
Proceedings of the 2021 Winter Simulation Conference 
S. Kim, B. Feng, K. Smith, S. Masoud, Z. Zheng, C. Szabo and M. Loper, eds. 

DESIGNING AND IMPLEMENTING OPERATIONAL CONTROLLERS FOR  
A ROBOTIC TOTE CONSOLIDATION CELL SIMULATION 

 
 

Leon McGinnis 
Shannon Buckley 

Ali V. Barenji 
 

The Georgia Institute of Technology 
School of Industrial and Systems Engineering 

Physical Internet Center 
Atlanta, GA 30332-0205, USA 

 
 

ABSTRACT 

Operational control is a key driver of production system performance, yet the design of operational 
controllers is not well-covered in the production systems simulation literature.  With a robotic cell 
consolidating totes for delivery in a logistics hub as the use case, we describe the design of the cell’s 
operational controller and an implementation approach used in an AnyLogic™ hybrid agent-discrete event 
simulation. Research motivation is discussed.  Design principles are clearly explained, and key aspects of 
implementation for AnyLogic™ are presented. A companion Emulate3D™ model is described for 
obtaining realistic estimates of operation cycle times. Implications for the engineering of operational 
controllers in digital twins are addressed. 
 

1 INTRODUCTION 

Operational control as defined in the ISA-95 standard (International Society of Automation 2021) is the 
translation of production plans into the execution of production operations.  For example, the plan to 
produce 100 widgets must be translated into the processes executed by production resources to realize those 
100 widgets.  Specific production tasks must be identified, tasks must be assigned to specific resources, and 
queues of tasks must be managed.  ISA-95 is the current standard for manufacturing operations management 
controllers, and while it identifies the information requirements for the various functions in operational 
control, it does not address the design or implementation of operational controllers; in particular it does not 
address decision-making in operational control. 

Operational controllers are a critical component for smart factories and the realization of initiatives like 
Industry 4.0, where good reliable operational decision-making is critical to success. Contemporary 
manufacturing execution systems (MES) are proprietary closed systems, thus are not an adequate 
foundation for building and testing the conceptual models necessary to develop the computational decision-
making bridge from planning to execution that is required for smart manufacturing. Open, generic models 
and implementation examples are a fundamental requirement.   

While there is a vast literature on decision making for operations control functions, such as job 
scheduling and sequencing, batching, and setup sequencing, this literature is difficult to synthesize with the 
recommendations of ISA-95 because invariably the research assumes a specific form for the decision 
problem and focuses on the analysis to resolve that problem.  To produce a generic operational controller 
architecture for ISA-95, attention must be given to the events corresponding to ISA-95’s information flows 
in order to properly identify and define the decision problem relevant for a particular situation.   

978-1-6654-3311-2/21/$31.00 ©2021 IEEE



McGinnis, Buckley, and Barenji 
 

 

The gap between the research on operational control and decision making and its implementation in 
smart manufacturing is exemplified in a recent and extensive survey of production planning and control 
(PPC) in Industry 4.0. Bueno et al. (2020) concluded “no studies were found regarding decision support 
systems for smart PPC systems, frameworks, or architectures in the context of moving toward PPC 
digitalization” and recommended research on “development of intelligent decision support systems, 
frameworks, architectures, and models to advance and consolidate smart manufacturing planning and 
control”. 

The contribution of this paper is providing a concrete example of an operational controller that 
conforms to ISA-95, embodies the necessary computational decision making to be considered “smart” and 
has a plausible path to implementation.  This is accomplished with two different but related models; one 
based on AnyLogic™ (The AnyLogic Company 2021) to support controller development and application-
oriented assessment, and one based on Emulate3D™ (Rockwell Automation 2021) to develop realistic 
operational cycle times for processes not yet implemented in physical hardware.   

Section 2 summarizes the relevant prior literature on the requirements and architecture for 
manufacturing operational controllers and Section 3 describes a relevant use case.  Section 4 addresses the 
functional design of an operational controller for the use case and Section 5 describes its implementation 
in AnyLogic™.  Section 6 addresses the role of Emulate3D™.  Some initial empirical results are discussed 
in Section 7 and future work is discussed in Section 8. 

2 PRIOR RESEARCH 

Discrete-event logistics systems or DELS are described by McGinnis (2010). In DELS, flow units with 
well-defined processing requirements move through a network of resources, each of which has one or more 
process capabilities. Resources transform the flow units by exercising process capabilities.  The unit flow 
and the execution of resource capabilities are managed by controllers through the assignment of tasks, 
which are authorizations for an execution of a process capability.  The DELS semantics are presented by 
Sprock et al. (2019) and provide a generic framework within which to explore the realization of operational 
controllers.  Many systems, from warehouses, factories and supply chains to hospitals can be characterized 
as DELS. 

The large literature on scheduling and related issues in manufacturing is examined by Sprock (2016) 
and a unifying set of operational control decisions is identified.  This analysis of operational control is 
summarized by Sprock et al. (2019), where the complete set of possible operational control decisions are: 
(1) task accept/reject; (2) task sequencing (time of execution start); (3) task-to-resource assignment; (4) 
dynamic process planning (typically, identifying material handling tasks); and (5) resource setup (changing 
resource state). Sprock and McGinnis (2015) propose functional requirements for operational controllers, 
and McGinnis (2019) proposes the functional controller architecture shown in Figure 1, which presents a 
structural rather than procedural description of the functional architecture. 

The TaskCommunicator function of a DELS controller receives and issues task requests and responses 
to task requests, interacting with external DELS and with owned resources.  For example, the DELS 
controller receives a task request, determines it can meet the request, responds to the requestor, then deter-
mines how an accepted task can be executed and issues task requests to one or more of its owned resources.  
Each received task request or response corresponds to some kind of event. The EventDirector function 
determines what kind of event has occurred and if a controller action is required it initiates that action.  One 
class of actions is performed by the ModelMaintainer which maintains the necessary resource and task state 
information for the DELS.  Another class of actions is decision-making in which the AnalysisFormer 
function uses the ModelQuerier function to obtain appropriate information from the PlantTaskModel in 
order to formulate an appropriate decision problem which is analyzed by the Solver function.  If the result 
is the identification of a task that can executed, the TaskDefiner function translates the solver solution into 
an executable task which is communicated to the appropriate resource by the TaskCommunicator function. 
The realization of these controller functions will clearly depend upon the particular application. 



McGinnis, Buckley, and Barenji 
 

 

 

Figure 1 Controller functional architecture. 

3 A USE CASE 

Montreuil et al. (2021) describe an innovative approach to parcel logistics in which parcels at an 
originating hub are grouped into containers (in this case totes) based on their destination hub and are 
transported between hubs in standardized racks designed to fit within a standard truck or semi-trailer.  A 
rack departing an originating hub may have totes for several different destinations, and travel through a 
network of intermediate hubs where the key function of the intermediate hub is to consolidate totes from 
arriving racks into departing racks for transport to their next destination. The hubs are DELS with the key 
resource type being a robotic consolidation cell (RCC) as illustrated conceptually in Figure 2.   

 

Figure 2: Conceptual robotic consolidation cell. 

A hub might have many instances of the RCC in order to meet the peak throughput requirements. While 
control of the hub itself is a significant design challenge, the focus here is on the control within the 
individual RCC, which also is a DELS. The RCC will receive racks with manifests (identity of contained 



McGinnis, Buckley, and Barenji 
 

 

totes and the tote destinations), and designation of racks as “strip” racks (racks with no assigned destination) 
or “stack” racks (racks with assigned destination).  Individual totes may be moved from one RCC to another 
by a ToteBot. Within the RCC the ShuffleBot moves totes from strip racks to stack racks, or between a 
ToteBot interface and a rack. A hub-level controller will determine when racks or totes should enter or leave 
an RCC. The RCC also will receive information from the hub controller that may be used to determine 
priorities for rack consolidation, perhaps based on the target departure time of stack racks.   

In Figure 3 a conceptual model of an RCC is shown in the dashed line box, with a cell controller, here 
identified as ShuffleCellAgent, with access to all relevant information about the state of the cell, i.e., the 
racks in the cells and the manifest for each rack, as well as the destination code for each rack.  The destin-
ation code will identify the rack as a strip rack or a stack rack with a specific destination. The rack manifest 
will specify for each location in the rack, the contained tote ID (if occupied) and information usable to 
prioritize tote consolidation actions, such as target departure time. The RCC controller determines what tote 
move to make next, considering all the possible tote moves that will improve rack consolidation and the 
corresponding robot controller (identified as ShuffleBotAgent) will manage the execution of the tote moves 
by invoking the ShuffleBotActuator movement capabilities.  The ShuffleBotActuator can access two kinds 
of locations, those where racks are positioned and those where a ToteBot can deliver or retrieve a tote. 
When a strip rack is depleted or a stack rack can no longer be improved, the RCC agent will notify the hub-
level agent, here identified as ShuffleCenterAgent, which may have the identified rack removed and 
replaced. 

In Figure 3 the “agent” designation is used in the sense of Luck and d'Inverno (2001), i.e., “an object 
with a non-empty set of goals”.  In the case of the ShuffleCellAgent, the goal is to achieve as much 
consolidation as possible, using the ShuffleBot in the shortest possible time, and for the ShuffleBotAgent the 
goal will be to achieve a specified tote movement, using the ShuffleBotActuator capabilities, in the most 
efficient way. The implementation of these agents will depend on the precise statement of the goals, the 
physical configuration of the ShuffleCell, and the technology of the ShuffleBotActuator and will determine 
the degree of optimization achievable.  

 

Figure 3: RCC physical and control architecture. 

In summary, an RCC is a DELS with capabilities to consolidate totes from strip racks to stack racks or 
to move totes between rack locations and a designated transfer location where totes are placed for movement 
between RCCs. The set of racks in the RCC can be changed by the hub level controller, so the RCC also 
has the capability to update its rack set information; similarly for tote transfer information. Finally, it has 
the capability to notify the hub-level controller when it has exhausted all the consolidation-improving tote 
moves associated with a rack, or it has moved a tote from or to the tote transfer location. 



McGinnis, Buckley, and Barenji 
 

 

For systems like the RCC, there are two major issues for simulation.  One is to capture with sufficient 
fidelity the decision-making about the choice and sequencing of tote moves, i.e., the logic driving the system 
behavior, which is captured in the ShuffleCellAgent and, as we show, can be achieved in a repeatable manner 
by exploiting the modeling capabilities of AnyLogic™. The other is to model with sufficient fidelity the 
cycle time of the individual tote movements, i.e., the consequence of the control of the physical actuators 
that are part of the ShuffleBotActuator.  A conventional agent-based or discrete-event simulation model 
either randomly samples a predefined distribution or uses tables of predefined constants for such cycle 
times. For that reason, we also have created an emulation of the RCC using Emulate3D™, which allows 
for physics-based emulation of robotic movements, from which cycle time distributions can be obtained for 
each kind of location-to-location movement by the robot.  These empirically obtained cycle times then can 
be used in the AnyLogic™ simulation of the RCC. 

4 RCC CONTROLLER CONCEPTUAL DESIGN 

Controller design must specify how the functions identified in Figure 1 will be implemented. It is important 
to keep in mind that Figure 1 presents a functional architecture rather than an implementation architecture. 
In this section, we explain how this functional architecture can be realized from a conceptual perspective. 
Section 5 will describe a concrete instantiation. 

Conceptually, TaskCommunicator function could be implemented as function calls between the three 
controllers. The hub-level controller (ShuffleCenterAgent) could call a function of the RCC controller to 
update the state of rack or tote positions when new racks or totes are added to the cell, or to instruct the 
RCC controller to place a tote in one of the tote transfer locations for removal. The RCC controller could 
call functions of the ShuffleCenterAgent to identify racks whose consolidation cannot be improved and to 
indicate that a tote has been removed from a tote transfer location.  The RCC controller could call functions 
of the robot controller to transmit the next required tote move, and the robot controller could call a function 
of the RCC controller to indicate move completion. 

EventDirector could be distributed in two ways.  First, any call to a callable function represents an 
event, and the called function can make appropriate changes to the model data of the plant or task.  Second, 
whenever a discrete event process completes (corresponding to some physical operation completion), the 
resulting state change could trigger an update the PlantTaskModel. 

PlantTaskModel is first of all a collection of information showing the set of racks in the cell and the 
state of each rack with regard to its contained totes.  In addition, the PlantTaskModel must maintain 
information that is needed to make decisions about tote movements, such as priorities, as well as 
information that may be used to compute performance metrics. This information may be local to the RCC 
or it could be maintained in some centralized database. 

AnalysisFormer implements the logic for determining which, if any, tote move could be executed next.  
This involves determining the set of feasible moves (a tote that could be moved and an empty location to 
which it could be moved). Determining the set of feasible moves involves examining the rack and tote 
information in the PlantTaskModel and constructing the available move list. This function is triggered 
whenever the PlantTaskModel changes. 

Solver requires selecting the best move from the list of potential moves and requires some metric for 
prioritizing the moves.  For example, the best next move might be the one from the list of feasible moves 
involving a tote that has the earliest departure time. This function is triggered whenever the AnalysisFormer 
determines there is at least one feasible move. 

TaskDefiner simply translates the selected tote move into the parameters needed to call the associated 
ShuffleBotAgent function. 

We assume that each of the identified functions will have a well-defined signature of the form 
functionName(set of input parameters, set of response parameters). The identification of the input and 
response parameters is particular to the technologies and the details of implementation. 

The translation from concept to implementation must consider the target implementation platform and 
its capabilities for implementing these concepts.  



McGinnis, Buckley, and Barenji 
 

 

5 RCC CONTROLLER IMPLEMENTATION IN ANYLOGIC™ 

Realizing the RCC controller conceptual design requires implementing the specified functions in a specific 
platform. In our AnyLogic™ simulation model of the RCC, all objects, including the racks, totes, tote 
movers, ShuffleCenterAgent, ShuffleCellAgent and ShuffleBotAgent are represented as AnyLogic™ agents.  
The agent representation enables information to be associated with objects, using both parameters and 
variables.  For example, an AnyLogic™ agent representing a tote may have attribute values indicating its 
destination and its target departure time.  An agent representing a tote mover may have parameters indica-
ting its travel speed and time to dock at a transfer location.  Using agents to represent the units of flow, the 
resources, and the controllers allows grouping agents into useful collections, e.g., a collection of the totes 
in a rack or a collection of the racks in a cell.  The contents of collections are easily manipulated for selecting 
the “best” member of the collection.  

Even though they represent only information, potential tote move tasks also are modeled as 
AnyLogic™ agents. This allows sets of potential moves to be manipulated as collections. For example, if 
all the feasible tote moves are in a collection, it is easy to find the one with the highest computed priority 
index.   

AnyLogic™ agents also may have functions, for example a function that uses variables or parameters 
to compute attributes of the agent or to manipulate collections to which the agent belongs.  For example, 
the agent representing a potential tote move may have a function to compute the priority for that tote move.  
The agent representing the ShuffleCellAgent may have functions that find all the (feasible) potential moves 
(using the state information for totes and racks) and that estimate their process times (using the location 
data for any identified move and performance information about the ShuffleBotActuator).  

The behavior of the RCC is modeled in two ways.  First, the logical behavior of the RCC controller is 
modeled using state charts.  The AnyLogic™ state chart allows specifying actions to be taken upon entering 
or leaving a state, and it allows conditions under which transitions between states can occur.  Both the 
actions and the conditions can involve significant computation and are coded in Java™.  State charts are 
very convenient for modeling the logical behavior of the RCC controller.  

The operational behavior of the RCC resources, for example the robot actuator, is modeled using 
AnyLogic™ blocks enter, exit, delay, moveTo, and service.  When a task is assigned to a resource, the 
corresponding agent joins an empty, single-unit capacity queue, immediately moves to the assigned 
resource and is delayed for the duration of the operation, then moves to an empty single-unit capacity queue 
and leaves. 

This approach to implementing the RCC controller allows clear separation of plant and control, as 
illustrated in Figure 4.  The state chart at the left of the figure captures part of the logic of the RCC controller, 
specifically the states in which the controller may be found and the transitions between states.   

Once totes and racks begin arriving to the RCC, it is in the ReadyToShuffle state and it transitions to 
Shuffling1 state by executing the code shown for transition20, which determines the best tote move to make 
(if there is a feasible move) and orders it to be executed by calling the f_orderShuffle() function. The f-
_orderShuffle function takes the selected potential move, moveToDo, and sends it to the process at the lower 
left corner of the figure.  When that process is complete, the statechart transitions from Shuffling1 to delay4 
where the state is updated to reflect the tote move and the process repeats. 

The pattern of implementation shown in Figure 4 is repeated for the processes of adding racks or totes 
to the RCC or removing them.  The implementation for these processes creates events associated with the 
completion of a process, and these events are handled in the addTBandRack1 state where appropriate 
changes are made to the PlantStateModel, i.e., the attribute values of the relevant agents. 



McGinnis, Buckley, and Barenji 
 

 

 

Figure 4: Separating plant and control in AnyLogic™. 

Returning to Figure 1, the PlantStateModel is captured in the collections of agents with their parameters 
and attribute values.  The events corresponding to controller state changes cause functions to be called that 
update the state model. At any point in time, the state model gives a complete account of the rack and tote 
transfer positions in the RCC as well as the specific racks and their constituent totes. If one felt it necessary, 
a collection could gather all these agents into one “state collection”. The PlantStateModel function is 
implemented in this manner. 

The AnalysisFormer function from Figure 1 is implemented in the state Shuffling1 in Figure 4 when 
the collection of potential moves is updated. 

The Solver function from Figure 1 also is implemented in the state Shuffling1 in Figure 4 simply by 
sorting the collection of potential moves by decreasing urgency. 

The TaskDefiner function from Figure 1 also is implemented in Shuffling1 in Figure 4 by passing the 
selected move, modeled as an agent, to the process model for execution. 

All the controller functions identified in Figure 1 are implemented in the combination of state charts 
and functions.  Of course, the RCC is a very simple DELS, with only one externally observable capability, 
i.e., to move totes between racks and tote transfer locations in order to improve the consolidation of selected 
racks. While the intent here is not to discuss the entire hub simulation, it is worth noting that the plant-
control separation illustrated in Figure 4 is replicated at the next higher level of the hub simulation model, 
where the control decisions include when to initialize or shut down an RCC, which racks to send to an RCC, 
what to do with racks that are removed from an RCC, and when to move totes between two RCCs.  

The specific implementation of the AnalysisFormer and Solver functions may be based on a very simple 
heuristic (e.g., choose the task corresponding to the tote with the least remaining time to scheduled 
departure), or it could be based on a complex optimization (e.g., sequencing the feasible tote moves to 
minimize the unloaded robot travel). In fact, the implementation approach described here can support 



McGinnis, Buckley, and Barenji 
 

 

multiple AnalysisFormer and Solver implementations with a simple switch function to select the one to be 
used at any point in the simulation.     

6 RCC IMPLEMENTATION IN EMULATE3D™ 

AnyLogic™ proved to be a very capable platform for developing the hybrid agent-discrete event simu-
lation, but it has one significant drawback in terms of evaluating novel technological implementations.  The 
process times themselves cannot be estimated from the AnyLogic™ model but must be provided from some 
external source.  Without a physical laboratory in which to experiment, this presents some challenges. 

There are several software products available today that allow physics-based modeling of devices and 
systems.  These kinds of models tend to be quite time-consuming to develop and are not easily modified to 
reflect alternative arrangements or technology selections.  The benefit of using them would be the resulting 
estimates of process times that could then be transferred to more conventional simulation models where 
alternative configurations are more easily modeled and tested. 

We chose to use Emulate3D™ to develop a physics-based model of the RCC.  A rendering of the initial 
model is shown in Figure 5.  This model was used to develop point-to-point move times for the robot, both 
with and without a tote.  

 

Figure 5: VR rendering of RCC. 

Ideally, exactly the same RCC controller implementation would be possible for both the AnyLogic™ 
and Emulate3D™ models.  However, differences between the two platforms eliminate the possibility of 
directly porting the AnyLogic™ controller implementation into the Emulate3D™ model.    

Fortunately, at this time, our primary objective in creating the emulation is to develop plausible cycle 
time distributions for the point-to-point movements of the ShuffleBot, both with and without a tote.  These 
cycle time distributions are not likely to be dependent upon the sequencing of the moves, so even if the two 
controller implementations do not produce exactly the same sequence of moves, the emulation results still 
will be appropriate for use in the hybrid agent/discrete-event simulation. 

This approach is not without significant challenges.  Creating a physics-based simulation of technology 
that does not yet exist requires making assumptions and designing controllers that direct the sensors and 
actuators of the modeled physical system. Significant development may be needed to optimize manipulator 
trajectories in order to minimize operation cycle times, and the estimated cycle times should be viewed as 
conservative and subject to improvement. 



McGinnis, Buckley, and Barenji 
 

 

7 INITIAL EMPIRICAL RESULTS 

The Emulate3D™ model was used to develop cycle time distributions for possible point-to-point ShuffleBot 
moves.  Our implementation of the ShuffleBot  combined a transport platform and a conventional robot.  To 
create a cycle time model, we used Emulate3D™ to estimate the translation times of the transport platform, 
and the times for the robot to move from one possible tote location to another, both with and without a tote.  
Tote locations are designated by a level (1-4) and a side (right or left).  Table 1 contains a sample of the 
kinds of results that can be developed using Emulate3D™. Cycle times can be computed by combining 
these two operation times so the AnyLogic™ model does not have an explicit representation of the 
ShuffleBotAgent. 

While observing the operation of a single ShuffleCell is important to verify the ShuffleCell is behaving 
as planned and expected, it is not adequate for assessing the ShuffleCell concept as the basis for proposing 
an innovative parcel logistics hub.  To do that, a full hub simulation is required. As described by Montreuil 
et al. (2021), this hub has receiving and shipping functions based on racks containing totes; staging areas 
for racks after receiving or prior to shipping and a ShuffleCenter containing instances of the ShuffleCell as 
well as instances of a companion BufferCell where racks may be stored temporarily when they are not 
assigned to a specific ShuffleCell.  The ShuffleCell and BufferCell have the same footprint, allowing for 
considerable flexibility in the physical arrangement of functions within the ShuffleCenter.  An example of 
one potential realization of the full hub is shown in Figure 6, which is a snapshot from an executing 
AnyLogic™ full hub simulation. 

Table 1: Sample of Emulate3D(tm) results. 

 
 
The initial experimentation uses parcel shipment data from a conventional hub, where approximately 

400,000 parcels per day were received, sorted and shipped.  The parcel data were analyzed and then parcels 
were containerized into totes, i.e., a single tote would contain a set of parcels that would fit in the tote, be 
coming from a single origin and have the same destination.  For the synthetically containerized totes, the 
assigned arrival time corresponded to the original arrival time of the contained parcels, and the assigned 
target departure time corresponded to the original departure time of the contained parcels. 

Given this input data set and the configuration shown in Figure 6, which has 30 ShuffleCells and five 
BufferCells, the simulated operation met all departure time targets.  The simulation run time is approxi-
mately six minutes on an EPYC Processor at 2,500Mhz, 190 Gb of physical memory.  

One very simple preliminary experiment was conducted by varying the number of stack versus strip 
racks assigned to cells, with the assignment varying from (7 stack, 1 strip) to (1 stack, 7 strip).  This design 
parameter is likely to have some important and subtle impacts on overall hub performance, and one measure 
of that would be the time required to complete all the shipments.  Results for this experiment are displayed 
in Table 2, where finish time is in simulated seconds. 

Clearly a great deal of further development and experimentation is required to fully explore the design 
and implementation of the RCC controller and the other DELS controllers contained in this new concept 
for a parcel logistics hub.  All of that future work will follow the pattern that has been described and 
illustrated here, i.e., careful separation of plant and control models, using agents to represent every object 
in the simulation, implementing the controllers using state machines with Java-based actions and 
conditions, and using the enter, exit, delay, moveTo, and service blocks to represent process durations.  In 
fact, this approach already has been implemented in the full hub simulation. 

 

Transport 

Distance  Time Robot Movement Loaded Empty

1 4.666291 cross aisle translate left 9.501862 2.342238

2 6.418823 cross aisle no translation 6.052915 3.584093

3 8.389416 cross aisle, translate left, move up 1 level 12.51716 4.139916

4 10.21675 cross aisle, no translation, move up 1 level 7.126905 3.484807



McGinnis, Buckley, and Barenji 
 

 

 

Figure 6: Snapshot of full hub simulation (Montreuil et al. 2021). 

Table 2: Varying an operational control parameter and resulting finish time in simulated seconds. 

 

8 OBSERVATIONS AND IMPLICATIONS FOR FUTURE RESEARCH 

Simulations are important for designing both the physical configurations and control systems of production 
and logistics systems.  Translating the configurations as simulated into configurations as implemented can 
be quite challenging if the simulation model does not carefully separate control models from plant models.  
This paper illustrates one approach to achieving that separation when using the AnyLogic™ simulation 
platform. 

It is not unreasonable to view the state charts with their associated code for entry and exit actions and 
transition conditions as a “design specification” for the corresponding operational controller 
implementations.  Simulations where there is not a clear separation of plant and control are much less useful 
as control system design specifications or requirements. 

The operational controller functional requirements identified in Sprock and McGinnis (2015) and the 
functional architecture proposed in McGinnis (2019) have been used in the simulation implementation of 
operational controllers for the described use case.  These kinds of logistics hubs may seem operationally 
relatively simple compared to more complex DELS like aircraft assembly, semiconductor fabrication, or 
hospitals, so additional research is needed to establish the general applicability of the demonstrated 
approach. 

The plant-control separation as implemented for this specific use case is somewhat ad hoc.  It is reason-
able to ask if it is possible to abstract this use case and the demonstrated modeling approach to create a 

# Stack Racks #Strip Racks Finish Time

7 1 85000

6 2 87000

5 3 87000

4 4 87500

3 5 87600

2 6 86000

1 7 91000

ShuffleCell configuration



McGinnis, Buckley, and Barenji 
 

 

general purpose methodology for simulation modeling of DELS, using AnyLogic™. Then, of course, it 
would be reasonable to investigate how such methodology could be adapted to other simulation platforms. 

One of the most appealing promises of “smart factories”, Industry 4.0, and “digital twins” is the ability 
to maintain a digital representation of the target system, update its state to reflect the actual state of the 
target system, and run “what if” analyses of alternative planning and operational control decisions using 
the “digital twin” to predict results in the physical system.  For systems with “smart” controllers, this pro-
mise simply cannot be met if those simulations cannot correctly reflect the operational control decisions 
with a high degree of fidelity. To do so, the logic for making those operational control decisions that is 
coded into those “digital twins” must precisely reflect the logic of the operational controller in the physical 
system.  In the past, neither the operations research community nor the simulation community has addressed 
this issue.  This paper offers at least one approach to creating the promised “digital twin”.  This may not be 
the only way, or the best way, but it does provide a starting point for an extremely important line of research 
and development. 

ACKNOWLEDGEMENTS 

The work reported here has been supported by research grants from NIST (70NANB15H234) and 
projects with industry partners, including Boeing and SFX.  Mr. Hugo Hamon did excellent work in 
developing an initial implementation of the robotic consolidation cell.   

REFERENCES 

Bueno, A., M. G. Filho, and A. G. Frank. 2020. "Smart Production Planning and Control in the Industry 4.0 Context: A Systematic 
Literature Review". Computers & Industrial Engineering (149): 106774. 

International Society of Automation. 2021. https://isa.org. Accessed 2 June.  
McGinnis, L. F. 2010. "The Future of Modeling in Material Handling Systems". In 11th International Material Handling Research 

Colloquium, June 21-24, Milwaukee, WI,  261-274.  
McGinnis, L. F. 2019. Formalizing ISA-95 Level 3 Control with Smart Manufacturing System Models. NIST Interagency/Internal 

Report. https://doi.org/10.6028/NIST.GCR.19-022, accessed 2nd June.  
Montreuil, B., L. McGinnis, S. Buckley, S. Babalou, W. Bao, and A. Beranji. 2021 (to appear). "Physical Internet Induced Parcel 

Logistics Hub Innovation". International Physical Internet Conference, June 14-16.  
Rockwell Automation. 2021. https://www.demo3d.com. Accessed 2 June. 
Sprock, T. 2016. "A Metamodel of Operational Control for Discrete Event Logistics Systems".  

https://smartech.gatech.edu/handle/1853/54946, accessed 2 June. 
Sprock, T., C. Bock, and L. F. McGinnis. 2019. "Survey and Classification of Operational Control Problems in Discrete Event 

Logistics Systems (DELS)". International Journal of Production Research: 5215-5238. 
Sprock, T., and L. F. McGinnis. 2015. "A Conceptual Model for Operational Control in Smart Manufacturing Systems". 15th IFAC 

Symposium on Information Control Problems in Manufacturing. IFAC-PapersOnline:1865-1869. 
Sprock, T., G. Thiers, L. McGinnis, and C. Bock. 2019. Theory of Discrete Event Logistics Systems (DELS) Specification. NIST 

Interagency/Internal Report. https://nvlpubs.nist.gov/nistpubs/ir/2020/NIST.IR.8262.pdf, accessed 2 June. 
The AnyLogic Company. 2021. https://the.anylogic.company/. Accessed 2 June. 

AUTHOR BIOGRAPHIES 

LEON McGINNIS is Professor Emeritus in the Stewart School of Industrial and Systems Engineering at The Georgia Institute of 
Technology, where he has held leadership positions in faculty governance, academic programs, and research centers. His research 
is focused on developing the methods and tools necessary for systems engineering of discrete event logistics systems, including 
design, planning, management, and control issues.  His email address is leon.mcginnis@gatech.edu and his work is featured on the 
website http://factory.isye.gatech.edu.  
 
SHANNON BUCKLEY is a Ph.D. candidate in the H. Milton Stewart School of Industrial and Systems Engineering at The 
Georgia Institute of Technology. His research interests include warehouse systems and processes design, where he focuses on 
creating innovative solutions to current problems faced in the parcel logistics industry.  He then validates these solutions with 
complex, high-fidelity simulations in the AnyLogic simulation modelling language.  His email address is sbuckley8@gatech.edu.  
 



McGinnis, Buckley, and Barenji 
 

 

ALI BARENJI is a Sr research scientist in the H. Milton Stewart School of Industrial and Systems Engineering, at the Georgia 
Institute of Technology. Before joining Georgia Tech, he has served as a lecturer in the Mechatronic Engineering Department at 
Kennesaw State University. He was also a visiting researcher at Massachusetts Institute of Technology and a postdoc fellow in the 
Guangdong University of Technology. His research is focused on  smart manufacturing and developing the methods and tools 
necessary for systems engineering of discrete event and multi-agent logistics systems. His email address is abarenji3@gatech.edu. 


