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Barcelona, 08028, SPAIN

ABSTRACT

Due to their flexibility, unmanned aerial vehicles (UAVs) are gaining importance in transportation and
surveillance activities. The usage of UAV swarms raises the need for coordination and optimization of
task assignments. Some of these operations can be modeled as team orienteering problems (TOP). This
paper analyzes an open TOP in which a given fleet of homogeneous UAVs, initially located at a single
depot, need to be coordinated in order to maximize the collection of rewards from visiting nodes without
exceeding a maximum operation time. As in most real-life applications, both traveling times and servicing
times at each node are modeled as random variables. To solve this NP-hard and stochastic optimization
problem, a simheuristic based on the combination of a genetic algorithm with Monte Carlo simulation is
proposed.

1 INTRODUCTION

Nowadays, unmanned aerial vehicles (UAVs) offer potentials for many civilian and military applications
(Merkert and Bushell 2020). Technological advances in batteries and other components have enabled
a growth in the use of drones in commercial applications (Bartsch et al. 2016). Thus, applications
in transportation and surveillance activities have been implemented, also promoted by a significant cost
reduction and a performance improvement. Limited by size and capability, one single UAV can hardly
conduct complex and persistent tasks (Martinez 2010). Hence, it is common to employ UAV swarms,
which are comprised of a set of autonomous drones, each of them with their own sensing capabilities, but
also capable of reacting to a dynamic environment as well as to the actions of other drones. Therefore,
a collective behavior emerges from the sum of the behaviors of individual drones. When equipped with
intelligent algorithms, these autonomous systems have great potential for application in many areas (Chung
et al. 2018).

To achieve cooperation among different UAVs, a proper assignment of tasks to each UAV is a necessary
step in order to achieve the planned goals and maximize the fleet’s overall performance. The integrated
UAV task assignment and routing problem can be formulated as a team orienteering problem or TOP
(Panadero et al. 2020), which can be seen as a special variant of the well-known vehicle routing problem
(Faulin et al. 2008; Juan et al. 2009). In the TOP, the goal is to select customer nodes to be visited by a
limited fleet of vehicles, which are initially located at a depot. At the same time, the order in which these
nodes have to be visited has to be defined. The first time a node is visited, a reward is collected. Thus, the
typical goal in a TOP is to maximize the total reward gathered taking into account that each vehicle can
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only operate for a maximum amount of time – i.e., there is a limitation on the maximum time or distance
that any route can cover. Our research considers an open TOP, where UAVs can finish their route at any
customer (i.e., the maximum time per route does not include the time required to return to the depot from
the last node visited). Being an open version, this maximum operation time refers just to the time in which
each UAV visits the last customer in its route. To make the problem more realistic, we model traveling
times between nodes and servicing times at each node as random variables. A visual representation of this
TOP is shown in Figure 1.

Figure 1: A visual representation of the open TOP with stochastic traveling and servicing times.

Introducing random traveling and servicing times in the problem formulation makes the problem more
challenging for classical optimization methods. Therefore, we propose a simheuristic algorithm (Chica et al.
2020) to solve this stochastic and NP-hard optimization problem. The proposed simheuristic combines a
genetic algorithm (GA) with Monte Carlo simulation (MCS). GAs are computer procedures inspired by
the principles of natural selection and genetics to iteratively evolve a population of solutions, which tend
to improve at each new generation. A recent review on GA applications can be found in Lee (2018).
Thus, the main contribution of this paper is the proposal of a GA-based simheuristic algorithm that can
take into account all the aforementioned deterministic and stochastic factors. Simheuristics have been
successfully employed to solve stochastic optimization problems in different areas, such as transportation
(Reyes-Rubiano et al. 2019), aircraft turnaround operations (Tomasella et al. 2019; Gök et al. 2020), waste
collection management (Gruler et al. 2017; Yazdani et al. 2021), facility location (Pagès-Bernaus et al.
2019), disaster management (Yazdani et al. 2020), healthcare operations (Dehghanimohammadabadi and
Kabadayi 2020), scheduling (Hatami et al. 2018), or computational finance (Panadero et al. 2018).

The remaining sections of the paper are structured as follows: Section 2 briefly reviews related articles
on UAV task assignment and routing problems. Section 3 offers a formal description of the stochastic open
TOP considered here. Section 4 provides details on the proposed GA-based simheuristic algorithm and its
structure. Section 5 carries out a series of computational experiments to illustrate the performance of our
simheuristic algorithm, while the results of these experiments are discussed in Section 6. Finally, the main
findings and future research lines are given in Section 7.

2 RELATED WORK ON UAV TASK ASSIGNMENT AND ROUTING PROBLEMS

Task allocation of UAV fleets has been an active research area during the last decade, and the popular
solutions for this problem can be classified according to the type of algorithms employed as exact methods
and approximate ones (e.g., heuristic algorithms). Exact methods guarantee to find the globally optimal
solution to most small-scale optimization problems, but they are computationally intensive if the problem
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is NP-hard. Among the works using exact methods, Schumacher et al. (2004) analyze the problem of
autonomous task allocation and trajectory planning for a fleet of UAVs. They express the entire problem as
a mixed-integer linear program. Other exact optimization methods, such as branch-and-bound, branch-and-
cut, and dynamic programming, have been used to solve small-sized instances of this problem (Keshtkaran
et al. 2016). However, this problem is NP-hard and, hence, heuristic algorithms are employed to solve
medium-to-large instances of the problem. Rasmussen and Kingston (2008) outline a framework that
supports generic task assignment in an efficient tree search. By encoding the assignment into a tree
structure, the method is able to find a feasible solution quickly. The remaining computational time can be
employed to improve the initial solution via branch-and-bound methods.

Regarding the use of metaheuristics, Shima and Schumacher (2009) proposed a GA to solve a generic
UAV task assignment problem where the targets are not necessarily static – i.e., they can be in motion. Also,
the fleet of UAVs can be heterogeneous. Again, a GA is proposed for efficiently searching the space of
feasible solutions. Fu et al. (2012) proposed another GA to set the trajectory of UAVs in environments with
unknown obstacles. The route planning model is based on a 2D digital map, and an adaptive evolutionary
planner is adopted to generate routes online and avoid being detected by ground surveillance radar sites.
Likewise, Ramirez-Atencia et al. (2017) formulate a multi-objective GA for planning missions involving
a fleet of UAVs and a set of ground control stations, with humans controlling the vehicles. The algorithm
has been tested with different sets of constraints, such as duration, fuel consumption, and distance. Finally,
Ye et al. (2020) propose a modified genetic GA, with a multi-type gene chromosome coding strategy, to
solve a cooperative multi-task assignment problem. Their results demonstrate that the modified GA has
better optimization performance compared with an ant colony optimization algorithm and a particle search
optimization method.

Several papers discuss task assignment under uncertainty scenarios. In Alighanbari and How (2008),
the authors presented a new formulation for the UAV task assignment problem for uncertain and dynamic
environments. They propose an alternative strategy that combines robust planning with the techniques
developed to eliminate churning. The resulting task assignment uses both proactive and reactive techniques
to handle the uncertainty in the information. Their method improves worst-case behavior of the plans
while, at the same time, it ensures that a limited churning behavior is exhibited by the vehicles. Choi et al.
(2009) addressed single and multiple assignment problems by presenting two decentralized algorithms.
Bertuccelli et al. (2009) extended one of these algorithms to solve the heterogeneous UAV real-time task
assignment problem under uncertainty. When executing multiple missions, UAVs form teams and work
cooperatively. In this context, the multi-UAV cooperative control and decision mechanisms, including task
assignment, path planning, and tactical decision making, have received a great deal of attention (Chen
et al. 2018). Methods like linear programming, dynamic programming, and Markov decision processes
have been employed in the multi-UAV task assignment literature (Chen et al. 2014). Since there are cases
in which a centralized task assignment is not practical – due to communication limits, robustness issues,
and scalability –, the decentralized multi-UAV task assignment problem is studied in Kwak et al. (2013).
These authors investigated the optimization of a decentralized task assignment for heterogeneous UAVs. In
their work, each UAV selects its targets by employing the consensus-based bundle algorithm. They used a
scoring matrix to reflect heterogeneity among the UAVs and targets with different capabilities. In Edison
and Shima (2011), a cooperative multiple task assignment problem was built up for heterogeneous UAVs
performing classification, attack, and verification tasks. Zhu et al. (2018) focused on the reconnaissance
task allocation problem for UAVs, where ground targets with different features and sizes where considered.
More recent publications related to stochastic TOPs are those provided by Panadero et al. (2020) and
Bayliss et al. (2020). The former introduces random processing times into the analysis of TOPs, while the
latter proposes a learnheuristic algorithm that considers the UAVs’ physical constraints. However, none of
the above analyzed the integrated task assignment and routing problem in an open TOP, which is the main
focus of this work.
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3 FORMAL PROBLEM DESCRIPTION

This section describes a formal model of the optimization problem being analyzed. Let us consider a
complete graph G = (V,A), where V = {0,1, . . . ,n} is the set of nodes, and A is the set of edges connecting
them. Node 0 corresponds to the depot, while the remaining nodes are customers offering a positive reward,
ri > 0, ∀i ∈ V \{0} (r0 = 0). The reward is collected only the first time a node is visited, so there is no
incentive to visit any node more than once. The traveling time between any two nodes, i, j ∈V (with i ̸= j)
is modeled as a random variable Ti j > 0, and the service time at each node i ∈ V \{0} is also a random
variable Si > 0. The maximum time for a UAV to complete its open route is a user-defined parameter,
tmax > 0. The set of UAVs is denoted by K. Thus, the maximum number of routes that can be included in
any solution is given by |K|. Let yik be a binary variable that takes the value 1 if node i ∈V is visited by
UAV k ∈ K, and 0 otherwise. Similarly, xi jk is another binary variable that takes the value 1 if the edge
(i, j) is traversed by UAV k ∈ K, and 0 otherwise. Under these conditions, the following programming
model can be formulated, where α ∈ (0,1) is a user-defined value:

Maximize E

[
∑
i∈V

∑
k∈K

riyik

]
(1)

Subject to:

∑
j∈V

x jik = yik, ∀i ∈V, ∀k ∈ K (2)

∑
k∈K

y0k ≤ |K| (3)

∑
k∈K

yik ≤ 1, ∀i ∈V \{0} (4)

∑
(i, j)∈δ+(S)

xi jk ≥ ybk, ∀S ⊆V \{0},∀b ∈ S,∀k ∈ K (5)

P

(
∑

(i, j)∈E
Ti jxi jk +Siyik ≤ tmax

)
≥ α, ∀k ∈ K (6)

yik ∈ {0,1} ∀i ∈V,∀k ∈ K (7)

xi jk ∈ {0,1} ∀(i, j) ∈ E,∀k ∈ K (8)

In the previous formulation, Equation (1) refers to the maximization of the expected reward collected by
the fleet of UAVs. Constraints (2) state that, if we visit node i, we need to go from any vertex j to vertex i, while
Constraints (4) guarantees that we visit this node just once and with only one vehicle. Constraint (3) imposes
that the number of used UAVs does not exceed the number of available vehicles. Constraints (5) guarantee
that our routes will be connected by getting each possible subset of our vertices set (S ⊆V ) and connecting
both with an edge connecting i /∈ S with j ∈ S, thus generating the set δ+(S) = {(i, j) ∈ E | i /∈ S, j ∈ S}.
Constraints (6) ensure that the route of the vehicle k is completed before the deadline (tmax) with some
probability α . Finally, Constraints (7) and (8) define yik and xi jk as binary variables.
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4 A GENETIC ALGORITHM SIMHEURISTIC

As mentioned before, in order to solve the stochastic and open version of the TOP described in this paper, we
propose a novel approach combining a GA with MCS. In the stochastic version of the problem, random times
could make a planned route to exceed its maximum allowed time (driving range). This situation is known
as a route failure, i.e., the planned route cannot be satisfactorily completed in the given time. This situation
requires to compute not only the expected reward, but also the reliability of a proposed solution – i.e.,
the probability that a planned solution can be implemented in practice without route failures. Simheuristic
algorithms constitute an effective simulation-optimization approach to cope with these problems, since they
do not only allow for estimating the expected reward, but also to analyze the reliability levels associated
with a proposed routing plan. In this paper, the optimization component of our simheuristic is a GA. GAs
are an evolution-inspired metaphor, which work on an evolving population of individuals. Each individual
represents a solution (phenotype), and it is coded by a chromosome (genotype) composed of a set of genes.
Also, each individual has a fitness value that measures its quality. The high-quality individuals (parents) are
selected to be in a mating pool. During the mating process, recombination (crossover) operators are applied
to each pair of individuals. Also, small changes (mutations) are also applied to the new children (offspring)
solutions. Thus, by combining two parents it is possible to generate one or two children, which are expected
to inherit some of the good characteristics that made the parents to be good solutions. Each new offspring
will replace the low-quality individuals from propagating sub-optimal genes. By iterating selection and
mating, there is a high probability of keeping the individuals’ good properties while improving them at
each generation. The generation of new populations and children is iterated until a stopping criterion is
met.

Roughly speaking, our simheuristic keeps the best solution in terms of expected reward, which is
estimated by the simulation component. Given a promising solution for the deterministic version of the
problem, a MCS is executed in order to compute the average reward obtained by the proposed solution
when it is employed in a scenario under uncertainty. In addition, its associated reliability is also estimated
using the same MCS process. One key and novel aspect of our GA implementation is the chromosome
representation and decoding process. As Figure 2 shows, each solution is represented by one chromosome
that contains a permutation of all the customers. Since the chromosome contains just one type of genes
(customers), it is a simple but effective representation to carry out crossover and mutation operations.
During the decoding process, the algorithm extracts all the routes contained in the chromosome. This is
accomplished by taking into account the maximum time allowed per route. In this process, the algorithm
associates both a reward and a travel time to each route. Afterwards, the extracted routes are sorted from
higher to lower reward, and then by their associated time. Finally, the algorithm selects as many routes
from the sorted list as possible, taking into account the restricted number of vehicles in the fleet. Using
this decoding process, the algorithm explores all the possible routes and selects the elite routes in terms
of reward.

5 COMPUTATIONAL EXPERIMENTS

The proposed simheuristic was implemented using Python 3.7 and executed in a standard PC with 8 GB of
RAM and an Intel Core i7 processor at 2.3 GHz. In order to test our approach, we have extended the classical
benchmarks for the deterministic version of the TOP (Chao et al. 1996). This extension consists in assuming
that both the traveling and servicing times are random variables that follow some probability distributions.
In real-life applications, historical data should be fitted by the appropriate probability distribution. However,
for testing purposes, we have assumed that traveling times follow log-normal probability distributions, while
servicing times have been modeled using Weibull probability distributions. In the case of traveling times,
we have assumed that E[Ti j] = ti j, where ti j refers to the deterministic traveling time required to move from
node i to node j. Also, following Panadero et al. (2020), we have considered that Var[Ti j] = c · ti j, where
c is an experimental parameter employed to define the level of variability. Notice that when c = 0, we are
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Figure 2: Chromosome representation and decoding.

defining an ‘ideal’ deterministic scenario without variability. In order to consider different scenarios, we
have used three levels of variability: low (L, with c = 0.15), medium (M, with c = 0.25), and large (L,
with c = 0.50). Regarding servicing times, Si, we have considered that E[Si] = 0.5, while Var[Si] = 0.04
– i.e., the shape and scale parameters of this Weibull are 2.69 and 0.56, respectively. The selection of the
log-normal and Weibull probability distributions is not casual, since these are highly flexible distributions
that are frequently employed to model non-negative continuous variables such as times.

The algorithm was executed five times with different seeds, selecting the best solution of all executions.
For each run, we considered a total population of 400 individuals, with a maximum of 2,000 generations
(iterations) or until a maximum time of 100 seconds was reached. Figure 3 depicts an example of convergence
analysis for instance p1.2.r, where the algorithm reaches the best found solution after nearly 900 iterations.
As a selection method, the algorithm uses a ternary tournament selection with replacement. Both the
probability rate of the crossover and the mutation were set to 0.5.

Table 1 displays the results for some selected instances with different characteristics, but just considering
traveling times as random variables (i.e., no servicing times are considered in this first experiment). The
first column of the table identifies the instance, while the next column reports our best deterministic (OBD)
solution found. Each instance is characterized by the nomenclature px.y.z, where: x denotes the set – each
set depicts a concrete scenario with a specific number of nodes and their locations, y is the number of
UAVs (which varies between 2 and 4 depending on the instance), and z represents the maximum driving
range. We have divided the remaining columns into two different parts. In the first part, we evaluate
OBD (both in terms of rewards and reliability) under a stochastic scenario and using different levels of
variability. Columns OBD-x and RelOBD−x, with x ∈ {L,M,H}, show the expected rewards collected and
the associated reliability – i.e., the percentage of runs that the OBD solution can be completed without
experiencing any route failure.
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To compute these columns, we have executed the GA disabling the simulation part. After that, we have
employed the full simheuristic (including the simulation module) to obtain our best stochastic solutions
OBS. During the simulation process, it has been considered that whenever a route exceeds the maximum
time threshold, the reward gathered in that route accounts to zero. Similarly, in the second part of Table 1,
columns OBS− x and RelOBS−x show the expected reward obtained by OBS. Figure 4a summarizes the
average gap of the different stochastic solutions with respect to the OBD for the different variance levels.
Figure 4b outlines the average reliability of the stochastic solutions. Similarly, Table 2 shows the results
for the same set of instances, when both traveling and servicing times are considered as random variables.
Figures 4c and 4d show, respectively, the average gaps of the stochastic solutions with respect to the OBD
and the reliability level.

Table 1: Computational results considering stochastic travel times.
Deterministic in Stochastic Scenario Stochastic Scenario

Low Variance Medium Variance High Variance Low Variance Medium Variance High Variance
c = 0.15 c = 0.25 c = 0.50 c = 0.15 c = 0.25 c = 0.50

Instance OBD OBD-L RelOBD−L OBD-M RelOBD−M OBD-H RelOBD−H OBS-L RelOBS−L OBS-M RelOBS−L OBS-H RelOBS−H
p1.2.p 270 194.85 0.51 189.46 0.49 180.35 0.44 242.13 0.81 220.73 0.68 209.16 0.61
p1.2.q 280 223.72 0.56 216.48 0.53 205.44 0.49 263.27 0.95 253.04 0.88 251.03 0.93
p1.2.r 285 274.15 0.93 261.44 0.84 239.24 0.71 273.31 0.92 275.6 0.97 264.27 0.89
p1.3.p 255 229.28 0.72 221.55 0.65 208.75 0.54 244.61 0.87 233.31 0.75 215.84 0.6
p1.3.q 265 183.11 0.3 176.79 0.28 166.56 0.23 226.37 0.83 217.77 0.73 206.95 0.62
p1.4.p 240 220.7 0.72 209.46 0.58 193.12 0.42 229.36 0.9 222.85 0.8 209.48 0.62
p2.2.h 365 242.01 0.41 233.99 0.39 224.62 0.36 300.47 0.87 301.34 0.98 289.65 0.9
p2.2.i 410 291.03 0.48 276.74 0.44 263.71 0.4 333.32 0.72 310.72 0.63 272.61 0.42
p2.2.j 430 316.53 0.55 301.24 0.49 283.13 0.43 337.47 0.62 317.24 0.54 293.43 0.47
p2.3.k 425 259.52 0.24 254.47 0.22 249.88 0.21 359.1 0.74 339.87 0.62 305.77 0.42
p2.4.h 230 184.78 0.44 174.87 0.35 163.91 0.27 223.69 0.92 218.97 0.84 208.94 0.69
p2.4.i 260 205.83 0.35 198.91 0.32 188.56 0.26 237.67 0.62 228.97 0.52 213.61 0.39
p3.2.r 800 776.11 0.93 749.87 0.86 697.63 0.74 776.84 0.93 749.4 0.86 697.21 0.74
p3.2.s 800 604.51 0.54 572.49 0.49 532.46 0.43 795.23 0.99 780.61 0.95 751.23 0.86
p3.3.r 800 561.23 0.43 548.61 0.39 532.99 0.36 738 0.99 737.17 0.99 723.93 0.93
p3.3.s 800 673.58 0.55 665.69 0.53 643.91 0.49 747.68 0.82 729.8 0.75 694.47 0.64
p3.3.t 800 786.84 0.96 768.23 0.89 731.14 0.76 798.81 1 794.07 0.98 777.83 0.9
p3.4.r 770 613.77 0.35 607.57 0.33 600.38 0.32 711.03 0.65 705.23 0.62 697.13 0.59
p3.4.s 770 738.52 0.82 721.29 0.74 687.15 0.6 765.5 0.98 760.35 0.96 737.5 0.86
p3.4.t 800 758.27 0.84 734.48 0.74 695.93 0.6 788.95 0.96 773.54 0.91 756.46 0.84

Averages: 502.75 416.917 0.5815 404.1815 0.5275 384.443 0.453 469.6405 0.8545 458.529 0.798 438.825 0.696

Table 2: Computational results considering stochastic times for both travel and service.
Deterministic in Stochastic Scenario Stochastic Scenario

Low Variance Medium Variance High Variance Low Variance Medium Variance High Variance
c = 0.15 c = 0.25 c = 0.50 c = 0.15 c = 0.25 c = 0.50

Instance OBD OBD-L RelOBD−L OBD-M RelOBD−M OBD-H RelOBD−H OBS-L RelOBS−L OBS-M RelOBS−M OBS-H RelOBS−H
p1.2.p 245 156.06 0.41 151.83 0.39 146.84 0.37 203.25 0.73 185.31 0.61 181.51 0.61
p1.2.q 250 199.28 0.64 189.62 0.58 177.75 0.51 231.31 0.89 218.4 0.79 204.42 0.69
p1.2.r 260 160.42 0.38 156.33 0.36 151.16 0.34 234.36 0.95 229.22 0.91 214.95 0.8
p1.3.p 230 191.24 0.58 181.23 0.49 169.18 0.4 202.3 0.7 196.91 0.64 187.17 0.55
p1.3.q 225 177.38 0.49 168.09 0.41 157.52 0.34 193.67 0.64 195.56 0.69 184.86 0.58
p1.4.p 215 142.75 0.18 139.19 0.17 133.94 0.14 160.93 0.34 156.45 0.3 149.06 0.25
p2.2.h 290 198.34 0.46 190.72 0.42 183.41 0.4 252.42 0.95 245.41 0.9 188.55 0.42
p2.2.i 330 206.16 0.36 200.54 0.35 195 0.33 265.18 0.68 253.57 0.62 238.95 0.55
p2.2.j 335 216.45 0.41 210.25 0.39 204.11 0.37 249.21 0.61 225.26 0.47 207.04 0.39
p2.3.k 355 221.35 0.24 216.84 0.23 212.02 0.21 249.3 0.48 217.09 0.23 213.01 0.22
p2.4.h 230 163.3 0.23 158.38 0.21 151.96 0.18 175.2 0.3 170 0.27 163 0.23
p2.4.i 230 175.83 0.33 168.56 0.28 160.19 0.23 209.45 0.68 193.42 0.53 184.93 0.44
p3.2.r 760 680.39 0.81 645.46 0.73 595.17 0.62 714.83 0.92 688.95 0.86 634.76 0.76
p3.2.s 780 632.94 0.54 628 0.54 609.82 0.51 736.78 0.91 707.4 0.83 682.41 0.78
p3.3.r 700 529.46 0.38 510.73 0.35 485.4 0.3 630.23 0.79 610.28 0.71 578.78 0.6
p3.3.s 750 573.01 0.35 557.96 0.33 533.49 0.3 706.03 0.91 682.14 0.82 642.45 0.68
p3.3.t 790 526.44 0.29 508.76 0.27 486.36 0.23 665.34 0.65 629.64 0.55 584.22 0.44
p3.4.r 710 592.39 0.42 575.42 0.36 553.39 0.3 676.35 0.78 657.17 0.68 626.47 0.54
p3.4.s 730 586.09 0.51 563.34 0.43 531.61 0.34 686.4 0.91 673.6 0.83 647.32 0.7
p3.4.t 790 583.92 0.33 570.39 0.3 549.15 0.25 707.95 0.87 688.94 0.78 650.89 0.61

Averages: 460.25 345.66 0.417 334.582 0.3795 319.3735 0.3335 407.5245 0.7345 391.236 0.651 368.2375 0.542
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Figure 3: Analysis of convergence of the maximum and average fitness over generations for the instance
p1.2.r.

6 ANALYSIS OF THE RESULTS

As shown in Table 1, the solutions provided by our simheuristic, OBS-x, clearly outperform the deterministic
solutions, OBD-x, when these are considered in a scenario under uncertainty. Thus, for instance, in the
high-variance scenario we are able to increase the reward up to 218.77 units for one of the instances, with
an average improvement of 54.38 units. Apart from increasing the expected reward, the solutions generated
by the simheuristic approach also offer a lower variability than the ones provided by the deterministic
approach (Figure 4a). The interquartile range for OBD-x is located, in general, above 20 % of GAP and our
OBS-x is under 10 % in low- and medium-variance and between 10 % and 20 % in high-variance. The size
of the interquartile range is bigger in OBD-x, getting sizes over 20 points in low- and medium-variance and
around 10 points in high-variance, while OBS-x has sizes less than 10 points in all scenarios. OBS-x offers
a better reliability than OBD-x in all tested instances and variance scenarios (Figure 4b). Table 2 gives the
results when considering both stochastic traveling times and stochastic servicing times. As it can be seen
in Figure 4c, the gap between OBD-x and OBS-x increases with respect to the previous results, in which
only stochastic traveling times were considered. Notice also that the reliability of the solutions decreases
as we increment the variability level (Figure 4d). The results provided by OBD-x, when considered in a
deterministic (ideal) scenario, can be considered as upper bounds for our simheuristic. Likewise, the results
provided by OBD-x in a stochastic scenario constitute lower bounds for our approach. All in all, these
results reveal the importance of integrating simulation methods when dealing with stochastic optimization
problems.

7 CONCLUSIONS AND FUTURE WORK

In this article, we model an unmanned aerial vehicle task assignment and routing problem as an open
team orienteering problem with stochastic traveling and servicing times. In this version, we assume that
whenever a route exceeds its maximum operation time, all rewards collected are lost. The aforementioned
operation time does not take into account the return trip to the depot, since it is assumed this can always be
completed using a stand-by battery. In order to solve the problem, a novel simheuristic is proposed. This
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is based on a genetic algorithm which integrates a specifically designed chromosome representation and
decoding. The proposed representation schema allows us to accelerate the convergence of the algorithm
towards near-optimal solutions.

A series of intensive computational experiments contributes to validate our approach and shows how
routing plans that are near-optimal in a deterministic scenario can quickly become sub-optimal plans as
we introduce more uncertainty conditions in the system. In these experiments, we have modeled traveling
times as random variables following log-normal probability distributions, while servicing times have been
modeled using Weibull probability distributions.

As future research, we plan, on the one hand, to explore the effect on the reliability level when
considering different probability distributions in the nodes for the servicing times and, on the other hand,
to consider that some of the traveling or servicing times cannot be fitted by a probability distribution and,
hence, fuzzy techniques need to be combined with simulation and metaheuristics to deal with this general
case.
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BarcelonaTECH, at the Barcelona School of Building Construction (Catalonia, Spain). His areas of research include, but are
not limited to, methodological and applied statistics as well as methaheuristics to fields like public health, construction, civil
engineering, economy, logistics, and transport. Specifically he focuses on approaches based on survival analysis techniques,
longitudinal data analysis, and missing data analysis. Professor Serrat has been granted for visiting scholarships at Harvard
University and Hasselt University and visiting researcher stays at Open University of Catalonia, Trinity College Dublin,
Universidad Nacional de Colombia, and Universidad de La Sabana. His website address is http://cserrat.wordpress.com/ and
his email address is carles.serrat@upc.edu.

http://ajuanp.wordpress.com
mailto://ajuanp@uoc.edu
mailto://afreixes@euncet.es
mailto://pcopadom@uoc.edu
mailto://http://www.javierpanadero.com
mailto://jpanaderom@uoc.edu
mailto://jfg@uoc.edu
http://cserrat.wordpress.com/
mailto://carles.serrat@upc.edu

	INTRODUCTION
	RELATED WORK ON UAV TASK ASSIGNMENT AND ROUTING PROBLEMS
	FORMAL PROBLEM DESCRIPTION
	A GENETIC ALGORITHM SIMHEURISTIC
	COMPUTATIONAL EXPERIMENTS
	ANALYSIS OF THE RESULTS
	CONCLUSIONS AND FUTURE WORK

