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ABSTRACT

This study demonstrates the implementation of the stochastic ruler discrete simulation optimization method
for calibrating an agent-based model (ABM) developed to simulate hepatitis C virus (HCV) transmission.
The ABM simulates HCV transmission between agents interacting in multiple environments relevant for
HCV transmission in the Indian context. Key outcomes of the ABM are HCV and injecting drug user
(IDU) prevalences among the simulated cohort. Certain input parameters of the ABM need to be calibrated
so that simulation outcomes attain values as close as possible to real-world HCV and IDU prevalences.
We conceptualize the calibration process as a discrete simulation optimization problem by discretizing the
calibration parameter ranges, defining an appropriate objective function, and then applying the stochastic
ruler random search method to solve this problem. We also present a method that exploits the monotonic
relationship between the simulation outcomes and calibration parameters to yield improved calibration
solutions with lesser computational effort.

1 INTRODUCTION AND LITERATURE REVIEW

For many complex simulation models, the data required to estimate every input parameter of the simulation
model is often not available. In this situation, one may estimate these input parameters via ‘calibration’,
wherein the input parameter values are set such that the relevant simulation outputs approach as close to
observed or known values of the outputs as possible (Law 2015). We refer to the input parameters that
are estimated as ‘calibration’ parameters, and the known values of the simulation outcomes - which are
estimated either via data collection from the field, from the published literature, or from domain experts
- as ‘calibration targets’. In this paper, we demonstrate a discrete simulation optimization approach -
specifically the use of the stochastic ruler random search method - towards calibration of a simulation
model. The simulation model in question is an agent-based simulation model of the transmission of the
hepatitis C virus (HCV) that we have previously developed for the Indian context (Das et al. 2019).

In recent times, the use of simulation optimization methods for simulation model calibration has increased.
Genetic algorithms, evolutionary optimization, and their various adaptations have been commonly used
for both discrete and continuous calibration parameter search spaces (Voloshin et al. 2015). Stochastic
approximation methods such as simultaneous perturbation stochastic approximation have also been used
for both discrete and continuous search spaces (Hale et al. 2015). With regard to calibration of agent-
based simulaton models, genetic algorithms and evolutionary optimization techniques for calibration of
agent-based simulation models have been used in the studies of Fabretti (2013) and Moya et al. (2021),
respectively. Fabretti (2013) use a genetic algorithm and an adaptation of the Nelder-Mead simplex algorithm
for calibration of an agent-based model for financial markets. Other than these techniques, Johnson et al.
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(2009) use a Latin hypercube design for the calibration parameter search space for the calibration of an
agent-based simulation model developed to model interactions within a refugee camp. We refer readers to
Pietzsch et al. (2020) for a detailed review of metamodels used in calibration of agent-based simulation
models.

We now discuss the calibration of simulation models in the healthcare space. Kong et al. (2009)
employed genetic algorithm and simulated annealing for their calibration problem. Taylor et al. (2010) and
Karnon and Vanni (2011) compare random search methods against the use of other simulation optimization
techniques such as manual search and Nelder-Mead simplex methods, and gradient-based search. Bicher
et al. (2017) do not use simulation optimization to calibrate their agent based simulation of rehospitalization
of psychiatric patients - instead, they use the law of the iterated logarithm. Example techniques used to
calibrate infectious disease transmission models include the grid search method (Luo et al. 2018), Latin
hypercube modelling (Shrestha et al. 2017), and the genetic algorithm (Reiker and Penny 2021). Hazelbag
et al. (2020) provides a useful reference for studies that document the use of optimization techniques to
calibrate agent-based disease transmission simulation models.

More generally, our search of the literature did not yield studies wherein conventional discrete simulation
optimization methods such as the stochastic ruler method (Yan and Mukai 1992), probabilistic branch and
bound method (Norkin et al. 1998) and COMPASS (Hong and Nelson 2006) have been used for calibration
of either discrete-event or agent-based simulations - in the healthcare area or in other application areas.
In this study, we demonstrate the conceptualization of the calibration process as a simulation optimization
process that can be solved via the stochastic ruler random search method.

The stochastic ruler method is one of the first discrete simulation optimization methods with provable
asymptotic convergence to the global optimum, and is relatively straightforward to implement. Modifications
of the stochastic ruler method have been developed to improve the convergence of the method (Alrefaei
and Andradóttir 2005); however, we implement the original version by Yan and Mukai (1992) as an initial
proof-of-concept of this approach towards calibrating a simulation model. Further, we also demonstrate
a method for using information regarding the relationship between the calibration parameters and the
calibration targets to reduce the size of the search space. Applying the stochastic ruler method on this
truncated calibration parameter search can yield, as we demonstrate, improved solutions while incurring
a potentially lower computational cost in comparison with applying the stochastic ruler method on the
original solution space. Our search of the literature did not yield another study that truncated the solution
space in this manner for discrete simulation optimization problems.

We now describe the agent-based simulation of HCV transmission that we use to demonstrate our
model calibration approach.

2 THE HCV TRANSMISSION MODEL

The agent-based model of HCV transmission that we develop is comprehensive, in that we incorporate
all key modes of transmission of HCV in the Indian context. In India, HCV is a significant public health
concern in the state of Punjab, where the prevalence of the disease is substantially higher than the average
prevalence in India (3.6% in Punjab versus 1% in India) (Sood et al. 2018). Because of this, and the
consequent fact that data regarding HCV transmission modes (e.g., via injecting drug use) and epidemiology
for Punjab is available more widely than for other states, we select Punjab as the geographical area of
interest for the transmission model (Chakravarti et al. 2013; Ambekar and Tripathi. 2008).

The key modes of transmission of HCV spread in India are medical procedures (blood transfusions,
surgeries, injections and dental procedures), injecting drug use, and to a lesser extent, tattooing (Chakravarti
et al. 2013). In our agent-based simulation, we create representative environments for disease transmission
through each of these modes. For modeling spread of HCV through medical procedures, we create a medical
environment. A social interaction environment models the transmission of HCV through injecting drug use.
For this, there are two processes included within the environment- conversion of non-injecting-drug-users
(non-IDUs) into IDUs, and transmission of HCV due to sharing of needles between IDUs. Nearly 75%
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of IDUs are in the age group of 18-29 years (Ambekar and Tripathi. 2008), and a large proportion of
these are in the age group of 18 and 24 years. In Punjab, 20% of people in the age group 18-24 years
avail of higher education (Ministry of Home Affairs 2016). Thus, to model spread among young people
availing higher education, we incorporate a higher education environment. Though sexual transmission
contributes very less to HCV transmissions (Chakravarti et al. 2013), we nevertheless incorporate this mode
so that the simulation model can later be adapted for hepatitis B virus transmission or to study HCV/HIV
comorbidities. Our ABM is the first simulation model to explicitly model the mechanisms or sub-processes
of transmission of HCV through all of the above modes.

The calibration targets for this simulation model are key prevalence outcomes of the simulation - HCV
antibody, HCV RNA and IDU prevalence values - for which reliable estimates are available in the literature.
The HCV antibody and HCV RNA observed values (which we collectively call HCV prevalence values) were
taken from the study of Sood et al. (2018). This study documented a large cross-sectional epidemiological
survey conducted in Punjab in 2014 to determine the prevalence of HCV. The IDU prevalence was estimated
from the study of Ambekar and Tripathi. (2008). The calibration process involves running the simulation
for 50 years of simulation time, with daily time steps. This calibration or burn-in period was chosen as
it yielded rates of increase of HCV prevalence values which were deemed suitable by our collaborating
clinical expert (Das et al. 2019).

All agents in the models are placed into groups (a proxy for a ‘family’), where each group consists of
an older pair (aged 48 years and above), young pairs (aged between 23-48 years), and children and young
adults (below the age of 23 years). Note that while disease transmission through sexual interaction between
pairs is included in the model, this mode is of limited interest from the calibration point of view. This
is because, given the very low per-event probability of transmission of HCV (Osmond et al. 1993), this
mode of transmission has a significantly lower contribution to the prevalence of HCV (Chakravarti et al.
2013; Das et al. 2019) when compared to other transmission modes. Further, the parameter of interest -
the per-event probability of transmission via this mode - is also reliably estimated.

We now briefly describe the specifics of HCV transmission in each environment.

2.1 HCV Transmission in the Medical Environment

An agent in the simulation can visit the medical environment for a blood transfusion, a surgery, a dental
procedure or to receive an injection, per the key modes of transmission documented in Chakravarti et al.
(2013). Transmission in this environment occurs as follows.

a. Any agent in the model can visit the medical environment on a given day with probability p1
calculated using (1).

p1 =
Nin j +Nbt +Nsur +Nd p

360
(1)

Nin j, Nbt , Nsur and Nd p represent the average number of injections, average number of blood transfusions,
average number of surgeries and average number of dental procedures, respectively, that an Indian person
undergoes on an annual basis (that is, in 360 days).

b. At the medical environment, the number of medical professionals is estimated to be 40, based on
the fact that there is approximately one doctor per 1,800 population in India (1:1800) (Das et al. 2019).
The average number of agents considered across our simulation time horizon is 75,000.

c. Based on a survey of dental clinics of India (details in Das et al. (2019)), we assume that 50% of medical
professionals do not implement medically acceptable decontamination protocols in their workspaces. Hence,
we randomly assign 20 medical professionals out of 40 as those who work in ‘contaminated’ environments.

d. If an infected agent visits a medical professional working in a ‘contaminated’ environment, then
every uninfected agent visiting the professional after the infected agent has a probability p2 of getting
infected. The value of p2 is found using (2).

p2 =
Nin j× pin j +Nbt × pbt +Nsur× psur +Nd p× pd p

Nin j +Nbt +Nsur +Nd p
(2)
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Here, pin j, pbt , psur and pd p are the per-event probabilities of getting infected through each of the four
modes of transmission within this environment.

While we were able to obtain reliable estimates of pin j, pbt , and psur, we were unable to do so for
pd p. Thus, p2 in effect becomes a calibration parameter, even though we can obtain a reasonable initial
estimate of p2 for the calibration process by assuming pd p to take a value between that of pin j and psur.
We make this assumption because, given the nature of dental procedures, it is likely that the transmission
risk is likely to be greater than that from a needle-stick injury that occurs during an injection, and likely
to be lesser the transmission risk from a significantly more invasive procedure such as a surgery. This
reasoning was validated by our collaborating clinical expert, as documented in Das et al. (2019).

2.2 HCV Transmission in the Social Interaction Environment

Two types of interactions occur in this environment: interactions between IDUs, and interactions between
IDUs and non-IDUs. These are described below.

a. We calculate the probability of an IDU visiting the social interaction environment, p3, using (3)
below.

p3 =

∑
districts

Ndistrict × fdistrict

∑
districts

Ndistrict
(3)

Ambekar and Tripathi. (2008) studied IDU characteristics in certain districts of Punjab, and reported the
weekly frequency of injecting drugs for IDUs in these districts. Ndistrict refers to the population of the
districts of Punjab studied in Ambekar and Tripathi. (2008), and fdistrict refers to the weekly frequency of
injecting drugs for IDUs in these districts.

b. The daily probability of a non-IDU going to the social interaction environment was assumed to be
1
7 (i.e., once a week).

c. Each group in the model is assigned to one of three geographical clusters. In the social interaction
environment, agents in the same cluster interact with each other. Based on IDU demographic data from
Ambekar and Tripathi. (2008), we impose the condition that only agents between the ages of 18 and 32
years can be IDUs, and the maximum duration for which an agent engages in injecting drug use is 3 years.

d. An interaction between a non-IDU and an IDU can lead to a non-IDU becoming an IDU with
probability pin f . redAs documented in Ambekar and Tripathi. (2008), the proportion unemployed among
persons aged 18-29 years differs significantly between IDUs and non-IDUs (pIDU

ue and pgen
ue in the equations

below). Incorporating this factor may allow simulation-based design of interventions for IDUs that take
their employment status into consideration. Therefore, as given in (4) below, we decided to calculate pin f
as a weighted average of the probabilities of influence for employed (pe

in f ) and unemployed persons (pue
in f )

respectively.

pue
in f × pgen

ue + pe
in f × (1− pgen

ue ) = pin f (4)

As discussed in Das et al. (2019), we assume that pue
in f and pe

in f are related to each other per the ratio of
the proportions of unemployed persons among IDUs and the general population respectively, as expressed
below in (5).

pue
in f

pe
in f

=
pIDU

ue

pgen
ue

(5)

We could not find literature that reported estimates for pin f , pue
in f , and pe

in f . Therefore, we considered
pin f to be our second calibration parameter, and calculated pue

in f and pe
in f from (4) and (5) once the value

of pin f is estimated via the calibration process.
e. Azim et al. (2008) reported that IDUs interact in groups of 1-2.8 persons. We took the group size

of interaction for IDUs to be 3 because we do not explicitly model HCV transmission through tattooing,
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which is a factor for HCV transmission in the region concerning our study (Chakravarti et al. 2013). Given
that HCV transmission through tattooing is also via infected needles, similar to HCV transmission via
injecting drug use, we assumed an IDU injecting group size of 3 (approximately the upper limit of the
reported range) to implicitly include the effects of tattooing on HCV transmission.

f. Ambekar and Tripathi. (2008) also provided data regarding the proportion of IDUs that reported
sharing needles at least once for the surveyed districts. We denote this as sdistrict for a given district. Thus,
we found the proportion of IDUs who reported sharing needles at least using the weighted average of the
sdistrict values for all surveyed districts, weighted using the population of each district. We obtained this
value as 50.4%. Thus, the probability of sharing needles during a given injecting drug use event is likely
to be less than this value. This yielded a reasonable initial estimate for estimating the per-injecting-event
needle sharing probability, which is the third calibration parameter. Note that if there is one infected agent
in a network of IDUs engaging in needle sharing, then the per-event infection probability through injections
determines whether an uninfected agent gets infected.

2.3 HCV Transmission in the Education Environment

This environment was included in the simulation to incorporate IDU-based interactions regardless of
geographical considerations (interactions in the social interaction environment are assumed to occur only
between agents in the same cluster), and to also facilitate future research on the effects of an awareness
campaign conducted in educational environments on HCV epidemiology. This environment also incorporates
the processes of conversion of non-IDUs to IDUs and of uninfected IDUs into infected IDUs. Although
we remove geography-based restrictions on HCV transmission in this environment, the contribution of this
environment to HCV prevalences is found to be very low as only 20% of agents between the ages of 18
and 24 years avail of higher education in Punjab (Ministry of Home Affairs 2016).

3 MODEL CALIBRATION AND THE STOCHASTIC RULER METHOD

We now describe the conceptualization of the calibration process as a simulation optimization problem. We
conducted preliminary experimentation to determine the calibration parameter search space. To determine
the search space for the per-event infection probability in the medical environment, we considered parameter
estimates between the estimate of per-event infection probability through injections and per-event infection
probability through surgeries. Similarly, adjustments were made to the per-event influence probability so
that the IDU prevalence moves towards its calibration target.

We define the calibration problem in a general sense first, and then describe its application to our
case. Let m be the number of calibration variables and n be the number of outcome variables. We define
x, the m-tuple of calibration parameters as x = (x1,x2, ...,xm). The n-tuple of simulation outcomes to be
calibrated to the calibration targets is defined as y = (y1,y2, ...,yn). Note that each yi = fi(x), i = 1 to n,
where fi represents the relationship between the ith simulation outcome and the calibration parameters x,
implicitly given by the simulation. Correspondingly, we define the n-tuple of the calibration targets as
y0 = (y0

1,y
0
2, ...,y

0
n).

A discrete simulation optimization problem typically takes the form:

min
x ∈ S

E[g(x)] (6)

Here g(x) is the output of a single replication of the simulation, x are the decision variables, and S is
the discrete solution space. In our case, we construct the following function that measures the sum of the
absolute values of the distances between the simulation outcomes y and the calibration targets y0.

h(y) =
n

∑
i=1

∣∣∣∣1− yi

y0
i

∣∣∣∣ (7)
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h(y) is a function of the random variable y, and given that each of the yi = fi(x) (i = 1 to n), h(y) in turn
becomes a function of the calibration parameters x - that is, h(y) = h(y1 = f1(x),y2 = f2(x), . . . ,yn = fn(x)).
A single replicate output of the simulation, which in (6) is represented by g(x), in our case is given by
the median of, say, k values of h(y). We denote the median of the k values of h(y) as ĥ(y). We choose to
define g(x) in this manner (i.e., instead of setting h(y) directly equal to g(x)) because of the high variance
of the yi. Further, we denote the simulation outcomes corresponding to ĥ(y) as ŷ. Also, note that the ŷ are
functions of the calibration parameters x; that is, we can denote the simulation outcomes as ŷ(x).

For the HCV simulation model, we define x1 to be the per-event infection probability in the medical
environment, x2 to be the per-event needle sharing probability, and x3 to be the per-event influence probability.
y1 is the HCV antibody prevalence, y2 is the HCV RNA prevalence and y3 is the IDU prevalence. Thus,
in our model, given that we estimate y from the simulation outcomes corresponding to ĥ(y) (i.e., ŷ), we
can write ŷ = (ŷ1,ŷ2,ŷ3).

For the HCV transmission simulation, we observe that as the per-event infection probability in the
medical environment (x1) and the per-event needle sharing probability (x2) increase (decrease), the estimated
values of the HCV antibody prevalence (ŷ1) and HCV RNA prevalence (ŷ2) also increase (decrease), but
do not impact the expected value of the IDU prevalence (ŷ3). As the influence probability (x3) increases
(decreases), ŷ3 increases (decreases). Thus, we have a non-decreasing (monotonic) relationship between
the decision variables x and the estimated simulation outcomes ŷ.

This is seen in the results of our preliminary experimentation (Table 1 below) to determine the range
of possible values for the calibration parameters as well. Table 1 contains the lower and higher bounds on
the calibration parameters that we determined through these preliminary experiments.

Table 1: Results of preliminary experimentation.

x = (x1,x2,x3) ŷ = (ŷ1, ŷ2, ŷ3)

(0.035, 0.2, 1.9 ×10−5) (1.17%, 0.934%, 0.087%)
(0.037, 0.4, 2.3 ×10−5) (5.01%, 4.0%, 0.13%)

Note that the values of ŷ0 (estimates of calibration targets) for our model are (3.6%, 2.6%, 0.1%), as
obtained from Sood et al. (2018). If we define x = (0.035,0.2,1.9×10−5) as xl and x = (0.037,0.4,2.3×10−5)
as xr, and the corresponding ŷ values as ŷl and ŷr, then the ‘optimal’ values of x, given by x∗ = (x∗1,x

∗
2,x
∗
3)

must satisfy the following relationship:

xl
1 ≤ x∗1 ≤ xr

1 & xl
2 ≤ x∗2 ≤ xr

2 & xl
3 ≤ x∗3 ≤ xr

3

Now, for each calibration parameter, we define:

S(x1) = {x1
1,x

2
1, ...,x

k1
1 } & S(x2) = {x1

2,x
2
2, ...,x

k2
2 } & ... S(xm) = {x1

m,x
2
m, ...,x

km
m }

Here, S(xi) represents the set of possible values the ith (i = 1 to m) calibration parameters can take, with ki
representing the cardinality of S(xi), i = 1 to m. The solution space S is formed by the Cartesian product
of the S(xi).

For our model, we define:

S(x1) = {0.035,0.03525,0.0355,0.03575,0.036,0.03625,0.0365,0.03675,0.037}
S(x2) = {0.2,0.25,0.3,0.35,0.4}
S(x3) = {1.9×10−5,2.0×10−5,2.1×10−5,2.2×10−5,2.3×10−5}

Note that the elements in each of the above S(xi) are arranged in increasing order. Without loss of generality,
we shall assume henceforth that ∀ x j

i ,x
l
i ∈ S(xi) ( j 6= l and j, l ∈ {1,2, . . . ,ki}, i = 1 to m), x j

i < xl
i if j < l.

Note also that k1 = 9, k2 = 5 and km = k3 = 5, implying S is a set with cardinality 225.
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We now describe the application of the stochastic ruler method to calibrate the HCV transmission
simulation. We shall not explain the stochastic ruler algorithm in detail due to space limitations, and we
refer the author to Yan and Mukai (1992) for a detailed description of the algorithm and its underlying
definitions and assumptions. The algorithm derives its name from the stochastic ruler θ against which a
replicate output from the simulation is compared. We recall here that the output of a single replication of
the simulation, g(x), is set to be the median of, say, k replicate values of h(y), as defined in (7), which
we denote by g(x) = ĥ(y). Note that the ideal (optimal) value of E[ĥ(y)] is 0, implying that the expected
value of the simulation outcomes are equal to the calibration targets in this case. Thus a value of ĥ(y)
equal to, for example, 0.3 implies an average percentage deviation of 10% for a simulation outcome from
its calibration target. Thus the lower limit a of the stochastic ruler can be set as any value of ĥ(y) below
the value of ĥ(y) corresponding to the maximum allowable average fractional deviation of the simulation
outcomes from their calibration targets. We refer to this particular value of ĥ(y) as the ‘threshold’ of
interest, and denote it by the symbol δ . We experiment with four such thresholds - 0.45, 0.375, 0.3 and
0.2. We set a to be 0.1, lower than the smallest threshold explored in this analysis.

For determining the upper limit b of the stochastic ruler, we run the simulation at the two extreme x
values xl and xr, and set b equal to the maximum of the ĥ values corresponding to xl and xr. In other
words, b = max(ĥ(yl), ĥ(yr)). We obtained 1.446 as the value of ĥ(yl) and 1.229 as the value of ĥ(yr), and
therefore b = 1.446.

Next, we construct the neighborhood structure for each candidate solution x. We first define a neighbor
set N(x j

i ) for each x j
i ∈ S(xi) ( j = 1 to ki, i = 1 to m), in the following manner.

N(x j
i ) = {x

j−1
i ,x j

i ,x
j+1
i }, 2≤ j ≤ (ki−1)

N(x j
i ) = {x

ki
i ,x

1
i ,x

2
i }, j = 1

N(x j
i ) = {x

ki−1
i ,xki

i ,x
1
i }, j = ki

Then the collection of solutions forming the neighborhood of any solution x = (x j
1,x

j
2, . . . ,x

j
m) is given

by the Cartesian product of the N(x j
i ) excluding x. In other words, N(x) =

m
∏
i=1

N(x j
i )− x.

We take the example of per-event infection probability in the medical facility, x1, to illustrate the
construction of the above neighborhood structure. For x3

1 = 0.0355, N(x3
1) = {0.03525,0.0355,0.03575};

for x1
1 = 0.035, N(x1

1) = {0.037,0.035,0.03525}; and for xk1
1 = x9

1 = 0.037, N(x9
1) = {0.03675,0.037,0.035}.

Therefore, for any x, we have 26 neighbors. For example, if x = (0.0355,0.3,2.0×10−9), then N(x1) =
{0.03525,0.0355,0.03575}, N(x2) = {0.25,0.3,0.35}, N(x3) = {1.9×10−9,2.0×10−9,2.1×10−9}, and
N(x) = N(x1)×N(x2)×N(x3)− x.

We initiated the stochastic ruler method with xl . The method involves selection of an appropriate
candidate solution for the next iteration, where an iteration t is defined as the random sampling of a
neighbor (candidate solution) of the current solution and checking whether it can be set as the next estimate
of the solution to the optimization problem. A candidate solution z, sampled from the neighborhood N(x)
of the current solution x with probability 1

|N(x)| , is selected as the next estimate of the optimal solution if all
Mt tests against samples from the stochastic ruler θ(a,b) ‘succeed’. For a neighbor to be selected as the
system at the next iteration t +1, it has to pass Mt number of tests, where each test involves generating a
replicate value of g(z) = ĥ(yz) and a sample θ ∼ θ(a,b), and then checking whether ĥ(yz)≤ θ . If ĥ(yz)≤ θ

(i.e., a ‘success’), then another test is conducted with new samples ĥ(yz) and θ until one of the tests is
unsuccessful or all Mt tests are successful. If ĥ(yz) > θ (an unsuccessful test), then t := t + 1, and the
solution at iteration t is retained as the estimate of the solution at iteration t + 1. Note that if all tests
succeed, then z ∈ N(x) is taken as the next estimate of the optimal solution, and t := t + 1. Mt must be
selected such that it must be an non-decreasing function of t. We set Mt equal to dlog(t +10)− log(5)e.

The method stops if t > T or ĥ(y)< δ , where T is the computational budget set in terms of the number
of iterations.
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The results of applying the stochastic ruler method are depicted in Table 2 below. We used a computational
budget of 40 iterations, given that generating a single realization of ĥ(y) requires approximately 3 hours on
a Intel i7 workstation with 3.3 GHz clock speed and 32 GB memory. Given this computational budget, we
see that solutions that yield average deviations from the calibration targets that are less than the maximum
allowable average fractional deviations of 10% and 6.67% (corresponding to δ values of 0.3 and 0.2) are
not found. However, solutions that yield average percentage deviations less than threshold values of 15%
and 12.5% are found in 15 iterations. Note that the same solution found by the SR method yields an ĥ(y)
that is less than both δ thresholds of 0.45 and 0.375 (i.e., it yields an average fractional deviation less than
both 0.15 and 0.125 from the calibration targets), and hence the rows of Table 2 appear mostly identical.

Table 2: Model calibration via the stochastic ruler method: results. Notes: δavg denotes the maximum
allowable average fractional deviation, δavg(o) denotes the average fractional deviation obtained from the
calibration process, and t f denotes the number of iterations to termination.

δ (δavg) ĥ(y) (δavg(o))

Prevalence outcomes
(% of population)

Calibration parameters
t f

HCV
Antibody

HCV
RNA

IDU X1 X2 X2

0.45 (0.15) 0.360 (0.120) 2.98 2.42 0.112
0.03525

0.25
2.3×
10−5 15

0.375
(0.125)

0.360 (0.120) 2.98 2.42 0.112
0.03525

0.25
2.3×
10−5 15

4 SOLUTION SPACE TRUNCATION METHOD

In this section, we describe a method to reduce the size of the solution space - i.e., truncate it - by
exploiting the monotonic relationship between the estimated simulation outcomes ŷ = (ŷ1, ŷ2, . . . , ŷn) and
the calibration parameters x j ( j = 1 to m). We refer to this approach as the solution space truncation (SST )
approach. We note here that when used in the stochastic ruler method, ŷ represents the outcome of a single
‘replication’ of the simulation (even though it actually represents the simulation outcomes corresponding
to the median of k replicate values of ĥ(y)). For the application of the SST approach, while we generate ŷ
in the same manner as for the stochastic ruler method, we also we utilize the fact that ŷ is the median of,
say, k replicate values of the y. This is seen in Assumption 1 below, where we formalize the monotonic
relationship between the ŷ and the x j ( j = 1 to m).
Assumption 1 If x1

j ≤ x2
j , then ŷ1 ≤ ŷ2, for j = 1 to m. Here, x1

j and x2
j ∈ S(x j) ( j = 1 to m) and ŷ1 and

ŷ2 are simulation outcomes corresponding to ĥ(y1) and ĥ(y2).
We begin the SST approach with xl , and then systematically move to other solutions xt , where xt ∈ S

and t ∈ {1,2, .., |S|}. We remind readers here that: (a) |S|=
m
∏
j=1
|S(x j)|, and (b) we assume that the elements

x1
j ,x

2
j , . . . ,x

k j
j of each S(x j) are indexed in ascending order of magnitude; that is, if l < k then xl

j < xk
j for

l 6= k and j = 1 to m. Further k j = |S(x j)|.
xt+1 is obtained by incrementing the index j of each component x j of the current xt by one. For

example, if xt = (xt
1,x

t
2, ...,x

t
m), then xt+1 = (xt+1

1 ,xt+1
2 , ...,xt+1

m ). For each solution xt ∈ S, we generate the
corresponding ŷt , evaluate ŷt using a criterion that we develop below, and move on to xt+1 if ŷt satisfies
said criterion. Starting from xl , if a given xt does not satisfy this criterion, we stop, and set xl = xt−1. We
then start the second part of the SST approach by beginning with xt = xr and decreasing the indices of
the components of xt by one and evaluating the corresponding ŷt . We terminate the SST approach when
ŷt does not satisfy the evaluation criterion, and set xr = xt+1. This yields a redefinition of the solution
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space S with new ‘boundary’ solutions xl and xr. We describe the criterion for evaluating the ŷt and the
consequent process of redefining S below.

As part of defining the ŷt evaluation criterion, we define the optimal solution to the simulation optimization
problem representing the calibration process as follows.
Definition. x∗ is the optimal solution of formulation (6) if E[ŷ(x∗)] equals the calibration targets y0.

We also make the following assumption regarding the variance of ŷt ∀ xt ∈ S.
Assumption 2 The variance of the simulation outcome estimator ŷt is small in comparison with the
difference between E[ŷt ] and E[ŷt+1] ∀ 1≤ t ≤ |S|−1.

Assumption 2 is required because we define the evaluation criterion only in terms of ŷt , and do not
consider its variance. Determining the impact of the variance of ŷt on the effectiveness of the SST approach
is an important avenue of future research. However, we believe it is a reasonable assumption at this stage
because for our case, the variance of ŷt is small given the median-based definition of ŷt .

Using Assumptions 1 and 2 and the definition of x∗, we are now in a position to state the following
proposition that forms the basis for the evaluation criterion used in the SST approach.
Proposition 1 If ŷt ≺ y0 then x∗ 6∈ Bt , where Bt = {x ∈ S | x 4 xt}, where ≺ and 4 indicate element-wise
comparisons. Similarly, if ŷt � y0 then x∗ 6∈ Ct , where Ct = {x ∈ S | x < xt}, where � and < indicate
element-wise comparisons.

Proof. The proof follows from Assumption 1 and the definitions of x∗ and h(y); the definition of h(y)
being obtained from (7).

In the first pass of the SST approach, we begin from xl , and generate the xt by simultaneously
incrementing the indices of xl by one. For each xt , we generate the corresponding ŷt and test whether
ŷt ≺ y0. If the condition is satisfied, then we eliminate solutions belonging to the set Bt . This is because,
by Assumption 1, we cannot obtain any value of ŷ that is closer to y0 than ŷt using solutions in set Bt .
If ŷt < y0 and ŷt 6= y0, then we move to xr and begin generating xt by simultaneously decrementing the
indices of the components of xr by one. For each xt , we generate the corresponding ŷt and check whether
ŷt � y0. If the condition is satisfied, then we eliminate solutions belonging to the set Ct following a similar
logic to the removal of solutions in the set Bt in the first pass of the SST approach. If ŷt 4 y0 and ŷt 6= y0,
then we terminate the SST approach.

Note that we also terminate the SST approach (first or second passes) if we exhaust the index sets of
any one of the components of the xt ; that is, we terminate the pass if at any point t > min(k1,k2, ...,km)
for that pass. The SST approach is summarized in Algorithms 1 and 2. In order to implement the
SST approach computationally, we construct a matrix A comprising all xt ∈ S. Each row of A con-
sists of a solution xt ∈ S, where xt ∈ Rm, and thus A is an |S×m| matrix. In our implementation,
the first column represented the per-event infection probability in the medical environment, the second
represented the per-event needle sharing probability, and third represented the per-event influence probability.

Algorithm 1. Solution space truncation approach: first pass.
Initialize with A, y0

Initialize with xt = xl

for t = 1 to min(k1,k2, ...,km) do
Set x = xt , that is, x1 = xt

1, x2 = xt
2, ..., xm = xt

m
Generate ŷ(x)
if ŷ(x)≺ y0 then

for i = 1 to |S| do
if A(i,1)≤ x1∧A(i,2)≤ x2∧ ...∧A(i,m)≤ xm then

Remove row i from A
end if

end for
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else
BREAK

end if
xt = xt+1; that is: xt

1 = xt+1
1 , xt

1 = xt+1
2 ,..., xt

m = xt+1
m

end for

Algorithm 2. Solution space truncation approach: second pass.
Initialize with Al (A generated as output of the first pass), y0

Initialize with snew = number of rows of Al
Initialize with xt = xr

for t = 1 to min(k1,k2, ...,km) do
Set x = xt , that is, x1 = xt

1, x2 = xt
2, ..., xm = xt

m
Generate ŷ(x)
if ŷ(x)� y0 then

for i = 1 to snew do
if Al(i,1)≥ x1∧Al(i,2)≥ x2∧ ...∧Al(i,m)≥ xm then

Remove row i from Al
end if

end for
else

BREAK
end if
xt = xt−1; that is: xt

1 = xt−1
1 , xt

1 = xt−1
2 ,..., xt

m = xt−1
m

end for
Algorithm output: reduced solution space Aout = Al

The output of applying Algorithms 1 and 2 on S (represented by the matrix A in the above algorithms)
yields the truncated solution space Aout . Applying the stochastic ruler on this truncated solution space
yields improved results, as seen in Table 3.

Table 3: Model calibration via the stochastic ruler method and the SST approach: results. Notes: δavg

denotes the maximum allowable average fractional deviation, δavg(o) denotes the average fractional deviation
obtained from the calibration process, and t f denotes the number of iterations to termination.

δ (δavg) ĥ(y) (δavg(o))

Prevalence outcomes
(% of population)

Calibration parameters
t f

HCV
Antibody

HCV
RNA

IDU X1 X2 X2

0.45 (0.15)
0.444

(0.148)
2.74 2.23 0.094

0.03625
0.3 2.1 ×10−5 1

0.375 (0.125)
0.2788
(0.092)

3.37 2.75 0.116
0.03625

0.35 2.2 ×10−5 6

0.3 (0.1)
0.2788
(0.092)

3.37 2.75 0.116
0.03625

0.35 2.2 ×10−5 6

0.2 (0.067)
0.1464
(0.05)

3.34 2.70 0.104
0.03575

0.35 1.9 ×10−5 29
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We see that when the stochastic ruler is applied on the solution space represented by Aout , solutions
that yield average deviations from the calibration targets that are less than all desired threshold average
fractional deviations - 15%, 12.5%, 10%, and 6.67% - are found. Further, we see that for all threshold
average fractional deviations save 6.67%, the number of iterations until termination reduce substantially.
However, we note here that a certain amount of computational effort must be expended in the application
of the SST approach itself, and hence the tradeoff in achieving improved calibration accuracy at the cost of
this computational effort must be evaluated prior to applying the SST approach. In our case, the stochastic
ruler method on the original solution space required approximately 7 days and 6 hours until termination
(exhaustion of the computational budget). In comparison, application of the SST algorithm required 9
hours, and as can be seen from Table 3, finding solutions that yielded average fractional deviations less
than 10% from the calibration targets were found in less than half the number of iterations than when
working with the original solution space.

5 CONCLUSIONS

In this work, we present a discrete simulation optimization approach for estimating key parameters of a
complex agent-based simulation of HCV transmission via a calibration process. We apply the stochastic
ruler method to solve the simulation optimization conceptualization of this model calibration process, and
within a prespecified computational budget, find solutions that achieve acceptable average deviations of the
simulation outcomes from their calibration targets. However, upon applying a method that we develop to
reduce the solution space size using the monotonicity of the relationship between the simulation outcomes
and the calibration parameters, we find improved solutions at lesser computational expense.

The HCV transmission agent-based model that we use here to demonstrate our approach towards model
calibration has high variance in its key simulation outcomes. This necessitated the use of an aggregate
measure of simulation outcomes in the application of the stochastic ruler method, which added to the
significant computational overhead of the calibration process. However, we anticipate that this approach
towards simulation model calibration can be used for other simulations (e.g., discrete-event, Monte Carlo,
or other agent-based simulations) in different contexts, which may be subject to less variance in their
outcomes. In such situations, the computational overhead of this approach may be substantially lower.
Hence, an avenue of future work involves exploring the use of this approach for other simulations in
different application settings.
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