Proceedings of the 2021 Winter Simulation Conference
S. Kim, B. Feng, K. Smith, S. Masoud, Z. Zheng, C. Szabo, and M. Loper, eds.

COMBINING SIMULATION WITH RELIABILITY ANALYSIS IN SUPPLY CHAIN PROJECT
MANAGEMENT UNDER UNCERTAINTY: A CASE STUDY IN HEALTHCARE

Marisa A. Lostumbo
Miguel Saiz David Lopez-Lopez
Laura Calvet
Angel A. Juan

Universitat Oberta de Catalunya ESADE Business School
IN3 — Computer Science Department Marketing Department
156 Rambla Poblenou Avda. Pedralbes, 60-62
08018 Barcelona, SPAIN Barcelona, 08034, SPAIN
ABSTRACT

Many projects involving supply networks can be logically represented by multiple processing paths. When
the supply chain is working under deterministic conditions, computing the total time requested by each
path is a trivial task. However, this computation becomes troublesome when processing times in each stage
are subject to uncertainty. In this paper, we assume the existence of historical data that allow us to model
each stage’s processing time as a random variable. Then, we propose a methodology combining Monte
Carlo simulation with reliability analysis in order to (i) estimate the project survival function and (ii) the
most likely ‘bottleneck’ path. Identifying these critical paths facilitates reducing the project makespan
by investing the available budget in improving the performance of some stages along the path, e.g., by
modifying the transportation mode at one particular stage in order to speed up the process. A numerical
example is employed to illustrate these concepts.

1 INTRODUCTION

There are several processes that determine supply chain performance (Lambert and Cooper 2000). These
include, among others, the customer relationship, the demand management, the manufacturing flow, the
product commercialization, and the returns management. In particular, the distribution process is responsible
for the flow of goods between each successive stage of a supply chain and constitutes one of the main
drivers of the supply chain performance (Laghrabli et al. 2016). Companies aim to carry out distribution
processes more efficiently in terms of shipping faster, cheaper, closer, and without disruptions. Recently,
the COVID-19 pandemic has shown the lack of resilience in supply chains and the impact that disruptions
may have on a global network scale as individual supply chain connections and nodes fail (Golan et al.
2020).

Many projects involving supply networks can be represented by multiple processing paths from a
project starting node to an ending one. Figure 1 shows a small example that consists of six tasks and three
paths. Each task represents a piece of work to be done or undertaken (e.g., developing a strategic plan, a
warehousing plan, or designing KPIs). The tasks present logical precedence relationships (e.g., task #06
cannot start before task #02 has finished). A critical path is defined as the sequence of project network
tasks that add up to the longest overall duration.

Typically, the processing time of a task is set to a deterministic value, which may be computed as a
weighted average of an optimistic, a pessimistic, and a likely estimate. This is a simplification that may
lead to wrong conclusions and suboptimal decisions. A more realistic approach is required specially in
scenarios where there are hard deadlines, the uncertainty regarding processing times is not negligible, and
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small changes in the processing time of a task may have a huge impact on the efficiency of the entire
distribution process. For the application of this article, we consider an illustrative example of activity
planning, in this case, from the real scenario of a vaccine distribution project.
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Figure 1: Representation of a small project with six tasks and three paths.

In this context, we propose a hybrid methodology that aims to enhance the distribution project’s
makespan in a supply chain network. This methodology combines concepts and techniques of modeling,
reliability, simulation, and optimization. It takes into account the uncertainty in the processing times that
most tasks in supply chain project management exhibit. In particular, the methodology consists of five
steps. Initially, we model the completion time of each task by fitting a given probability distribution based
on historical completion times. The next step is to find the logical structure of the supply chain network,
describing the relationships among the tasks. Afterwards, we simulate multiple scenarios based on the
probability distributions. Each scenario is simulated by generating a random observation for the processing
time of each task. For each scenario, respective estimates of the project’s makespan and the critical path are
stored. The fourth step builds the project’s survival function from the project’s completion times. Finally,
the methodology proposes to enhance the project’s makespan or survival function through prioritizing a
budget on improving critical paths or reducing critical tasks or split large tasks into parallel sub-tasks.

The contributions of this work are: (i) a hybrid methodology, which considers the stochasticity in
supply chain projects, able to provide statistics of a project to help decision-makers to gain insights into
it and prioritize actions of improvements; and (ii) a comprehensive analysis of an illustrative example
regarding a healthcare supply network. The rest of the paper is structured as follows: Section 2 offers a
review on designing supply chains under uncertainty conditions, optimization of healthcare supply chains,
and simulation-based methods in reliability analysis. Section 3 describes the problem addressed. Section 4
explains the hybrid methodology proposed. Afterwards, Section 5 presents an illustrative example while
section 6 analyzes the results. Finally, Section 7 highlights the main findings of our work and identifies
future research lines.

2 RELATED WORK

In this section, we provide an overview of the three topics that are related to our research: (i) the design of
supply chains under uncertainty conditions; (ii) the optimization of healthcare supply chains; and (iii) the
use of simulation-based methods to determine the reliability and time-to-completion of complex systems
and networks working under uncertainty conditions.

2.1 The Process of Designing and Implementing a Supply Chain

This section aims to highlight some characteristics that are typical from the process that we want to optimize.
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Supply chain network design is a concept broadly studied during the last decades, both from a qualitative
and a quantitative perspective. Chopra and Meindl 2003 (p. 99) state that ”Supply chain network design
decisions include the location of manufacturing, storage, or transportation-related facilities and the allocation
of capacity and roles to each facility”. These decisions are related to a strategic level, and must be optimized
considering a long-term (usually several years) efficient operation of the supply chain as a whole (Altiparmak
etal. 2006). One of the more challenging tasks in supply chain design is addressing uncertainty. Anticipating
the future is crucial in planning and design processes. Blackhurst et al. (2004) state that one of the causes
of supply chain complexity is their dynamic nature, and the uncertainty in variables such as demand,
capacities, transportation times, or manufacturing times.

A review about the use of quantitative approaches in supply chain risk management is carried out by
Oliveira et al. (2019). When risks cause a disruption in a few nodes, their effects can easily spread to
other parts of the supply chain (Li and Zobel 2020). According to Dolgui et al. (2018), these disruptions
are responsible for lower revenues, delivery delays, loss of market share and reputation, as well as stock
return decreases, hence affecting the global performance of the supply chain. Particularly in 2020 and
2021, the global pandemic caused by the COVID-19 disease has largely affected all areas of the economy
and society worldwide. Some supply chains have experienced an increase of demand that they are not
able to satisfy (facial masks, ventilators, etc.), while others are suffering long-time production stops like
the ones of non-essential products. As pointed out by Ivanov and Dolgui (2020), supply availability in
global supply chains has been largely decreased and imbalanced with the demands. Thus, this pandemic
is an unprecedented and extraordinary situation that clearly shows the need for advancing in research and
practices of improving delivery projects in supply chains.

2.2 Optimization of Healthcare Supply Chains

Following Mathew et al. (2013), the healthcare supply chain involves the flow of many different types
of products. The primary goal of the healthcare supply chain is to deliver products in a timely manner,
so that the demand from the end consumers is properly satisfied. In addition, there is the participation
of different stakeholders, such as government institutions, regulatory agencies, and insurance companies,
which increases the complexity of the distribution process. Thus, the industry is highly interdependent
and one party cannot perform efficiently leaving the other parties behind. Moons et al. (2019) state that
healthcare logistics ranges from the process of handling physical goods (such as pharmaceutical products,
surgical items, medical equipment, sterile items, bedding, food, etc.) to the information flows associated
with these goods — i.e. from the receipt of these goods in a hospital to their delivery to the patient at their
place of care. A specific challenge for the transportation of these goods is that many supplies require special
precautions. For instance, medicines may require transportation and storage within certain temperature
ranges, have a short shelf life, or suffer from supply disruptions (Skipworth et al. 2020). Therefore,
reducing the transportation and distribution process time in these cases is a key factor.

2.3 Simulation-based Methods in Reliability Analysis

Reliability or survival analysis has been a major research topic in areas as diverse as Industrial Engineering
and Biostatistics during the last decades (Gardoni 2017). While engineers tend to use parametric statistical
methods to study the time-to-failure of electronic or mechanical components and systems, biostatisticians
usually employ non-parametric methods to study the durability of patients subject to different treatments or
biological entities under specific environmental conditions (Emmert-Streib and Dehmer 2019). Especially
when dealing with system reliability, often both the individual components of the system as well as the
system logical topology play a key role in its durability. Since the time-to-failure of individual components
is typically modeled as a random variable following a Weibull or lognormal probability distribution (Elsayed
2020), the durability of the system itself becomes a random variable as well. The complexity of most
modern systems (e.g., supply chain networks, telecommunication systems, civil engineering infrastructure,



Lostumbo, Saiz, Calvet, Lopez-Lopez, and Juan

military instruments, etc.) makes it quite challenging to analyze their durability just by employing analytical
expressions. As a consequence, Monte Carlo and discrete event simulation have become a popular tool
among system reliability engineers. One excellent review on the use of Monte Carlo simulation in systems
reliability is provided by Marseguerra and Zio (2002). Also, Juan and Vila (2002) propose a simulation-based
algorithm, developed in Excel/VBA, which makes use of Monte Carlo simulation to estimate the reliability
or survival function of a complex system. This work was then extended by Faulin et al. (2007) and Faulin
et al. (2008), who incorporated new simulation-based algorithms for studying system availability concepts
— i.e., considering repairing policies and not just failures. Finally, a complete collection of articles related
to this topic can be found in Faulin et al. (2010), while recent applications of simulation-based methods
to study the reliability of logistics systems can be found in Wang et al. (2018) and Vojtov et al. (2018).

3 PROBLEM DESCRIPTION

There is a supply chain project composed of n tasks. Each task a has a processing time 7, that may be
modeled as a random variable following either a theoretical or empirical probability distribution.

The first stage of the problem is to find the logical structure of the supply chain. The result may be
represented as a directed acyclic graph G = (V,E) (such as that in Figure 1), where V is the set of nodes
(there are n+2 nodes: each of the tasks, a starting node, and an ending node) and E is a set of paired
vertices, whose elements are called edges or links. These edges reveal the precedence relationships among
tasks; a task cannot be started before the previous ones have finished. The graph can be decomposed into
a set of paths P. Some tasks might be included in several paths. The project will only finish once all the
required paths have been completed. Since we consider random processing times for each task, the project
duration becomes stochastic.

The second stage consists in designing and selecting strategies to enhance the project’s makespan or
survival function. Different strategies may be implemented. We considered the following ones (which are
further described in the next section): (i) prioritizing a given budget B and (ii) reducing critical tasks or
split a large task into parallel sub-tasks.

4 A SIMULATION-BASED METHODOLOGY

This section describes a general methodology that can be employed to enhance the distribution project’s
makespan in a supply chain network. As displayed in Figure 2, our approach consists of five steps and
combines inputs modeling, reliability concepts, simulation and, optimally, a heuristic procedure based
on the outcomes of the simulation. The first step consists in using historical data (e.g., from similar
projects carried out in the past) to fit the completion times of each individual task in a given distribution
project. Alternatively, the data may also come from experts in industry. Frequently, these completion times
will be modeled as Weibull or lognormal probability distributions, since these are extraordinarily flexible
distributions, which are frequently employed in reliability analysis to model failure and repair times (Brot
2019). At this stage, the logical structure of the distribution project has to be identified and modeled in a
processable manner. One way to do this is by considering the path representation of the project, i.e., the
set of paths that have to be completed in order for the project to be finished. Next, using the probability
distributions that model the completion times of each task, random observations on these times can be
generated, and the project’s makespan can be estimated as the finishing time of the most durable (critical)
path. In addition to this, the simulation can also provide estimates of the probability that the project is
completed on or before a given target time. The latter information lead to the construction of the survival
function, which shows the probability that the project has not been completed yet (i.e., it is still ‘alive’) at
any time. A guided enhancement of the project performance can be achieved by employing the information
about the critical paths: As far as there is some budget available, this can be used to either reduce some
task completion times in the most critical path (thus, reducing the path completion time as well as the
project’s expected makespan) or to split long tasks in the critical path into sub-tasks (i.e., changing the



Lostumbo, Saiz, Calvet, Lopez-Lopez, and Juan

network topology), in such a way that these sub-tasks can be executed in parallel. After these changes, a
new simulation can be run and new values for the expected project’s makespan and its associated reliability
function are obtained. These iterative steps can be automatized by a simple heuristic, which can order a
list of potential improvements by their cost and their expected effect on the probability distributions of
the tasks involved, and run until all the budget available for improvements has been exhausted. Notice
that the goal does not necessarily have to be minimizing the expected project’s makespan, since another
interesting objective could be to minimize the probability that the project has not finished on or before a
given deadline — this information can be obtained from the survival function.

5 AN ILLUSTRATIVE EXAMPLE

In order to illustrate our simulation-based approach, we consider a fictitious (but realistic) case example
from the healthcare industry. It is based on data provided by an expert in supply chain planning, in this
particular case, distribution of a vaccine. The method may be extended to projects in other fields, in which
there is a logical sequence of activities.

In this case, the distribution project refers to the distribution of a vaccine, for which a series of tasks
need to be accomplished. For each task in the project, Table 1 shows the following information: (i) a task
identifier (number); (ii) a short description; and (iii) a probability distribution modeling the processing time
of the task, which also includes the specific parameter values. For our computational experiments, we have
modeled each task processing time as a Weibull distribution with shape and scale generated from the user
specified mean and standard deviation (both in days). In a real-life application, the specific probability
distribution can be fitted from historical data, which allows for obtaining the best-fit probability distribution,
including its parameters (Law 2013). Still, the Weibull distribution is largely employed to model random
times due to its extraordinary flexibility, which makes it the predominant probability distribution in most
reliability studies (McCool 2012).

Table 1: Detailed information on each task and its random processing time.

Task | Description Distribution | Shape | Scale Mean | StDev
#01 | Strategic plan Weibull 2.6955 | 16.8678 15 6
#02 | Permit agreements Weibull 2.6955 | 16.8678 15 6
#03 | Warehousing plan Weibull 2.6956 | 22.4913 20 8
#04 | Distribution plan Weibull 2.6956 | 22.4913 20 8
#05 | OPEX control Weibull 2.6958 | 67.4737 60 24
#06 | Distribution permits Weibull 2.6956 | 33.7370 30 12
#07 | Loading/unloading permits Weibull 2.6956 | 33.7370 30 12
#08 | Training and action protocols Weibull 2.6956 | 11.2455 10 4
#09 | Logistics components procurement | Weibull 2.6956 | 22.4913 20 8
#10 | KPIs design and monitoring Weibull 2.6956 | 44.9825 40 16
#11 | Delivery and pickup agreements Weibull 2.6956 | 11.2455 10 4
#12 | Conservation control Weibull 2.6956 | 22.4913 20 8
#13 | Warehousing Logistics Weibull 2.6955 | 16.8678 15 6
#14 | Delivery to vaccination center Weibull 2.7037 | 5.6373 5 2
#15 | Visit to warehouses Weibull 2.6956 | 11.2455 10 4
#16 | Route records Weibull 2.7037 | 5.6373 5 2
#17 | Suppliers negotiation Weibull 2.7037 | 5.6373 5 2

As shown in Figure 3, the aforementioned tasks present some logical precedence relationships. Thus,
for instance, task #14 can only start once task #13 has been completed. Each path in Figure 3 displays a
series of tasks that need to be processed in order for that path to be completed, i.e., the upper path will
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Figure 2: Scheme of the proposed methodology.
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consist in processing tasks #02, #06, #11, #13, and #14. Nne of the aforementioned tasks can be started
before the previous ones have finished. Some tasks might be included in several paths (e.g., tasks #02, #11,
#13, and #14 belong to the two upper paths). The project will only finish once all the required paths have
been completed as well. Should the processing times of each task be deterministic, computing the project
duration would be trivial. However, once we consider random processing times for each task, the project
duration becomes stochastic and the combination of simulation with concepts from survival analysis can
be useful to better understand what is happening in this supply chain.

—— #02 #06 T #11
#07
8 — #13 — #14 ——
(—{ 403
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Figure 3: Precedence network diagram for the illustrative example.

6 COMPUTATIONAL EXPERIMENTS

The algorithm has been implemented in R version 4.0.3 (Stowell and Pace 2014). In this particular
experiment, the average project duration is 102.2 days, with a standard deviation of 13.4 days. Figure 4
displays the survival function for the analyzed distribution project with the data provided in Table 1. This
survival function provides the probability that the project is still active (not finished yet) as time evolves.
Hence, for instance, the probability that the project’s makespan exceeds the 101 days is about 0.51, the
probability that the project’s makespan exceeds 90 days is about 0.82, while the probability that the project’s
makespan exceeds 110 days is about 0.25.

The algorithm is capable of registering the critical path in each simulation run. Knowing the relative
frequencies in which each path is responsible for a delay in the project completion, it is possible to focus
our efforts on incorporating additional resources to the tasks in that path — so that their processing times
are reduced — or to decompose the most critical paths — so different sub-paths can work in parallel. This
procedure can be generalized for supply networks with many tasks and paths. In our example, the two
lower paths in Figure 3, #01 —#05 and #01 —#16 —#04 — #10, are the most durable paths in about 18.3 %
and 17.7 % of the simulation runs, respectively. Notice that, despite the last path contains just two tasks,
the first of these (task #05) has a high standard deviation (25) and an elevated mean (60), which explains
why the corresponding path can easily become the most durable in the entire project. A natural question
arises here: what would be the effect on the project’s duration of reducing the duration of these two critical
paths? For instance, how would the survival function of the project change if we were able to reduce the
standard deviation of task #05 from 24 to 5 (i.e., new shape = 14.7089 and new scale = 62.1721) and the
mean of task #06 from 30 to 15 (i.e., new shape = 1.2582 and new scale = 16.1289)? After running again
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Figure 4: Survival function for the initial supply chain configuration.

the simulation-based algorithm, we obtain that the average duration of the distribution project is reduced
from 102.2 to 98.9 days. Also, Figure 5 displays the new survival function, which — as expected — is
shifted to the left when compared with the original one (e.g., now there is a 0.5 probability that the project
is completed after 98 days).

It is interesting to notice that some changes in the mean or the standard deviation of some tasks
may result in a different survival function that crosses the original one. For instance, suppose efforts are
conducted to reduce the standard deviation of all tasks in 20 % but, as a result, the means of activities #01
and #02 are incremented in 20 %. The new survival function is depicted in Figure 6. The probability that
the project exceeds x days, being x < 97, is higher with the new configuration. However, the probability
is higher with the original configuration when x > 97.

This process of shortening the distribution project’s makespan could be iteratively applied while there
is available budget as to increase the number of resources in critical paths, hence reducing their expected
process time or the associated variability. Actually, by automating this process with a biased-randomized
heuristic (Grasas et al. 2017), it could be possible to quickly generate high-quality solutions to the problem
of minimizing the project’s makespan subject to a maximum available budget.

7 CONCLUSIONS

Efficiency in distribution is a key metric for decision-making in the improvement of the supply chain and
has a direct impact on cost savings. When the supply chain is working under deterministic conditions,
computing the total time requested is trivial. However, there are many factors that affect the processing
time of each task of the supply chain (such as traffic congestion, weather conditions, route problems, or
unexpected delays) and ignoring this uncertainty may lead to erroneous conclusions and strategies.

In this context, our work has proposed a hybrid methodology that aims to study and enhance the
distribution project’s makespan in a project network where each task has associated a random processing
time. This methodology relies on the following steps: (i) model the completion time of each task; (i) find
the logical structure of the network; (iii) simulate scenarios and compute the project’s makespan for each
one; (iv) fit the project’s survival function; and (v) enhance the project’s makespan or survival function by
prioritizing the budget on improving critical tasks or paths, reducing critical tasks, or splitting a large task
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into parallel sub-tasks. This simple yet powerful methodology has been illustrated through an example of a
vaccine distribution project in the healthcare industry. Several interesting lines of future research stem from
this work. For instance, different heuristics or metaheuristics could be designed and compared to improve
our methodology. Moreover, more comprehensive computational experiments could provide much more
insights on the potential of the methodology to enhance distribution projects in the healthcare industry and
other industries.
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