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ABSTRACT 

The ongoing trend towards increased throughput capacity and scalability of automated warehouses is push-
ing the application of rail-guided automated vehicle storage and retrieval systems (AVSRSs). By deploying 
more vehicles on each tier and lifting system, the performance and adaptability of these systems can be 
further increased. However, the transformation into high-powered AVSRSs requires advanced algorithms 
to run the system in a robust and efficient manner. In this work, an approach to schedule and control multiple 
vehicles on a common track by using a tier of a high-powered AVSRS is presented. By running comput-
ational experiments, it can be shown that the developed algorithm enables a collision-free and fast execution 
of transport tasks. By deploying several vehicles on a tier, the completion time of the transport tasks can be 
decreased and, hence, the throughput capacity of the tier can be increased. 
 

1 INTRODUCTION 

Automated vehicle storage and retrieval systems (AVSRSs), also known as shuttle systems, represent a 
scalable and powerful way to store small unit loads and to supply picking or manufacturing areas on the 
basis of goods-to-person principle. This warehouse technology leverages the separation of horizontal and 
vertical transportation of units such as containers, boxes or trays in order to achieve high throughput capaci-
ties. Hence, vehicles are restricted to a single tier or lifting system to execute transport tasks in horizontal 
and vertical direction, respectively (FEM 2017). 
 In the case of storage, a lift vehicle of the lifting system picks up the transport unit (TU) to be stored at 
the input position and transports it to the respective tier. After laying the TU at the transfer buffer, a shuttle 
vehicle of the tier picks it up and moves the TU to the storage location. For a retrieval, the operations are 
reversed and the TU arrives at the output position. In order to carry out storage and retrieval jobs in an 
AVSRS, usually one shuttle vehicle operates at each tier and one lift vehicle moves in each lifting system. 
However, to further increase throughput capacity as well as to provide enhanced scalability and adaptability 
of new or already existing AVSRSs, more than one vehicle on each tier or lifting system could be deployed 
(Figure 1). This transformation into a high-powered AVSRS requires extended control algorithms to 
achieve a robust and efficient execution of transport tasks on tiers and in lifting systems. To ensure robust 
transportation, the vehicles have to be coordinated in order to prevent block events and collisions. Beyond 
that, the applied scheduling of the vehicles needs to minimize waiting times as well as driving routes, thus 
making the transportation efficient. 
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Figure 1: Segment of a high-powered AVSRS with two lift vehicles per lifting system as well as two 
shuttle vehicles per tier. 

  The resulting lift and shuttle vehicle scheduling problem is comparable to the crane scheduling 
problem, which has already been discussed in literature. It can be regarded as a special case of general 
machine scheduling and, thus, be assigned to NP-hard problems. The problem can be stated as follows: n 
transport tasks must be processed, whereby m vehicles are available. In this sense, the tasks have to be 
assigned to the vehicles with the goal to minimize the total completion time of the tasks. For this optimal 
assignment of tasks, the optimal trajectories of all vehicles have to be determined. However, since in an 
AVSRS lifting systems and tiers are interconnected via transfer buffers for TUs to be stored or retrieved, 
the interaction between these dynamic systems has to be considered, dynamically adapting the schedule 
and control of vehicles on a tier or lifting system to incoming transport tasks. Another feature of AVSRSs 
is to follow a given order of task execution when sequenced retrievals of TUs have to be provided. 
This paper investigates the vehicle scheduling problem that occurs in a high-powered AVSRS with multiple 
lift and shuttle vehicles that operate on the same shaft and rail, respectively, by generalizing the problem to 
multiple vehicles that move along a common track. Therefore, the developed approach consists of a 
scheduling part, i.e., assigning transport tasks to the vehicles, as well as a controlling part, i.e., planning the 
trajectories of the vehicles. The developed algorithm takes the dynamic interaction of vertical and horizontal 
transportation into account and allows for retrievals in sequence. In order to demonstrate the feasibility and 
efficiency of the approach to tackle the mentioned challenges, a tier of a high-powered AVSRS is 
exemplarily observed.  
 The remainder of the paper is organized as follows. In Section 2, related work on scheduling and con-
trolling AVSRS as well as on similar problems in other logistics applications is presented. Section 3 de-
scribes the proposed algorithm to assign the tasks to the vehicles and to plan the trajectories for execution. 
In Section 4, a series of computational experiments is carried out to evaluate the efficiency of the algorithm 
and to analyze different layout configurations. Section 5 presents and discusses the obtained results of the 
experiments. Finally, in Section 6, a conclusion of this contribution and an outlook for future research is 
provided.  

2 RELATED WORK 

In a high-powered AVSRS, multiple lift or shuttle vehicles move on a common track, i.e., in a shaft or on 
a rail, to execute transport jobs. Within vertical transportation, Carlo and Vis (2012) schedule two vehicles 
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in a common shaft of a lifting system via a block-sequencing algorithm that optimizes the sequence of the 
transport jobs with the help of heuristics. Zhao et al. (2018) supplement this approach by taking into 
consideration the acceleration and deceleration of the vehicles. Habl et al. (2019) apply several block-
sequencing algorithms to schedule up to five vehicles in a common shaft and evaluate the efficiency and 
robustness by conducting a simulation study.  
 For horizontal transportation, Habl et al. (2020) present different approaches to coordinate multiple 
vehicles that move along the same rail on a tier by introducing the shuttle vehicle scheduling problem. A 
block-sequencing algorithm is applied to schedule up to five vehicles on a common rail, and it is evaluated 
by simulation. By integrating relocation strategies, Habl et al. (2019) extend the application of the block-
sequencing algorithm to multi-deep storage racks. By applying a dynamic control of multiple vehicles on a 
common rail, Habl et al. (2020) present and analyze a control algorithm based on reservation of sections 
within the tier and priority rules for job allocation. When it comes to the application of AVSRSs with unit 
lifts in practice, usually only one vehicle operates on each tier and lifting system. Nevertheless, if several 
vehicles move along the same rail or shaft in practice, the vehicles mostly are restricted to an allocated zone 
in order to simplify the control. 

Besides AVSRSs, multiple vehicles with non-crossing constraints can be found in a variety of other 
logistics applications. Kung et al. (2014) propose an algorithm to schedule multiple stacker cranes in an 
automated storage and retrieval system (ASRS) by using dynamic programming. Kress et al. (2019) also 
present a dynamic programming algorithm and a related beam search heuristics to schedule two gantry 
cranes that move along a common rail. Peterson et al. (2014) present an algorithm to schedule several 
factory cranes on a common track by using a block-sequencing method and heuristics. To increase the 
efficiency of elevators, Takahashi et al. (2003) deploy two vehicles in a common shaft. In order to avoid 
collisions between vehicles, a zoning approach is applied and the optimal partitioning is identified by 
utilizing a genetic algorithm. Similarly, Ishihara and Kato (2013) apply a zoning approach that dynamically 
assigns a zone to each vehicle. Beyond that, Valdivielso and Miyamoto (2011) present and evaluate a 
control strategy based on a scheduling algorithm without zoning. In the field of robotics, Erdoğan et al. 
(2014) present heuristics and optimal approaches to schedule two robots on a common rail by introducing 
the twin robots scheduling problem. 

The scheduling and controlling of several vehicles that move along a common track occurs in many 
applications such as AVSRSs, ASRS, cranes, elevators, and robots. In the field of AVSRSs, different 
algorithms have been developed to accomplish safe and fast execution of transport jobs either in a lifting 
system or on a tier. However, in order to holistically optimize the transport processes in a high-powered 
AVSRS and to push the application of such systems in practice, the interaction between lifting systems and 
tiers as well as retrievals in sequence need to be considered by the control. The other logistics applications 
have already been discussed in literature. But, since in AVSRSs tiers and lifting systems are interconnected, 
existing solutions of other isolated applications cannot be completely adapted. Hence, this contribution 
extends the investigations on the control of a high-powered AVSRS from a holistic perspective by 
developing an approach that is able to integrate the interface between tier and lifting system and that enables 
sequenced retrievals.  

3 ALGORITHM 

The overall objective of the algorithm is to provide an assignment of a block of jobs to the vehicles that 
enables the execution of the jobs in a preferably small amount of time. Therefore, different assignments are 
investigated by searching the solution space. For every assignment, the target coordinates of every vehicle 
are determined and, subsequently, trajectories for every vehicle are planned to reach the targets. By means 
of the trajectories, the completion time for a block of jobs can be computed. Thus, the assignments can be 
compared to each other. 
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3.1 Task Assignment 

Each job contains a task to move to the pickup position of a TU and a task to move the TU to the delivery 
position. Basically, an assignment is composed of pairs (task, vehicle) that describe which task has to be 
executed by which vehicle. Those pairs are ordered to set the priority of each task, which defines the 
sequence of the tasks to be performed, allowing for a proper order of pickup and delivery as well as 
sequencing of TUs for retrieval. The best assignment is the one that enables the smallest completion time 
of all tasks by the available vehicles. In this context, each vehicle receives a set of trajectories that are 
divided in parts with uniformly accelerated movement. On the basis of the computed trajectories and, 
therefore, completion times for any assignment, the best assignment with the smallest completion time can 
be searched. This discrete optimization problem can be formulated as an assignment 𝐴 with 

 

𝐴 ൌ ൭
𝐴ଵ
…
𝐴ே
൱ ൌ  ൭

𝑇ଵ 𝑉ଵ
… …
𝑇ே 𝑉ே

൱ 

 
where 𝑁 is the total number of tasks 𝑇 that are assigned to vehicles 𝑉. The assignment also includes the 
priority through the order of the tasks. 

3.2 Coordinate Determination 

In any assignment, each task has been assigned to a vehicle and it has a certain priority, which defines the 
order of execution. When an assignment is forwarded to execution, the tasks are processed one by one 
according to the priority. As a consequence, at each point in time a task is prioritized and it is executed by 
a vehicle, whereas all the other vehicles have to avoid interferences with the prioritized vehicle. In order to 
minimize driving routes, the avoidant vehicles keep as close to their next task destinations as possible and, 
thus, at each priority every vehicle has a target coordinate to which it moves. To determine the target 
coordinates, two different operation modes of the vehicles are distinguished. Every vehicle that still has 
pending tasks for execution operates in fast mode, which means that the vehicle needs to move to the target 
coordinate as fast as possible. If a vehicle has already finished its assigned tasks, the vehicle operates in 
lazy mode, which means that it waits as long as possible.  

As an example, Figure 2 shows the computation of target coordinates for the two vehicles R (red circle) 
and G (green rectangle) and one assignment (2 R, 1 G, 3 G, 3 R), where the number represents the task 
coordinate and the letters stands for the vehicle. At the beginning (Initial), the two vehicles are located at 
the initial coordinates 1 and 2 and operate in fast mode. It is iterated over all priorities. At priority 1, task 2 
R is forwarded and vehicle R instantly gets the coordinate of its current task as a target coordinate (marked 
with a black dot). At priority 2, task 1 G is forwarded and vehicle G receives its target coordinate 1 at the 
current priority. The target coordinates for previous priorities (marked with a white dot) are computed 
backwards. Since there is no interference with vehicle R, vehicle G simply stays at coordinate 1. At priority 
3, task 3 G is forwarded and vehicle G receives the target coordinate 3. At priority 4, task 3 R is forwarded 
and vehicle R receives the target coordinate 3. Since an interference between the vehicles is possible, the 
coordinates are constrained by the already computed target coordinates. The resulting target coordinates 
are (1, 1, 3, 2) for vehicle G and (2, 4, 4, 3) for vehicle R. 

3.3 Trajectory Planning 

Each movement to a target coordinate contains a period of constant acceleration, maximum speed, and 
constant deceleration. Depending on the current position and speed of the vehicle, these periods differ from 
each other and some periods may be absent, respectively. The time needed to move to a target coordinate 
is denoted as 𝑡௠௢௩௘. 
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Figure 2: Determination of target coordinates of two vehicles for an exemplary assignment. 

 
 If the vehicle is able to reach the maximum speed, the time 𝑡௠௢௩௘ consists of the time needed to reach 
the maximum speed 𝑡௔௖௖௘௟, the time needed to move with the maximum speed 𝑡௖௢௡௦௧ and the time needed 
to stop 𝑡ௗ௘௖௘௟.  

 

𝑡௠௢௩௘ ൌ 𝑡௔௖௖௘௟ ൅ 𝑡௖௢௡௦௧ ൅ 𝑡ௗ௘௖௘௟ ൌ
𝑣௠௔௫ െ |𝑣|
𝑎௠௔௫

൅
𝑠௖௢௡௦௧
𝑣௠௔௫

൅
𝑣௠௔௫

𝑎௠௔௫
 

 
 In case the vehicle only reaches an intermediate speed 𝑣௜௡௧, 𝑡௠௢௩௘ consists of an acceleration and 
deceleration period. 

 

𝑡௠௢௩௘ ൌ 𝑡௔௖௖௘௟ ൅ 𝑡ௗ௘௖௘௟ ൌ
𝑣௜௡௧ െ |𝑣|
𝑎௠௔௫

൅
𝑣௜௡௧
𝑎௠௔௫

 

 
 If the vehicle needs only to stop, 𝑡௠௢௩௘ consists just of a deceleration period. 

 

𝑡௠௢௩௘ ൌ 𝑡ௗ௘௖௘௟ ൌ
|𝑣|
𝑎௠௔௫

 

 
 Based on the initial and computed target coordinates for every vehicle at each priority, the trajectories 
are planned by looping over all priorities. For each vehicle, the fastest trajectory to the target coordinate is 
constructed and loading or unloading parts are appended. Collisions between vehicles are avoided due to 
the way the target coordinates are constructed. As an example, Figure 3 shows the planning of the 
trajectories for the two vehicles R and G and the assignment (2 R, 1 G, 3 G, 3 R) from above. The solid 
parts correspond to loading or unloading processes, the dotted parts to an empty vehicle, and the dashed 
parts to a vehicle that transports a TU. It is iterated over all priorities, again. At priority 1, the prioritized 
task is at coordinate 2 and it is performed by vehicle R. Since vehicle R is already at its target coordinate, 
it can perform the task (solid line). Vehicle G waits (dotted line) as it is also at its target coordinate (see 
Figure 3a). At priority 2, the prioritized task is at coordinate 1 and it is performed by vehicle G. Since 
vehicle G has already been at the target coordinate, the waiting part is replaced by the loading part (see 
Figure 3b). At priority 3, the prioritized task is at coordinate 3 and it is performed by vehicle G, so it needs 
to move to coordinate 3 and, then, can perform its task. Vehicle R moves to its target coordinate 4 and waits 
(see Figure 3c). At priority 4, the prioritized task is at coordinate 3 and it is performed by vehicle R, so it 
needs to move to coordinate 3 and then can perform its task. Vehicle G moves to its target coordinate 2 and 
waits. The job block is finished and the completion time can be computed (see Figure 3d). 



Habl, Evseev, and Fottner 
 

 

 
Figure 3: Trajectory planning of two vehicles. 

3.4 Solution Space Search 

The solution space consists of all possible assignments. It is explored by using a genetic algorithm, for 
which mutations or moves on the solution space need to be defined in order to get to the next solution. 
When a move is attempted, it is checked for validity, i.e., it must not break the sequence or assign a task to 
an occupied vehicle. The following three variants of moves are defined in order to traverse the solution 
space: 
 

 T-move: Swap priorities of two consecutively prioritized tasks. 
 V-move: Swap jobs between two neighboring vehicles. 
 J-move: Swap priority numbers of two jobs that are performed consecutively by the same vehicle. 

 
 The search algorithm starts the exploration of the solution space with a greedy assignment. It is 
determined on the basis of the distances between vehicles and tasks. Each vehicle receives the task, whose 
start location is closest to the vehicle position. The corresponding priority is defined by the length of the 
distance, whereas a shorter distance means a higher priority. Then, the moves are performed within 
branches (branch number). Each branch describes a sequence of moves with a defined length (step number). 
Subsequently, the completion times for the assignments in the branches are computed based on the 
calculated trajectories. It is defined as the time at which all tasks are performed. After sorting of the 
assignments by completion time, the best assignments (cut number) with the smallest completion times are 
extracted. This process is repeated multiple times (iteration number) and the most promising assignment is 
selected. Figure 4 summarizes the process of getting the best achieved assignment of tasks to the vehicles. 

4 COMPUTATIONAL EXPERIMENTS 

The developed algorithm is implemented in a Python application that enables the analysis of the 
performance in different parameter settings. Every experiment contains 10,000 transport jobs that are 
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generated randomly and are composed of storages and retrievals. The jobs are divided into job blocks with 
a defined number of jobs per block (job block number). For every block, the algorithm accomplishes the 
assignment of tasks, determination of target coordinates as well as planning of trajectories. On the basis of 
the trajectories of the vehicles, the completion time for each job block can be computed. The applied 
parameter specifications of model and algorithm are shown in Table 1. In the following experiments, the 
number of vehicles deployed as well as the configuration of the lifting systems are varied in order to test 
the algorithm in different model specifications. Besides, the number of job blocks, i.e., the total number of 
transport jobs is analyzed regarding the quality of the results. 

 
Figure 4: Process of getting the best achieved assignment. 

5 RESULTS 

The completion time of a job block provides information about the throughput of the system, which is a 
key figure to evaluate the performance of the algorithm. Figure 5 shows the average completion time for a 
job block with respect to the number of vehicles deployed. The average completion time decreases steadily 
when increasing the number of vehicles. By deploying two vehicles, the completion time can be reduced 
by 48 % compared to the deployment of one vehicle. However, when deploying more than two vehicles, 
completion times decrease to a smaller extent. Since multiple vehicles can execute several jobs in parallel, 
a block of jobs can be finished in a shorter amount of time. This effect is reduced when the number of 
vehicles deployed is further increased, since the number of evasion maneuvers increases, too.  It can be 
stated, though, that the throughput capacity can be increased by deploying more than one vehicle and by 
applying the developed algorithm. 

Figure 6 shows the average completion time for a job block depending on the configuration of the 
lifting system. It turns out that adding more lifting systems can decrease the completion time, especially 
when positioning the lifting system in the center of the tier. In this sense, by positioning lifting systems in 
the center (configuration 2), the average completion time can be decreased by 32 % compared to lifting 
systems in the front (configuration 1). However, by deploying lifting systems in the front as well as in the 
center (configuration 3), the average completion time can be decreased by 18 % compared to lifting systems 
only in the center (configuration 2). When positioning lifting systems in the front and in the back 
(configuration 4), the completion time slightly increased compared to lifting systems in the front and in the 
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center (configuration 3). Finally, the smallest average completion time of 25 s for a job block can be 
achieved by positioning lifting systems in the front, center as well as back (configuration 5). 

In order to investigate the quality of the results in terms of the number of transport jobs per experiment, 
Figure 7 shows the cumulative mean of completion time when processing different numbers of job blocks. 
The number of tests corresponds to the number of processed job blocks. It turns out that the solutions 
quickly converge to the average completion time of 56.7 s (see Figure 6). 

Table 1: Parameter specifications and configurations. 

Tier 
Length 20 m 

Number of vehicles 1 - 5 
Distance between storage locations 1 m 

Vehicle 
acceleration/deceleration 2 m/s² 

Velocity 2 m/s 
Loading time 1 s 

Safety distance 0.1 m 
Length 1 m 

Lifting system 
Front position 1 

Centered position 2 
Front and centered position 3 

Front and back position 4 
Front, centered and back position 5 

Algorithm 
Cut number 10 

Iteration number 20 
Step number 10 

Branch number 10 
Job block number 10 

 
 

 
Figure 5: Average completion time depending on the number of shuttle vehicles by applying lifting 

system configuration 1. 
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Figure 6: Average completion time depending on the configuration of the lifting system by deploying 

three shuttle vehicles. 
 
 

 
Figure 7: Cumulative mean of completion time by deploying three shuttle vehicles and by applying lifting 

system configuration 1. 

6 CONCLUSION AND OUTLOOK 

High-powered AVSRSs represent a new variant of AVSRS that can provide increased flexibility and 
dynamics. In this paper, an algorithm to schedule and control multiple vehicles on a common track by 
means of a tier in a high-powered AVSRS is presented. The developed algorithm consists of assignment of 
tasks, determination of target coordinates, planning of trajectories, as well as search of the solution space. 
By running computational experiments, the following main results were identified: 
 

 By deploying more than one vehicle on a common track, the completion time can be reduced 
significantly and, thus, the throughput capacity of the system can be increased. 

 The number and position of lifting systems affects the completion time of the tasks. By adding 
more lifting systems, the completion time of the tasks can be decreased. Centering the lifting system 
further decreases the completion time and increases the throughput capacity of the tier. 
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 In future work, the algorithm needs to be adapted to lifting systems, in order to schedule and control 
multiple vehicles in a common shaft. Subsequently, the developed Python application can be integrated in 
a discrete event simulation model of a high-powered AVSRS to evaluate the robustness and efficiency of 
the algorithm. In order to optimize the algorithm in terms of task assignment, the applied parameters can 
be further varied and tested. 
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