 𝑐, 𝑎 (7) 

 𝑥𝑐𝑏 , 𝑦𝑐𝑎 , 𝑧𝑚𝑎 , 𝑠𝑐𝑏 ∈ {0, 1} ∀𝑚, 𝑐, 𝑎, 𝑏 (8) 

 
 The objective function (1) minimizes the sum of the picking distances for the planned SMD models. 
The production frequency of each model (𝑓𝑚) is obtained from the production plan. Constraint (2) is used 
to ensure that every SMC is stored in the warehouse. Depending on the inventory level of each SMC, the 
required number of bins could be more than one. We assume that the number of required bins for each SMC 
is known and the total number of bins in the warehouse is large enough to store all SMCs. Constraint (3) 
ensures that no more than one type of SMC is assigned to each bin. Constraint (4) and (5) let the same type 

of SMC to be stored sequentially in the adjacent bins. Constraint (6) defines the relationship between 𝑥𝑐𝑏 
and 𝑦𝑐𝑎. Constraint (7) is used as a bound the picking distance of each model using the BOM information. 
Constraint (8) represents the conditions on the decision variables. 

3 SOLUTION APPROACH 

 The storage location assignment problem is generally considered to be NP-hard (Wang et al. 2020). 
Using a commercial optimization solver, we could find the optimal solution for small-size instances. 

However, the model is intractable for industry-size instances where the number of SMC types and the 
number of bins generally range from hundreds to thousands. In order to be used in the actual manufacturing 
sites, the assignment decision should be made within a few seconds. Therefore, we develop a heuristic 
algorithm to solve the problem with large-size instances in a timely manner. 
 GA has been employed for many years to deal with the complex optimization problems. In order to 
apply GA to the SMC storage assignment problem, we convert the problem of assigning SMCs to each bin 

into the problem of deciding the allocation sequence of each type of the SMC. Once the allocation sequence 
is determined, the SMCs are placed in the order close to the I/O point according to the sequence. The bins 
are assumed to be indexed in the order close to the I/O point. The SMCs are stored from the smallest indexed 
bin to the largest one in the determined order. When sequentially arranged, the number of required bins for 
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an SMC type can be larger than the remaining bin of the rack and the same type of SMC may be stored in 
different racks. To prevent such as case, if the required number of bins is greater than the remaining space 
of current rack, those types of SMCs are placed on the next rack and the SMC in the next order is placed in 

the remaining space. 
 The overall flowchart of the proposed algorithm is shown in Figure 2. 

 

Figure 2: Flowchart of the proposed algorithm. 

3.1 Chromosome Representation 

 The chromosome represents the allocation sequence of the SMC type. The length of the chromosome 
is the number of SMC types. The example of the chromosome with 10 SMC types is shown in Figure 3.  

 

Figure 3: Example of chromosome design. 

3.2 Population Initialization 

 The performance of GA is known to be affected by the quality of the initial population. Therefore, we 
generate an initial population, which is expected to be a set of good feasible solutions, based on the input 
data characteristics. We consider mainly three types of characteristics: production frequency of SMD 
models (model frequency), usage frequency of SMC types (material frequency), and storage quantity of 

SMD types (material quantity). Model frequency is calculated by the sum of the daily production frequency 
of each model for a given production period. Material frequency is obtained by adding the frequency of 
usage of each SMC using the BOM information of the planned SMD models. Material quantity is the sum 
of the storage quantity of each SMC. We create the following four types of heuristics that combine these 
characteristics to produce chromosomes expected to be superior. 

• Heuristic 1: Sorted by material quantity 

• Heuristic 2: Sorted by material frequency and material quantity 
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• Heuristic 3: Sorted by model frequency, material frequency, and material quantity 

• Heuristic 4: Sorted by model frequency, material frequency, and material quantity considering the 

storage capacity of aisles 

 Heuristic 1 simply sorts the SMC types by their quantity. Heuristic 2 first sorts the SMC types by the 

material frequency and then by material quantity for those with the same material frequency. Heuristic 3 
lists the SMC types of the SMD model with the most frequency and sorts the SMC types by the material 
frequency and quantity within the same model. The procedure is repeated for all models in order of 
frequency. Heuristic 4 is the same as Heuristic 3, except that it considers the storage capacity of aisles. The 
storage capacity of each aisle is calculated by the sum of the number of bins located at the aisle. As 
mentioned above, when placing the SMC types according to the sorted allocation sequence, the same SMC 

type can be separated and stored in different racks with different aisles depending on the required storage 
quantity and the available storage space. Those cases are not preferable in practice and therefore we swap 
the location of such SMC types to the location of the available SMC types in the next order. Each heuristic 
generates 1 chromosome, thereby resulting 4 chromosomes in the heuristic procedure. The rest of the 
population is generated by random permutation. 

3.3 Crossover and Mutation  

 In order for the offspring to inherit the characteristics of superior parents, we use two types of well-
known crossover methods: the single-point crossover and the order crossover by Davis (1985). By 
considering the nature of the sequence in which the duplicated SMC index is not allowed, we slightly 
modify the single-point crossover such that the left part of the designated crossover point is inherited by 

parents and the right part is randomly generated. For the order crossover, a segment of chromosome is 
inherited by one parent, and the other parts are sequentially filled with the other parent’s chromosome 
without duplication. 
To add diversity to the population and explore the search space, we mutate some of the offspring by 
selecting two of its genes randomly and swapping them. 

3.4 Selection and Elitism 

 We evaluate each chromosome in the population and select some of the superior chromosomes as 
parents. The fitness function is the same as the objective function of the mathematical model. We first 
convert the solutions, which are in the form of chromosome, to the allocation results considering the 
capacity of the racks and the practical layout conditions such as avoiding the same SMC type being stored 
in different racks. We then calculate the fitness function of the allocation results. Additionally, we apply 

elitism strategy by preserving a set of superior chromosomes as the elite population and maintaining them 
in the next generation to further improve the efficiency of GA. 

4 EXPERIMENTS 

 We conduct two types of experiments. First, we investigate whether the proposed approach with 

heuristic initialization has better performance than the general GA with random initialization. Second, we 
employ simulation experiments to validate the effectiveness of the proposed algorithm in terms of reducing 
picking distance. We compare the simulation results from the proposed algorithm and those from general 
storage assignment methods such as the frequency-based sorting policies that have been practically used in 
manufacturing fields.  
 Note that the numerical examples presented in this chapter are based on actual data collected from a 

SMD manufacturing process of a global leading electronics manufacturer in Korea. The configuration of 
the SMC warehouse layout is shown in Figure 1. As shown in the figure, there are 30 racks in the warehouse, 
each of which has identical 144 bins. Total number of bins is 4,320. We consider 804 different types of 
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SMCs for 55 models using an SMD production plan data for a month. The frequency of usage for each 
material is calculated based on the production plan and the BOM information of the models. 

4.1 Computational Experiment 

 A major characteristic of the proposed algorithm is that the insights accumulated from the experience 
of the manufacturing site are reflected in the initialization phase. To demonstrate the superiority of the 
proposed algorithm, we compare the GA results of random initialization with those of the heuristic 
initialization. The experiments are preformed based on the three different cases in terms of the number of 
materials: small, medium, and large (actual) cases. For the small and medium cases, we have selected 50 

and 100 materials respectively, in order of high frequency of use. In the large case problem, all materials 
(804 materials) are assigned. 
 The hyper parameters of both proposed and general GAs are set as follows; the maximum number of 
generations is 5,000, the population size is 100, the proportion of elite population is 0.1, and the number of 
parents selected in each generation is 4. The crossover rate is 0.7 and crossover intensity is 0.2. As a 
crossover method, the single-point crossover and Davis’ order crossover methods are applied at the rate of 

0.5 and 0.5 respectively, with a parameter of 0.3 for the one-point crossover and a parameter of 0.4 for the 
Davis’ order crossover. The random swap mutation is implemented with a rate of 0.05. The termination 
condition is satisfied when the number of generations have reached to the maximum number of generation. 
Each case is replicated 10 times to compare the result from each algorithm. The algorithms are implemented 
in Python with Windows 10, Intel(R) Xeon(R) W-2123 CPU @ 3.60GHz, and 48GB RAM. 
 Figure 4 shows the boxplot of the fitness values for each case. In Figure 4 (a), there is no significant 

difference between the results of the two algorithms for the small case. For the medium size case shown in 
Figure 4 (b), we can see that the proposed algorithm gives slightly improved results than the general GA, 
although the difference in results is not as noticeable as that in the small case. It implies that the general 
GA can be considered as a suitable solution approach for the storage assignment problem with small and 
medium-size instances. However, unlike the two preceding cases, the difference between the results of the 
proposed algorithm and the general GA is significant for the large size case as shown in Figure 4 (c). Despite 

the curse of dimensionality, the proposed algorithm gives much better results than the general GA, whereas 
the performance of the general GA deteriorates dramatically. This demonstrates that the proposed heuristic 
initialization works efficiently to solve the industry-sized storage assignment problems. 

 

Figure 4: Boxplot of fitness values. 
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In terms of computational time, it takes 179 seconds in average for the small cases, 308 seconds for the 
medium cases, and 1,966 seconds for the large cases. Since we set the termination condition as the 
maximum number of generation in GA, the computational time of the algorithm is approximately linear to 

the size of the instances. We also analyzed the convergence of the proposed algorithm. For the small-sized 
instances, it takes an average of 36 seconds and 1,012 generations for convergence. For the medium-sized 
instances, the algorithm proceeds on average 1,455 generations to converge and takes 89 seconds. For the 
practical-sized instances, it takes an average of 507 seconds with 1,283 generations to converge. Although 
there were some deviations in convergence time due to the probabilistic behavior of the algorithm, the trend 
of the convergence time is also proportional to the size of the instance. Since the material allocation decision 

in the warehouse is typically occurring on a weekly or monthly basis, the computation time of our algorithm 
is considered to be suitable for use in the field operation. 

4.2 Simulation Experiment 

 To validate the result of the proposed algorithm, we developed a simulation model using AutoMod 
based on the real-world layout and working time data. AutoMod is one of the most popular commercial 

simulation softwares widely used in production and logistics fields.  Figure 5 shows the layout of the 
warehouse in AutoMod simulation that we made by reflecting the characteristics and behaviors of the real-
world warehouse site.  

 

Figure 5: Layout of the warehouse in AutoMod. 

The results of the material location assignment from the following three benchmark policies are compared 
with those from the proposed assignment method.   

• Benchmark 1 (BM1): Simple-sorting policy (sorting by material code) 

• Benchmark 2 (BM2): Frequency of material (sorting by material frequency) 

• Benchmark 3 (BM3): Frequency of model (sorting by model and material frequencies) 

 The simulation experiments are conducted with the actual production data acquired for 20 working 
days in February 2020. Additional operation data such as the picking time, the worker’s walking speed, and 
the congestion time were measured and the average values are applied deterministically to the simulation 
model. The performance measure of the simulation experiment is the daily picking distance, which is 
directly related to the efficiency of the SMC storage placement.  
 Figure 6 describes the result comparison in the daily picking distance from the simulation experiments. 

As shown in the figure, the daily picking distances with the proposed storage assignment outperforms those 
with the benchmark assignments. For all dates, the picking distance is in the order of BM1 > BM2 > BM3 
> proposed algorithm. It is obvious that BM1 gives the worst results because it does not take into account 
the material priorities. The only advantage of this policy is that it provides convenience in storage 
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management. Both BM2 and BM3 give the better results than BM1 as considering the frequency-based 
material priorities. 

 

Figure 6: Simulation result of daily picking distance in Feb 2020. 

 The proposed storage assignment can reduce the picking distance by 32%, 20%, and 10% compared to 
BM1, BM2, and BM3, respectively. It is especially noticeable that the proposed approach further improves 
BM3, which has been considered to be one of the most reasonable and logical assignment approaches for 
the SMC storage assignment in practice. The results give significant implications from a management 
perspective in that the improvement in the picking distance leads to the reduction of the workload of the 
logistics resources such as workers or retrieval robots. 

5 CONCLUSION 

 In SMD manufacturing, over a hundred of different types of SMCs are required to be provided to each 
production line. This study introduces the storage location assignment problem in SMC warehouse and 
proposes a mathematical programming model that minimizes the sum of the SMC picking distance 
considering the production plan and the BOMs. To efficiently solve the problem, we apply GA by 

reformulating the storage location assignment problem as a storage location ordering problem. We generate 
the initial population based on the properties of SMCs so that the GA can quickly converge to the best 
chromosome. Computational experiments show that the proposed heuristic initialization works efficiently 
to deal with the industry-sized problems, and it leads to improvements in picking distance compared to the 
existing methods. The contribution of our study is twofold. First, we introduce the problem of determining 
the location of material storage in SMD manufacturing. Second, we present heuristics to create initial 

population by utilizing practical problem characteristics. Our proposed method of storage assignment can 
practically improve not only the traditional warehouse operation where the workers pull trolleys to pick 
materials, but also the operation of fully automated warehouse system. As future studies of this paper, we 
would consider the material put-away process at the warehouse in the storage decision model. We would 
further improve the efficiency of the warehouse operation by redesigning the layout considering the put-
away and picking movement of the materials. 
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