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ABSTRACT

This study focused on the ride-hailing assignment problem, aiming to optimize drivers’ behaviors with
respect to simultaneous objectives such as maximizing service level, minimizing CO2 emissions, and
minimizing riders’ waiting times. Four different policies were proposed and tested with a real-world
case study. With respect to current literature, we present a more realistic simulation model, capturing all
characteristics of a ride-hailing system and using road networks to approximate real-time road conditions.
Furthermore, it is the first work that tests the effects of different passengers’ arrival conditions and analyzes
the multiple objectives for different zones of a large city. Results suggest that different passengers’ arrival
conditions affect the four proposed policies nearly identically. Finally, the policy of drivers remaining static
instead of driving while searching for passengers had the highest service level and lowest average distance
per ride.

1 INTRODUCTION

Transportation has always been important for the economy, as it increases productivity, connects different
countries, and offers jobs, among others. In the past few years, technological advancements greatly changed
the way people participate in the economy, becoming the breaking ground for a new type of “on-demand”
economy. For transportation, it is translated to new companies like Uber, Didi Chuxing, or Lyft. They
offer ride-hailing, ride-sharing, and even food delivery services.

These new companies have had a worldwide impact, propelling studies such as i) how to implement
efficient routes for ride-sharing, ii) how to assign drivers and passengers in a ride-hailing system, or iii)
how to compute fair prices that help to get a better balance of demand and supply. We focus on ride-hailing
as it has a higher global impact; in particular, this work studies the effect that different policies and drivers’
behaviors have in how to match cars and riders efficiently. The goal is to maximize the overall service
level while minimizing the amount of miles driven per successful ride. Four different policies for the
drivers’ behaviors are proposed, described, and tested in a real-world case study that considered different
passengers’ arrival conditions.

With respect to the current literature, this study is the first to optimize drivers’ behaviors over two
different objectives and to examine the effect of different passengers’ arrival conditions. Moreover, this
paper also contributes to the field by proposing a realistic simulation model of a ride-hailing system. The
model allows for the use of different road network structures, and computes statistics on a micro level, which
helps to present service level and waiting time results for different areas of the road network, something
that has not been done in previous works.

This paper is organized as follows: Section 2 summarizes the related work. Afterwards, Section 3
explains the methodology used, and Section 4 presents results of the case study. Finally, Section 5 presents
the discussion, and in Section 6 the main conclusions are given.
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2 RELATED WORK

Over the years, several problems related to ride-hailing services have been studied because of the paramount
impact they have in modern societies. On a macro level, companies in that sector must 1) forecast demand
and balance it with supply, 2) assign cars to pick up every passenger and 3) test and adapt strategies
to increase the service level. As a consequence, researchers have focused on these areas using different
methods and approaching the problems from several viewpoints.

2.1 Forecast Demand and Balance with Supply

With the growing presence of wireless connections, big data and tracking devices, ride-hailing companies
have vast amounts of data available. These organizations use that information to improve the spatio-temporal
forecast of demand, suggest optimal pick-up and drop-off points, and even identify suspicious accounts (in
their mobile applications). Academia also focused on this topic, Moreira-Matias et al. (2013) forecasted
demand using historical data, Miao et al. (2016) added spatio-temporally correlated demand and a supply
model. Xu et al. (2020) studied the importance of pricing to balance supply and demand.

2.2 Assign which Car Will Pick up which Passenger

The ride-hailing problem has been widely studied under several perspectives. Souza et al. (2016) solved
it as an assignment problem considering different strategies. Lowalekar et al. (2016) and Maciejewski
et al. (2016) proposed two-stage stochastic optimization formulations to solve the general spatio-temporal
matching problem, focusing on matching cars and passengers in an online setting. In addition, Alshamsi
et al. (2009) and Glaschenko et al. (2009) proposed multi-agent simulation to solve this problem.

2.3 Test and Adapt Strategies to Increase the Service Level

Several researchers have considered taxi dispatch systems for idle drivers, with goals like increasing the
profit of drivers or the probability of finding passengers. Zou et al. (2013) proposed a system creating
routes with the goal of reducing the expected distance to pick up a passenger. Yamamoto et al. (2008)
defined two strategies for cars without passengers and studied them. Finally, Lee et al. (2008) and Yuan
et al. (2011) created recommendation systems for drivers to tell them where to wait for clients.

Another popular area of study is related to the different “behaviors” a driver can have, and how their
actions can be optimized to improve the system’s service as a whole. Hoque et al. (2012) used data collected
in San Francisco to compute average taxi speeds, frequency of trips’ durations, and their distribution in
the city with the goal of helping drivers search for passengers. Li et al. (2011) concluded that “hunting”
passengers by driving tends to be a better strategy than waiting for them. Henao and Marshall (2019)
studied the profits received by drivers and concluded they have better incomes by parking off while waiting
instead of driving, unless the waiting time for a new ride is considerably reduced (over 30 %) by driving.

3 METHODOLOGY

3.1 Model Components

A ride-hailing system has three main actors: 1) drivers, 2) passengers, and 3) the transportation company.
These actors are linked by their actions in the system, which can be considered as events. Drivers and
passengers were included in the model as classes, with their respective attributes and procedures. The
following events were considered: drivers entering and leaving the system, passengers entering the system,
assignment of drivers to passengers, pick-up, and drop-off of the passengers. Besides that, a Roaming
event was created in order to instantiate the different scenarios that are going to be compared. This event
is used to represent the movements of a driver within the road network when he or she is not assigned
to passengers (i.e., the driver is idle). It must be noted that the event Passenger leaves the system is not
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Figure 1: Relationship between different instances.

implemented in the simulation as an event per se, because it is possible to perform those actions without
having to execute an event. The relationships between different instances of the Passenger, Driver, and all
the Event subclasses are shown in Figure 1.

The main task of matching drivers to passengers was executed by means of a helper function invoked
at every arrival of passengers into the system. To do the assignment as in the real systems, information
about drivers was stored in a list that had all available drivers, a dictionary having the information about
the road network, and by using instance variables of the created objects (Driver and Passenger instances).
Our matching algorithm finds the drivers (meeting requirements) that are closer to the rider and then asks
sequentially if they accept the ride. If none accepts, the passenger leaves the system; otherwise, the rider
decides if he accepts the ride or not based on the driver’s estimated time arrival (ETA).

Moreover, several assumptions have been made: i) Every passenger only enters the system once. There
is no loss of generality because every arrival in the system is treated independently. ii) The pricing and
payment aspects are out of the scope of this work. It is assumed that the passenger entering the system will
pay for the ride if a proper matching is found. iii) The company will always seek to match the passenger
with the nearest driver that meets the requirements (time-wise). The matching algorithm is built on that
premise. iv) Once a pick-up is scheduled, that driver is no longer available, so he can not be considered
for subsequent arrivals until he drops off his assigned passenger. Clearly, ride-sharing is not allowed. v)
If no driver that meets requirements is available at the arrival of a passenger, the passenger simply leaves
the system. vi) A driver will leave the system only after his last ride or roaming event has finished. If a
driver has a tentative leaving time at 7:00 PM, but he is scheduled to serve a ride that will last until 7:17
PM, he will leave the system after the ride.

3.2 Model Inputs

In order to use the model, it is necessary to provide some extra information about the different classes, events,
and the system being simulated. The system inputs are the road network, the matching algorithm as well as
the starting and ending time of the simulation. Driver inputs are their passenger capacity (assigned with a
discrete distribution), their “luxury” attribute, the driver criteria to accept or reject rides, the arrival schedule
of all drivers in the system, their tentative leaving schedule (a function of the number of successful rides),
and their usual arrival locations. Finally, passenger inputs are their capacity and “luxury” requirements
(both obtained via a discrete probability distribution), their arrival time, location and destination, and the
passenger’s criteria to accept or reject the ride after being matched to a specific driver.

3.3 Proposed Scenarios

As the main goal of this work is to test how different drivers’ behaviors may affect the performance of a
ride-hailing system, we considered the following scenarios:

• No-movement scenario: When idle, drivers wait patiently in their location, without moving. That
applies to when they enter the system or after dropping off a passenger.
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• Single-movement scenario: After entering the system or dropping off a passenger, the drivers start
moving towards a specific location decided by them, using their experience and knowledge about
the road network and the passengers’ arrival behavior. Once they arrive at that destination, they
wait patiently for their next ride, or until the moment they leave the system.

• Nearest-hotspot-movement scenario: The ride-hailing company uses its historical information and
predictions to provide a list of the recommended locations where to wait for passengers. Once
drivers arrive to the system or drop off a passenger, they go towards the nearest location in that list
and then wait there.

• Coordinated-hotspot-movement scenario: The ride-hailing company uses its own information and
the driver’s location to route the drivers to specific waiting points. For this scenario, it is necessary
to give the routing algorithm as input.

Finally, the routing algorithm for the coordinated hotspot scenario may be any kind of repositioning
algorithm. For this study, we routed drivers depending on a coefficient based on the priority of each hotspot
(a parameter) and the distances (in time units) between the driver and the hotspots. A threshold is defined
using the parameter MinimumCarsRouted such that the hotspots having less than those drivers routed there
are always served first.

3.4 Case Study

San Francisco is recognized as one of the most-innovative and progressive cities in the USA and it is also
one of the five most-populous primary statistical areas in the country. In fact, Uber was launched with
the name of “UberCabs” in June 2010, and by the end of 2016, more than 5,700 drivers work on peak
hours for ride-hailing companies in San Francisco. They, in combination, drive more than 570,000 miles
in the city every weekday, and finish more than 170,000 drives, which represents 15 % of all intra-San
Francisco vehicle trips (SFCTA 2017). Furthermore, reports have concluded that during the 2010–2016
period, ride-hailing companies have caused 47 % of the increase of traveled miles and 55 % of the average
speed decline in the city (Marshall 2018).

3.4.1 Road Network

A buffer around the San Francisco city limits was utilized to delimit the extension of the road network
required for this study. The network was extracted using QGIS software and properly modified to create
a valid directed graph that consists of 11,372 nodes and 31,428 edges. Each edge was given its respective
real-world distance in the horizontal plane by using a 70 x 70 meters digital elevation model. With regards
to computing traversing times, the distance of each edge was adjusted to include the vertical (elevation)
component by means of the following equation: Distance =

√
HorizontalDistance2 +VerticalDistance2;

and then the slope of the edge was computed as Slope = arctg
( VerticalDistance

HorizontalDistance

)
.

The average speed (km/h) for each edge was assigned according to its classification, being the most
relevant: Motorway=65, Primary=45, Secondary=35, Tertiary=35, and Residential=25. Moreover, it has
been shown that elevation change affects the travel speed because of the additional difficulty of moving uphill
or downhill. Thus, each edge had its speed adjusted such that Ad justedSpeed =AverageSpeed×e−0.016×Slope

(Verma et al. 2017). Finally, the time needed to traverse the edge was computed by computing the ratio
between the distance and the adjusted speed.

3.4.2 Passengers

Passengers entering the system required their respective arrival time, arrival node, and destination node
considering the spatio-temporal behavior of their requests. For that, real data from SFCTA (2017) were
used. Combining pick-up and drop-off data obtained from Uber and Lyft in 2016, the San Francisco area
was divided into 976 medium-sized zones called travel analysis zones (TAZ). Each TAZ was properly
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Figure 2: Spatio-temporal comparison of arrivals in San Francisco’s ride-hailing systems.

geo-referenced, and the average hourly number of pick-ups and drop-offs in those zones was computed.
The information was averaged by hour and day of the week to generate a representative week. A small
sample of pick-ups corresponding to these hourly averages is shown in Figure 2, where there are clear
differences in the spatio-temporal distribution of passengers’ arrivals.

First, for the passengers’ temporal distribution, the information provided in SFCTA (2017) was used,
as it detailed the hourly city-wide number of pick-ups for each day of the week. Arrivals during the week
may be described as a non-homogeneous Poisson process. However, in real systems, correlation between
arrivals may exist, and in general, they are not independent, e.g., they can be influenced by sports events,
holidays, music festivals, to name a few. Thus, the method described by Nelson and Gerhardt (2011) was
used to generate passengers requests. This method uses a stochastic process known as Markov-MECO,
which can capture the first three moments for a distribution of interarrival times (Johnson and Taaffe 1989).
Moreover, by using this method, it is possible to model processes with a higher or lower coefficient of
variation than a regular Poisson process, and the correlation between arrivals can be considered. Finally,
to simulate the operations of only one ride-hailing company, Lyft was used as a reference, and 36 % of the
market share was considered.

With respect to the passengers’ arrival and destination locations, SFCTA (2017) recorded hourly
passenger arrival rates for each day of the week in each of the 976 TAZ zones within the city limits. This
information was used to compute the probabilities of requesting a ride from a specific “5-zip zone” during
a given hour. The centroid of each TAZ polygon from Figure 2 was assigned to its corresponding “5-zip
zone”. Then, adding up all the TAZ arrivals inside each zone, the hourly probabilities of both passenger
pick-up and drop-off zones for each day of the week were obtained. Besides that, a dataset containing
over 25,000 GPS traces from 589 taxi rides in San Francisco (Piorkowski et al. 2009) was used to get
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the dynamics of the inter-“5-zip” movement that characterized a full trip. Thereby, trips within each zone
could be classified by hour and day of the week, and matched to the spatial resolution of the pick-up and
drop-off probabilities.

Next, we used previous reports to set the attributes for each passenger. According to data released by
Uber, around 6 % of their drives provide “luxury” services. We assumed that passengers will have a 6 %
chance of requiring the “luxury” attribute from drivers. Besides that, it has been reported that average and
median waiting times for a driver in San Francisco are about three minutes. Thus, to compare scenarios
a hard threshold of seven minutes as waiting time was chosen. Once passengers receive the pick-up time
assigned to them, if they have to wait more than 7 minutes they will leave the system: otherwise they will
accept the ride. Finally, the capacity required, in number of passengers, was set to 0.9 with a probability of
being between 1 and 4 (with equal probabilities between those four integers) and 0.1 probability of being
either five or six (which means a car with extra room would be required).

3.4.3 Drivers

According to SFCTA (2017) there are approximately 45,000 active drivers in the San Francisco area;
however, most of them work part-time according to their preferred schedules. Considering the drivers’
part-time behavior, a function was created to generate, for each driver, their entering and leaving times in
the system, such as to resemble the distributions of the total number of drivers presented in SFCTA (2017).

With respect to to the arrival location of ride-hailing drivers to the system, no information is publicly
available. However, as it is possible for them to log in the application at any site, it was decided that each
driver would have a random arrival location (among all nodes) where he or she would enter the system.
When idle, the driver’s movement behavior is ruled by the scenario being tested. However, the Single
random roaming scenario allows drivers for deciding their destination when performing a roaming trip. To
accurately represent the actual decisions made by drivers, the GPS traces from Piorkowski et al. (2009)
permitted to characterize the driving patterns followed by idle cabs depending on their location, time of
the day, and day of the week.

In order to set the other inputs, previous reports from different sources were used. According to Uber,
10 % of their drivers offer “luxury” services; thus, drivers were created with a 10 % probability of having
the “luxury” attribute. Besides that, it is stated that 16.4 % of the total number of drivers have cars with
extra capacity, so that probability was used for drivers having five or six seats in the simulation, and the
rest of the drivers have a capacity of either three or four people. Each driver will accept every trip request
with a time distance smaller to their minimum threshold time (a random uniform value between two and
four minutes) and will reject every trip with a time distance exceeding their maximum threshold time
(random uniform value between 19 and 21 minutes). For all trip requests with a time distance between their
minimum and maximum threshold times, the driver would accept the ride with some probability, computed
using a decreasing linear function. Finally, we decided to consider 3 % of the TAZ areas as Hotspots. The
priority of each Hotspot was just the ratio of the arrivals in that location, divided by the total number of
arrivals.

4 RESULTS

First, we describe the validation process used to verify that the model was working properly. The riders’
spatio-temporal patterns were compared to the real-world data used. Afterwards, the parameters used in the
function creating the drivers’ arrivals were tuned in order to minimize the difference between the induced
drivers’ behavior and the data provided by SFCTA (2017), which presented a distribution on the number
of drivers in the San Francisco ride-hailing system according to the hour and day.

Next, the case study was performed on the four scenarios described in Section 3.3. The Single movement
scenario is the closest to the real behavior of drivers, because it is based on GPS traces collected for the
city during 2010 from 25,000 rides given by cab drivers in the era before ride-hailing companies. The
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Figure 3: Service level per scenario and arrivals’ conditions.

passengers’ arrival times were generated using the Markov-MECO method described previously. To study
the effect that different arrival conditions have on the four proposed scenarios, correlations of 0, 0.35 and
0.7 were used and coefficients of variation of 0.4, 1 and 2 were considered.

For each of the four scenarios and each of the nine different arrival conditions, ten replications of one
week of operations of a ride-hailing company, with around 36 % of the market share, in the San Francisco
area were simulated. Experiments were run on a Dell computer with Intel core i7-7,700 HQ CPU and 16
GB of RAM memory, taking around 18 hours for each replication (for the four scenarios), and a proper
random seed was given to make the scenarios comparable.

4.1 Overall Service Level

Figure 3 presents the average service level for the ten replications of each scenario under the nine different
arrival conditions. It is evident that all the tested scenarios have a service level above 95 % under all
conditions. However, the No-movement and Single-movement scenarios have clearly a higher service level
than the other two. The advantage appearing in those two scenarios is explained by the fact that demand
tends to be concentrated in the downtown area, as was shown in Figure 2, so that hotspots are mostly
located there, resulting in drivers ending up far away from non-dense arrival zones. This in turn implies that
the No-movement and Single-movement strategies are better prepared to serve clients from areas outside
downtown, as seen in Figure 5. The number of rides rejected by passengers in the hotspot scenarios are
nearly triple the value for the first two scenarios. The difference in service level between the No-movement
and Single-movement and the two hotspot policies is always between 2 % and 3 %, which is not insignificant
as 2 % represents around 8,400 rides per week. It must also be noted that the Nearest Hotspot scenario has
a higher service level than the Coordinated Hotspot scenario under all arrival conditions. Additionally, for
all scenarios, a higher correlation in arrivals (with constant variance coefficient) produces a smaller service
level, as it becomes harder to balance supply and demand when all arrivals are occurring in short intervals
of time.

Figure 4 shows the average number of missed arrivals to the system (rides) per block of time during
the week. Each block consists of three hours and the results for the 56 blocks, and the four policies
are presented under the most “chaotic” arrival conditions and under the “Poisson” arrival conditions. All
policies show the same trend, with higher values around the peak hours. It is also straightforward to
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Figure 4: Missed rides in the city per block of time.

see that the “chaotic” arrival conditions put more pressure on the system, therefore causing more rides
to be lost. The No-movement and Single-movement policies show a very close behavior, with the former
outperforming slightly the latter in quiet hours, whereas the opposite is true in peak hours. Furthermore,
the Nearest Hotspot and Coordinated Hotspot also have a very similar performance, and it can be seen
that their difference in the quiet hours with respect to the other two models is lower than 200 arrivals per
block. However, it can exceed 800 rides in the peak hours.

4.2 Overall Distance Driven per Ride

The No-movement scenario has the lowest distance driven per passenger under all arrival conditions, whereas
the Single-movement scenario has the highest distance driven per passenger. In fact, the No-movement
scenario has around 48 % reduction of distance driven with respect to the actual driver behavior (represented
by the Single-movement behavior). For all arrival conditions, the Nearest Hotspot scenario has a smaller
distance driven than the Coordinated Hotspot scenario by around 125 meters in average, and both scenarios
have savings of 25 % with respect to the Single-movement behavior.

A higher correlation in arrivals (with constant variance coefficient) increases the distance driven by
the hotspot scenarios. However, the impact in the No-movement and Single-movement scenarios is not
significant. This is probably due to the fact that both hotspot scenarios have more trouble serving demand
from areas outside the downtown, and that is further increased when the arrivals’ correlation is higher.

4.3 Zone Analysis

Figure 5 shows the average service level, average waiting time, and average number of rides lost per TAZ
on Fridays, between 6:00 PM and 9:00 PM (the busiest time of the week) for the four proposed policies.
The passengers’ arrival conditions are given by a correlation of 0.7 and variance coefficient 2, recreating
the most “chaotic” environment. It is easy to see that under these conditions that the No-movement scenario
is the one that provides the highest performance, as it has a higher service level and less waiting time
in most of the TAZ. Next, the Single-movement policy presents a similar behavior near downtown, but
performance declines outside of it. Both hotspot policies provide a similar performance in downtown, but
the waiting times are higher and the service level decreases outside of it.
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Figure 5: Average service level, average waiting time, and average missed rides per TAZ.
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Comparing the Single-movement and Nearest Hotspot policies, the former outperforms the latter in
all the TAZs that are outside downtown. The difference between the service level means is 5.37 %, but
the first quartiles differ in 19 % (with respect to total arrivals). With respect to the average waiting times,
similar results are obtained, with differences of nearly 40 seconds, whereas the difference of the maximum
average waiting time for a TAZ is around 55 seconds.

5 DISCUSSION

The No-movement scenario compared favorably versus all the other scenarios in driving efficiency, and its
service level nearly matched the highest one obtained by the Single-movement scenario. Differences in
distances driven between these two scenarios were relevant, as the static scenario resulted in a decrease of
48 %. In fact, the drivers’ real-world behavior is closely represented by the Single-movement scenario, as
the roaming events followed experienced cab drivers’ GPS traces. Assuming that it is possible to change
that behavior in the long term to the one proposed in the No-movement scenario, a reduction in driving
distances of around 1.73 miles per ride would be obtained, while maximizing the service level. This helps
to save more than 11 million dollars, and 57 million pounds of CO2 would not be released to the atmosphere
per year (savings computed considering the average annual gasoline price for San Francisco in 2019 of
3.76 dollars per gallon, 7 % of cars as electric, a performance of 35 miles per gallon of gasoline for every
gasoline-fueled car, and 19.64 pounds of CO2 being released to the atmosphere after burning one gallon
of gasoline).

In an ideal world, it would be advisable for drivers to wait for passengers in their respective locations, as
the system and society as a whole would receive the benefits (less congestion, less pollution, etc). However,
the solution is not plausible in the short and medium terms because of a lack of parking lots for this use in
the city and because of the drivers’ desire for a maximization of their revenues instead of a maximization of
benefits for the society. Thus, the static scenario should only be used as a tool to compare other scenarios
versus an ideal behavior. Considering the other three proposed scenarios, the Single-movement scenario has
the largest service level, which is explained by the fact that drivers know where to go in order to maximize
their rides. However, as drivers in ride-hailing companies usually have less experience, it can be expected
that the results for the real ride-hailing system may be worse.

As seen in results, the Nearest Hotspot outperforms the Coordinated Hotspot strategy, and when
compared to the Single-movement policy, it would help to save 7.9 million dollars per year and 38 million
pounds of CO2 released in the atmosphere. That being said, the Nearest Hotspot strategy seems to be the
best at balancing efficiency and service level. However, when the demand is harder to satisfy, that policy
is prone to do very well in the downtown area, but to fail at covering the needs of riders arriving far away
from the hotspots. Besides that, when comparing to the Single-movement policy, the riders need to wait
approximately 40 seconds more for a driver, which may not seem like a significant difference in absolute
terms, but shows the knowledge of taxi drivers, as their movements seem optimized to serve the highest
amount of passengers and arrive to them quickly. Finally, during the peak hours, the difference in missed
rides between the Nearest Hotspot and Single-movement policies is amplified. Thus, any strategy seeking
to implement the former policy should plan to react accordingly.

The implementation of the Nearest Hotspot policy is plausible, and would bring several economical
and environmental benefits to the community. However, as it was evidenced by the comparison during the
most “chaotic” conditions, it has some negative trade-offs that must be addressed. First, this strategy should
be executed with funds to build parking lots for drivers. In peak hours, around 6,500 drivers work in San
Francisco; considering a typical parking space of 5 by 2.4 meters. If half of the drivers are idle, a total
of 39,000 square meters of parking lots in the hotspot locations would be required. Also, the ride-hailing
companies should help using their data and developing procedures to compute the best hotspot locations.
Moreover, other means of transportation should be adjusted to provide support in the areas that are not
well covered by the ride-hailing system (i.e., outside downtown), or other incentives could be used to bring
more drivers to serve those areas in the moments of greater needs (i.e., pricing, benefits, . . . ).
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Finally, while the results obtained are valid for this case study, we assume that some of them can also
be generalized to other ride-hailing systems. In particular, the reduction in CO2 emissions by the “hotspot”
strategies and the No-movement scenario should be applicable to every ride-hailing system, but also the
increasing difficulty on implementing such strategies. Also, the fact that different arrival conditions seem
to have a similar effect on every tested scenario is something that should be possible to generalize, because
it only represents an increase on the stress the system receives, and that holds across cities. Also, it is clear
that some other results depend on the spatio-temporal behavior of drivers and riders, the road network, as
well as the matching and repositioning algorithms. But, the presented framework is useful to get results
under any change of the aforementioned parameters.

6 CONCLUSIONS

One week of operations of a ride-hailing company in the city of San Francisco with 36 % of the market
share was simulated. Drivers and passengers were created using historical data considering the spatio-
temporal behavior that they exhibit. Besides that, nine different set of parameters were used to produce the
passengers’ arrivals, which allowed us not only to compare the proposed scenarios but also to understand
the effect that the variation coefficient and correlation of passenger arrivals have in the performance of
the ride-hailing system. Results suggest that the effects of the passengers’ arrival conditions are similar
on the performance of the system for all the policies proposed and for all conditions. This makes sense,
because the changes on the passengers’ arrival conditions increase or diminish the stress received by the
ride-hailing system, but as all proposed strategies have a similar (and very high) service level, it is expected
that they are similarly equipped to handle the variations in the system’s dynamics. Moreover, if drivers
remained static while waiting for passengers, instead of driving while searching for them, the service level
would exceed 98 % and no other strategy would surpass that service level. Furthermore, when compared
to the actual situation, the distances driven by drivers would be reduced by 48 %. More than 11 million
dollars would be saved per year in gasoline, and 56 million pounds of CO2 would not be released into
the atmosphere. Nevertheless, it is not realistic to follow that strategy in the short term, because there is
no parking space for drivers, particularly in downtown. Other scenarios tested proved to provide a better
balance between service level and driving distance. However, switching to more-efficient systems like the
Nearest Hotspot scenario requires help from the community and ride-hailing companies, in addition to
investments in parking spaces, and some adjustments of the whole transportation system to be prepared
for the period with higher demand. Therefore, it should be regarded a medium-term project.

Future work should be performed with the goal of searching for other ways to enhance the performance
of the system. This may be done by introducing different variants to match drivers with passengers,
for example, cars changing their assigned passengers while going to pick them up or conducting as the
matching between drivers and passengers in fixed time intervals to obtain more-optimal pairings, among
other strategies. Additionally, other scenarios may be tested, like drivers being assigned to zones or giving
them a fixed schedule depending on the projected demand. Finally, pricing aspects could be considered to
understand their effects on the ride-hailing system and their effect on the drivers’ behaviors as well as to
improve the efficiency of the ride-hailing system in less-served areas.
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