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ABSTRACT

Gaining knowledge from a given data basis is a complex challenge. One of the frequently used methods
in the context of a supply chain (SC) is knowledge discovery in databases (KDD). For a purposeful and
successful knowledge discovery, valid and preprocessed input data are necessary. Besides preprocessing
collected observational data, simulation can be used to generate a data basis as an input for the knowledge
discovery process. The process of using a simulation model as a data generator is called data farming.
This paper investigates the link between data farming and data mining. We developed a Farming-for-
Mining-Framework, where we highlight requirements of knowledge discovery techniques and derive how
the simulation model for data generation can be configured accordingly, e.g., to meet the required data
accuracy. We suggest that this is a promising approach and is worth further research attention.

1 INTRODUCTION

Nowadays, an SC is a complex system that contains inherent and coherent effects. Due to this complexity,
supply chain management (SCM) is confronted with finding answers to a multitude of different logistics
tasks, e.g., finding the right means of transport or predicting the customer demand. Therefore, support
is necessary to aid decision makers in SCM in answering specific questions regarding logistics tasks and
to subsequently be able to make the right decisions in decision-making situations (Teniwut and Hasyim
2020). One of the key factors in supporting decisions in SCM is gaining and visualizing knowledge. One
of the widely established methods in theory and practice is known under the term KDD (Rahman et al.
2011). A common understanding is to view KDD as a process model, consisting of a sequence of different
phases, ranging from data collection to the visualization and interpretation of results (Fayyad et al. 1996).
The core phase is known as data mining, which is often used as a synonym for KDD (Adriaans and
Zantinge 1996). Applying successful data mining, e.g., to find useful and previously unknown patterns,
relies heavily on a valid and preprocessed input data basis, which is usually stored in a database. For a
more in-depth discussion, the reader is kindly referred to Hunker et al. (2020) for an overview of database
support by data mining tools. There is a wide range of different data mining techniques, which have various
different requirements on the input data, e.g., sample size or data accuracy. Commonly, the data basis
consists of observational or ”real” data, which can lead to different flaws. Typical examples are low data
quality, e.g., missing or out-of-range data (Garcı́a et al. 2015), or patterns found in the data that are only
correlative and not causal (Sanchez 2018). With the rise of computational power and the availability of
Big Data infrastructures in the last two decades, new opportunities arose in this context, with one being
simulation-based data generation which is known as data farming and was introduced by Brandstein and
Horne (1998). Data farming aims at using a simulation model as a data generator by running multiple
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experiments to generate a large scale of data as a result. It makes heavy use of experiment design and high
performance computing (HPC) (Horne and Meyer 2005).

Up to now, the combination of data farming and data mining has been insufficiently investigated in
both theory and practice. The focus of this paper lies on the balance between the data farming output
and the specific requirements of the data mining input. This in particular is relevant with respect to data
preparation. We developed a Farming-for-Mining-Framework, where we, in light of the aforementioned,
highlight the impact of well-designed data farming experiments specifically geared towards the application
of data mining techniques. We rely on the usefulness of the combination of data farming and data mining
to generate knowledge for decision makers in SCM. A fundamental discussion of this field of research can
be found at Kusiak (2006).

This paper extends previous research at the Department of IT in Production and Logistics at TU
Dortmund University in the context of data farming and data mining. We kindly refer the reader to Rabe
and Scheidler (2014), Rabe and Scheidler (2015), Scheidler (2017), and Scheidler and Rabe (2021) for
further reading.

The remainder of this paper is structured as follows: Section 2 briefly introduces the related work
covering the background of SCs, KDD, and data farming. In Section 3, we discuss our Farming-for-Mining-
Framework with an emphasis on data mining requirements. Section 4 covers our experiments in detail
and discusses insights gained by our experiments. The paper closes with Section 5, where we present our
conclusion, highlight limitations, and give an outlook on possible further research opportunities.

2 THEORETICAL BACKGROUND

The following sections introduce the related work for this paper. First, we highlight the SC as our problem
domain with a focus on transaction data. Based on this, we discuss data mining as the core phase in the
process model of KDD and highlight requirements on data and tools. In the last section we briefly introduce
simulation and data farming and present the state of research.

2.1 Supply Chains

In an SC, various independent economic entities, e.g., suppliers and manufacturers, act together to form
a complex network (Christopher 1998). SCs are generally managed by SCM and involve a variety of
tasks and decision situations, such as selecting the right means of transport or identifying future customer
requirements (Lambert 2014). The emerging tasks as well as the associated processes make use of flows
in SCs. Due to their complexity, these processes are supported by IT systems and generate a lot of
observational data. Usually, the data are persistently stored in a database system, e.g., a relational database.
Typical process data in SCs are transaction data. A transaction is a process in which an object passes from
one position to another one, e.g., the exchange of goods or materials, and consists of various properties
like timestamps (Moody and Kortink 2000). Observed transaction data introduce various shortcomings, for
example, missing or incorrect data, or relationships found in the data that are correlated rather than causal
in nature (Sanchez 2018). One of the key challenges in supporting decisions for SCM based on transaction
data in SCs is finding correlations (Harland 1996). These correlations are relevant to the process of KDD,
which aims to generate knowledge to support decisions in SCM in its process.

Nowadays, various advances and trends in information technology have a great impact on SCs,
summarized under terms like digitization, Big Data, or Logistics 4.0 (Borgi et al. 2017). Due to these
advances, SCs have become complex and dynamic networks that are difficult to design and manage
(Serdarasan 2013). This also has a direct impact on SCM knowledge discovery and underlying processes,
making tasks more challenging.
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2.2 Knowledge Discovery in Databases

KDD is a process for knowledge acquisition that is generally structured using process models. The process
models vary depending on the focus and area of application, but show a large overlap in the essential phases
(Kurgan and Musilek 2006). Figure 1 shows the well-established process model by Fayyad et al. (1996)
with its relevant phases.

Data Transformed Data Patterns Knowledge

Selection,
Preprocessing,
Transformation Data Mining

Interpretation / 
Evaluation

Figure 1: KDD according to Fayyad et al. (1996).

The essential phases include data selection, preprocessing and transformation, data mining, and eval-
uation at different levels of granularity. The applicability and success of the actual data mining process
depends essentially on the input data (Crone et al. 2006), which are generally brought into a specific input
format through preprocessing and transformation. Brachman and Anand state that ”a KDD process cannot
succeed without a serious effort to clean or scrub the data” (Brachman and Anand 1994, p. 6). Starting
from a preproccessed data basis, the transformations of the data sets for the data mining processes can
begin. For an overview of data mining in the context of SCs, the reader is kindly referred to Olson (2020)
for an all-encompassing overview.

Transformation includes techniques such as reduction or projection, which are also listed under terms
such as feature selection (Liu and Motoda 2001). The goal of the different techniques is to create a
sufficient complexity of the data sets for the successful execution of data mining. Complexity of data sets
is a concept that requires a multidimensional consideration. Since data sets today are potentially rather
complex and extensive, many techniques pursue a so-called complexity reduction of the data. Looking at
the data sets in terms of the complexity dimensions of number of attributes, domain of attribute occurrences,
and number of entities, the SC environment is usually about complexity reduction. This is justified by
the fact that extensive networks often hold a large amount of data on transitions, including, for example,
historized orders. The impact generally concerns the number of attributes as well as the number of entities,
unless they have been limited by a suitable sample in the selection phase. Attribute expressions also often
require suitable preprocessing, since, for example, time values or exact route specifications are unsuitable
as representatives of the continuous attribute expressions for data mining methods such as the rule learners.
Complexity reduction in this context can be achieved by appropriate discretization, dimension reduction,
aggregation, or numerical data reduction. The investigations in the area of complexity reduction are often
very general and need a more specific investigation in the SC context. For example, standard techniques
such as global discretization, which discretizes all continuous attributes, are not easily applicable to units
of time or quantities in an SC (Frank and Witten 1999) and specific solutions such as local discretization
(Liu and Motoda 2001) must be explored.

In summary, it can be stated that only suitable input data enable the applicability of specific data mining
methods and that preprocessing and transformation are very costly. Here, it is worth considering whether
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and in which cases it is expedient to adapt the input data to the data mining methods. Since simulation
can be used to generate output data according to requirements, this seems to be a promising starting point.

2.3 Data Farming

Simulation is an established method in theory and practice for the modeling and analysis of complex systems
(Law 2015), such as SCs (Rabe and Deininger 2012). Simulation can be defined as the ”representation of
a system with its dynamic processes in an experimentable model to reach findings, which are transferable
to reality; in particular, the processes are developed over time” (Verein Deutscher Ingenieure 2014, p.
3). With the progress in information technology, e.g., the rise of computational power, new application
possibilities for simulation emerge, for example in the context of data in SCs.

One way to address the above-mentioned flaws of observational data is simulation-based data generation,
called data farming. Following the ”Farming” metaphor, the idea is to use a simulation model for the
targeted cultivation of data to maximize data output (Sanchez 2018). The term was coined by Brandstein
and Horne (1998), evolving from Project Albert initiated by the US Marine Corps in 1998. Since then,
most of the research has been conducted in the context of military and defense applications (Horne and
Meyer 2016), e.g., in Forsyth et al. (2005), Kallfass and Schlaak (2012), and Lappi and Åkesson (2016),
while some of the research publications have been transferring the ideas to other fields of research like
medical science (Mayo et al. 2016) or manufacturing (Feldkamp et al. 2018).

Data farming is an iterative process that refers to using a simulation model as a data generator to
generate vast amounts of data as output (Horne and Meyer 2005). Following the data farming loop of
loops by Horne and Seichter (2014) that is presented in Figure 2, the process of data farming consists of
different phases, which can be understood as a procedural model. It is separated into two main parts, the
development of a simulation model and the experiment runs (Horne and Meyer 2016).

Model Development

Rapid Scenario 
Prototyping

Design of Experiments

Analysis and
Visualization

High Performance 
Computing

Experiment
Definition

Loop

Multi -Run
Execution

Loop

Figure 2: Data farming as the loop of loops according to Horne and Seichter (2014).

Due to the aforementioned complexity, for example in an SC, the developed simulation model contains
a vast amount of factors that have to be changed accordingly (Horne and Seichter 2014). One of the key
impacts to explore the developed simulation model in an effective and farmable way is design of experiments
(Kleijnen et al. 2005). For example, instead of the common ”trial-and-error” approach, which is often
impractical or even impossible, the use of an appropriate design of experiments in a data farming study,
for example 2k Factorial Designs or the more efficient Latin Hypercube Designs, can reduce the number of
experiments while ensuring balanced values of factors as well as a balanced model output (Sanchez 2006).

Conducting experiments using HPC leads to the generation of a vast amount of result data, which have
to be analyzed accordingly to ultimately support decisions by decision makers in SCM. Following Horne
and Meyer (2005), different methods can be used in the context of data farming, e.g., visualization or data
mining. The process model in Figure 2 assumes that the analysis is part of data farming. However, as
per our understanding, the analysis, e.g., KDD, connects directly to the data generation, which results in
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two separate parts, data generation and analysis. A similar understanding can be identified for example in
Feldkamp et al. (2018). This understanding is necessary for our Farming-for-Mining-Framework.

3 FARMING-FOR-MINING-FRAMEWORK

SCM is confronted with a multitude of different logistics tasks and decision situations which need to
be supported adequately by using knowledge discovery techniques. Creating a valid, preprocessed, and
transformed data basis for a successful knowledge discovery is a costly but necessary activity. In the
context of SCs, data are complex, heavily interconnected, high in volume and can contain multiple flaws
(see Section 2.1). Typically, when using real data and depending on the specifics of the used data mining
techniques, the underlying data basis contains data that are not needed or cannot be used in raw form for
the specific algorithm. To create a suitable data basis respectively subset, redundant or unsuitable data have
to be prepared accordingly. A major problem in data mining is that insufficiently preprocessed data often
lead to inherently wrong results. Since in our research the input data for data mining are artificial, data
farming has to be aligned with the requirements of the used data mining techniques as well as the SCM
tasks.

There is an interaction between the output generated by data farming and its input for data mining in the
context of SCs. It is obvious that the output of data farming must be controlled with the objective that the
data preparation effort for data mining methods can be significantly reduced or omitted completely. Thus, a
balance between the data farming output and the data mining input is necessary. One of the decisive factors
for the framework design are the complexity requirements of the specific data mining techniques. The
complexity requirements of a data mining technique are multilayered (see Section 2.2). Our research shows
that the following properties are viable for a variety of different data mining techniques, and consequently
for a large part of SCM tasks. This concerns, for example, the following properties:

• Data type: Data mining techniques, for example FP-Growth or ID3, require specific data types
in the attributes to be processed. As a consequence, the data type is an essential characteristic of
the complexity. Typical representatives of data types in data mining algorithms are for example
boolean, string, or integer.

• Data type range: Data mining techniques such as Support Vector Machines require a suitable
non-linear function for the specific kernel transformations to map the input space into a high-
dimensional space. As a consequence, the attribute domain must not contain null values and must
be in well-defined ranges, for example, when using a sigmoid kernel.

• Data volume (number of attributes): Data mining techniques, for example ID3 or CHAID, on
the one hand, need the right number of attributes or can only work with a maximum number. On
the other hand, the right attributes have to be selected. For example, a decision tree requires a
set of attributes with a corresponding attribute value to generate an adequate decision tree for the
problem domain.

• Data volume (number of entities): Data mining techniques, for example k-Nearest-Neighbor, may
require the labeling of entities. If the amount of data provided is too large, a sample has to be
selected. This is accompanied by classical statistical problems, for example, whether the selected
data subset is representative.

• Relations (in and between entities): Inherent relations in and between entities must not be separated
by automatic data mining techniques. For example, within the sampling of large input data sets
these relations must be considered accordingly.

Therefore, it is necessary to integrate this in advance while conducting a possible study in an SC
context and not leave it at random. This has not been considered in a summarizing framework so far. We
assume a necessity of a common research domain between data farming output and data mining input in
the context of SCM.
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It follows that it is necessary to take these data mining requirements as well as specific SCM tasks into
account while setting up a data farming experiment. This concerns in particular the design of experiments
and the model design (see Section 2.3). With data farming, we are able to control the model output via
parameterization in such a way that we can take the aforementioned properties into account in a suitable
manner. For example, we can increase or decrease the number of attributes, or influence the domain space
or the data types over the runtime of the experiments. Since the data mining input corresponds directly with
the factors of the experiment design, we have identified two extremes of the property characteristics for
our framework. The first is conducting the data farming experiment without consideration of the following
data mining techniques with respect to answering a specific SCM task. The second is to fine-tune the
design of experiments and the model in such way that data preparation before applying Mining techniques
can be shortened accordingly. However, due to the structure of the Property Selection, we usually select
characteristics in between the two extremes, because of the described balancing between data farming
input and output. Due to the direct connection between input requirements of data mining techniques and
simulation inputs of data farming, careful experiment planning and model development is required.

Therefore, our framework aims at the suitable definition of data farming output as data input for data
mining to support decisions in SCM. As described before, data mining techniques have specific requirements
on the complexity of the input data, which have to be served by data farming. Data complexity is understood
differently in different application domains. There is no standardization of the term, because data in different
disciplines differ greatly from one another and a specific consideration is required. Therefore, we will
concentrate our approach on data complexity in an SC. We refer with this understanding to the categorization
of SC data in the work of Oedekoven (2011). We propose the comprehensive framework shown in Figure
3, displaying only the phases that are relevant for our paper.

Knowledge Discovery in Databases

Data Mining
Selection
Preprocessing
Transformation

Framework
Property Selection

Design of
Experiments

Model 
Development

Data Farming

SpecificSelection
of Properties

Instantiation of
the Framework

Solution 
Space

H
P
C

SCM Task

Impact Flow Phase Framework Data Property Selection Property Vector

Figure 3: Relevant phases of the Farming-for-Mining-Framework.

The Farming-for-Mining-Framework consists of several elements. On the one hand, data farming and
KDD, with the relevant phases, are combined in the framework. It also takes the features from data farming,
especially the design of experiments and the model development phase, as well as from KDD, especially
data preperation and data mining. The transition from farming to mining is marked by the Solution Space,
which describes the output from data farming which is used as an input for KDD, respectively data mining.
On the other hand the main element, which bundles the conceptual considerations as described above, is
the Framework-Property-Selection. The characteristic of properties can mathematically be described as a
vector and the Property Selection itself as a vector space. The framework starts with a specific task or a
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decision situation in SCM which should be supported by our framework. The derivation of requirements
resulting from an SCM task as well as from a data mining technique are taken into consideration. This
results in a specific Property Selection for a specific set of data mining property characteristics, which
will be used for the instantiation of our Farming-for-Mining-Framework. With the specific selection of
properties, the simulation model is build and the experiments are designed. Using HPC, an artificial data
basis is generated which is in the sequence used as an input for the KDD part of the framework. Depending
on the selection of the specific properties, data preparation has to be implemented before running data
mining.

As per our understanding, we propose to customize the data farming to the data mining requirements
in such a way that data preparation can be reduced to a minimum. In summary, our concept proposes the
general existence and necessity of such a Property Selection while using data farming for data mining. To
validate our initial thoughts, we conducted experiments as a proof of work.

4 PROOF OF WORK

The following Section presents our proof of work for the Farming-for-Mining-Framework described in
Section 3. First, we present the simulation model and the experiments we have conducted. Second, we
briefly discuss the findings obtained.

4.1 Experiments

In our research, we developed a Farming-for-Mining-Framework which is programmed in C++. To create
the simulation model and to run the experiments, the framework uses the established simulation software
Plant Simulation (Bangsow 2020). To perform the analysis, we are using the known RapidMiner (Kotu
2015) as the data mining tool.

The objective of our experiments is highlighting to what extent the consideration of both the SCM task
and data mining technique have an impact on the time consumed within the data preparation phase from
KDD. This is done using two different instantiations of the framework (see Figure 3). Regarding KDD
and data mining, we focused the experiments on a rule learner to demonstrate our initial thoughts (see
Section 2.2). Based on this, SCM can decide upon procurement strategies and in particular on possible
supply combinations based on customer demand.

For our proof of concept, we developed a discrete event model of a sufficiently complex, typical
SC-network. The resulting simulation model is presented in Figure 4.

Figure 4: Plant Simulation model.
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Such a network can be identified as a two-echelon network, with levels from source to consolidation
hub and from consolidation hub to customers. In detail, the model contains three suppliers that act as a
source and deliver Stock Keeping Units (SKU) based on customer demand. A total of nine different SKUs
are differentiated in the model. Each supplier can deliver a subset of the SKUs. The model considers several
parameters for sourcing, e.g., main supplier, stock levels, delivery time, and the reduction of individual
deliveries to the central hub. The SKUs are loaded using standard containers and are delivered individually
by the suppliers to the hub using a buffer to consolidate the deliveries. In the hub, SKUs are stored and, when
demanded, handled and shipped to customers. The customers act as the sink of the model. Customers are
modeled as a black box, but the demands for different SKUs are generated separately using a mathematical
ruleset on an aggregated level for this purpose. These rules resemble parameterized probability density
functions, more precisely, Normal distributions and Erlang-k distributions. These represent the expected
mean demand for a given day. A Normal distribution is then in turn subsequently applied to these means.
In our model, the delivery is finished once the SKUs reach the customers.

Our guiding task from the SCM for the experiments is the question in which combination the SKUs
arrive at the hub for a given day with respect to customer demand. Taking this into consideration, an SCM
can decide upon sourcing strategies, e.g., in respect to the main suppliers. In our experiment planning, we
decided to show two selections, or vectors, in our Property Selection (see Figure 3). First, we instantiated
our Farming-for-Mining-Framework without taking into consideration any requirements of specific data
mining techniques. Second, we instantiated our framework specifically geared towards the use of a specific
data mining technique to answer the given SCM task. This applies in particular to the consideration of the
properties of the specific algorithm mentioned in Section 3 during model development and in the design of
experiments. We will explain our experimental setup using both of the described cases in the following.

An SCM task of the type as described above can be answered using a rule learner as the data mining
technique. In detail, we used the common FP-Growth algorithm to mine for frequent itemsets in the
artificial data. This means that we have to carefully consider the requirements and the method of operation
of this algorithm while setting up our experiments with our Farming-for-Mining-Framework. For example,
the FP-Growth constructs a tree in the first step and in the second step searches for patterns based on the
created tree. To do so, the algorithm makes use of valid transaction data. This is, for the second case,
directly considered in the model.

As described above, the model contains several stochastic input parameters, which have been taken
into consideration in a design of experiments. We used a Nearly Orthogonal Latin Hypercube design over
other designs, for example a full factorial nk design, since our prototype is of sufficient complexity for
our proof and we can reduce the number of experiments while keeping balanced inputs factors. We used
the spreadsheets provided by the SEED Center for data farming (please refer to Sanchez (2011) for more
information). We parameterized the model using 27 factors. These are used to manage the expected demand
of the nine different SKUs. In more detail, the demand for each SKU is controlled using three different
factors. The design enables us to analyze the factors between a low and a high level. Examples are given
in Figure 5, where two exemplary courses for a high and low level mean of SKU demand are shown.

First, it shows the progression of the mean demand in regards to the high level and its corresponding
generated demand for an SKU based on the given mean (marked with 1). Second, it shows the progression
for the low level analogous to the high level (marked with 2). The full design consists of 257 design
points. We ran our experiments on a single machine. During the conduction of the experiments in Plant
Simulation, the result data are written into a flat file. When the experiments are finished, the KDD part of
our framework starts. Depending on the case, data preparation has to be conducted first. In the first case,
we had to analyze the output data if and to what extend data preparation is necessary for the application of
our algorithm, in our proof of work FP-Growth, and, therefore, be able to support decisions regarding the
given SCM task at the end. For example, we had to discretize the numerical quantities for each delivery of
SKUs to the hub. Within the second case, results in the sequence could be loaded directly into the analysis
tool.
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Figure 5: Examples for generated demands.

RapidMiner offers the use of FP-Growth, as well as multiple other algorithms, as building blocks wich
are called ”Operators”, out of the box. Here, we draw the reader’s attention to the aspect that RapidMiner
cannot only be located in the data mining phase of the KDD, as it offers multiple operators for the data
preparation phases as well (see Figure 1). After loading the data, we ran the FP-Growth algorithm. The
result of the algorithm is a frequent itemset. To learn a rule, we created associations, which can be
understood as ”if-then-statements”. This is also done using RapidMiner building blocks. To display the
results, e.g., for a decision process in the SCM, we used the included visualization techniques offered with
the RapidMiner software. The resulting knowledge can be used by decision makers of SCM, for example
to change the sourcing strategies.

4.2 Findings

Our experiments show that data mining, or KDD in general, should not be viewed as an isolated step within
a data farming study. Basically, it can be stated that at the beginning of a data farming for data mining
study, one is faced with two possible alternatives, which we have shown with our experiments. The first
one is to prepare the input data using the data preparation phases of KDD, for example transformation,
to prepare the data for the specific mining technique. The second one is to include the requirements of a
specific data mining technique in the model development and design of experiments. This is accompanied
by the requirements of the SCM task in a possible decision support scenario. A trade-of exists at this point.
On the one hand, the artificial data (and subsequently model and experiment design) are specifically geared
for the use of a certain data mining technique. If changes are necessary, for example due to a change in
data mining, this entails correspondingly extensive work on the model and the experiment design. On the
other hand, it seems promising that we can drastically save process time by reducing or even eliminating
data preparation time before using a data mining technique. As a reminder, 61 % to 80 % of the time for
the whole KDD is spent on data preparation (the reader is kindly referred to Munson (2012) for a survey
among researchers and practitioners). In addition, the actual experiment time could be significantly reduced
in this case while maintaining the same valid output. In our case, this was in the range of approx. 50 %
time savings in computing time. In a nutshell, one has to decide between flexibility and reducing process
time to create a valid data basis for data mining.

The developed Farming-for-Mining-Framework proved robust to be a first step to approach this trade-of
in a suitable way. The requirements of SCM tasks, data mining techniques as well as model development
and experiment design of data farming are taken into account in a Property Selection. This allows for a
specific instantiation of our framework and the consideration of property characteristics with respect to
the complexity requirements while at the same time ensuring flexibility to some extend and reducing or
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removing data preparation time. Our research indicates that trading flexibility for time savings is beneficial
and, on a side note, essential in light of, for example, realtime Big Data analysis.

To summarize, we can state that our experiments confirmed our initial thoughts, even though the case
for our experiments conducted was sufficient, but simple to some extend.

5 CONCLUSION, LIMITATIONS, AND OUTLOOK

In this paper, we introduced a Farming-for-Mining-Framework in which we investigated the specific
requirements of data mining techniques on artificial input data, which are solely based on the data output
generated by data farming in the context of SCs. For this purpose, we identified research fields which have
been analyzed and linked together. First, we briefly introduced SCs as our problem domain and highlighted
the need for knowledge by decision makers of SCM. To gain knowledge, we relied on the established process
of KDD and discussed the importance of valid and preprocessed input data for the data mining phase. In this
context, we introduced the well-known approach of data farming to use a simulation model for the targeted
generation of artificial input data. Our substantive considerations in this context have shown the need to
carefully consider the dependence of valid input data for KDD and respectively the data mining techniques
on the output of the data farming in light of SCM tasks. This concerns in particular the experiment design
and the simulation model. We showed that mining techniques have multilayered complexity requirements
regarding various different properties, which in turn have to be be taken into account specifically for each
technique. To balance the data farming output with data mining input between two extremes, and to
connect both of the domains, we introduced the concept of a Farming-for-Mining-Framework. A certain
point, or vector, in the Property Selection represents a combination of characteristics of the data mining
properties, which reflect the inherent dependency while using Farming for Mining. As proof of concept,
we presented two different experiments within our Farming-for-Mining-Framework. Results showed that
carefully considering requirements of data mining techniques within data farming is beneficial, since it can
significantly reduce preprocessing and transformation efforts in the sequence and increase validity of the
data basis.

Furthermore, and since our framework allows a first approach to the described research topic, our
experiments show that the concept of our framework has limitations that can be narrowed down to the
sufficient complexity in our experiments. We assume that with more complexity of the SCM tasks as well
as the data mining techniques the optimal balancing point between flexibility and saving processing time
in data preparation will move even more in the direction of time saving. This requires more complex
experiments to be conducted. Moreover, this includes the extension beyond rule learners such as FP-Growth
as data mining techniques. In addition, we assumed a given complexity as a black box for the data mining
properties, which needed to be controlled by experiment design and model creation. This showed the lack
of complexity categorization for the data used in data mining. Detailed experiments, especially with respect
to ”real-life-situations”, have to be carried out in order to be able to derive further development steps for
the Farming-for-Mining-Framework. For example, the results of our framework based on artificial data
have to be tested and compared with the results based on real data in a specific SC scenario. Especially the
consideration of further parameters for the initialization has to be implemented. Moreover, the practical use
of knowledge based on artificial data is of future research interest. This includes applying the framework
for different SCM tasks to be able to validate the practical relevance and trustworthiness of our framework.
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