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ABSTRACT

For resource-constrained health systems, it becomes important to evaluate the cost-effectiveness of a breast
cancer (BC) screening program prior to its real-world implementation. In this paper, we provide an
overview of a new simulation model of BC incidence, progression, and diagnosis developed to maximize
the cost-effectiveness of a BC screening program. We describe the development of the modules for BC
incidence, tumor growth and diagnosis, and survival estimation of diagnosed patients. Incidence of BC is
based on published risk factors and publicly available national cancer registry reports. Survival curves for
diagnosed patients based on specific characteristics such as age group and stage of diagnosis are generated
using a single published survival curve for the entire population and hazard ratios for each characteristic.
Our simulation development approach can provide a model development template for researchers working
to develop BC simulation models in other settings with data availability similar to our case.

1 INTRODUCTION & LITERATURE REVIEW

In India, breast cancer (BC) is the most common cancer among women, with an age-adjusted incidence rate
(AAR) of 25.8 per 100,000 women, and it is also the leading cause of death from cancer among women
in India (Malvia et al. 2017). A key cause for this is late diagnosis, which can be seen from the fact that
in India, 45.7% of the patients were diagnosed in advanced stages, compared to 64% of the patients being
diagnosed in the local stage itself in the United States (Malvia et al. 2017; ACS 2019).

In this regard, two methods have been suggested to detect BC in early stages: (a) early diagnosis
based on symptoms, and (b) screening (WHO 2021). In India, pilot door-to-door BC screening programs
were found to be effective, and have yielded the conclusion that with support from the public primary and
secondary health infrastructure, screening programs can be a cost-effective option to improve the proportion
of cancers detected in the local stage even in low-income settings (Parambil et al. 2019).

In this paper, we describe the development of a novel simulation model of BC incidence, tumor growth
and diagnosis, and survival estimation after diagnosis, that we develop to optimize the health and economic
impact of a BC screening program in the Indian context. Specifically, using this simulation model, we aim
to determine optimal (in terms of maximum cost-effectiveness; i.e., health and economic impact) starting

978-1-6654-3311-2/21/$31.00 ©2021 IEEE



Gupta, Mittal, Das, Shriyam, Batra, and Ramamohan

and stopping ages and screening intervals for women using discrete simulation optimization methods such
as ranking and selection.

The simulation model that we develop consists primarily of three modules: (a) a BC incidence module;
(b) a tumor growth, staging and diagnosis module; and (c) a survival estimation module. Therefore, we
focus our literature review on BC simulation models, and specifically in terms of how the above three
aspects are handled, where applicable, in the BC simulation literature.

Nearly all published simulation models have been developed for Western contexts. Koleva-Kolarova
et al. (2015), in their review of BC simulation models, find that a substantial proportion of the BC simulation
literature draws upon seven simulation models. A drawback of using these models to conduct analyses in
settings other than those for which they were originally developed is that data for many key parameters
specific to the setting under consideration may not be available, and hence the original model parameter
estimates may have to be used. We also identified a few simulation models which have been developed
outside the framework of these seven simulation models (Ahern et al. 2014; Gray et al. 2017).

With regard to modelling BC incidence, the most common risk factor considered is age. Certain studies
modelled the screening of high-risk groups (Román et al. 2019); however, they did not explicitly model
risk factor based incidence in a simulated cohort comprising the general population. We identified a few
simulation studies where risk factors other than age were included to explicitly model BC incidence (Wu
et al. 2013; Tejada et al. 2015).

For tumor growth, two common approaches are use of the exponential distribution for sojourn times
or use of the Gompertz growth equation. Most models (Ahern et al. 2014) model tumor growth using
the exponential distribution. We identified one study conducted in the Indian context for estimating the
cost-effectiveness of BC screening, and the authors have also used the MISCAN Markov model for the
natural history of the disease (Okonkwo et al. 2008). A drawback of using Markov chains for modelling
tumor progression is that clinical trials that study cancer survival typically publish survival information in
the form of survival curves that are rarely exponential, implying that the memoryless property of Markov
chains or exponential sojourn times may not be a realistic assumption. Simulation models developed for
other types of cost-effectiveness analyses also typically use Markov models for capturing cancer progression
(Sun et al. 2019).

The Gompertz growth equation for tumor progression has been used in the studies of Fryback et al.
(2006), Mittmann et al. (2015) and Tejada et al. (2015). Tejada et al. (2015) used the Gompertz
growth equation to model survival, time of diagnosis and stage assignment using the stage-size relationship
from Plevritis et al. (2007). The authors determined lethal tumor sizes and tumor sizes at clinical or
mammographic detection on an a priori basis, and then determined the time of death and diagnosis using
the Gompertz growth equation.

Survival estimation is generally integrated along with tumor growth and disease progression in most
BC simulation models, as described for Tejada et al. (2015). We did not identify a study that, similar to
our approach, generated survival functions based on risk factors found to be relevant to survival.

Screening is the most common intervention explored for diagnosis of BC in the literature of simulation
models. Tejada et al. (2015) incorporate both mammographic and symptomatic (clinical) diagnosis. The
authors determined the modal tumor size at clinical detection, and introduced randomness in this tumor size
to make the time of detection (estimated from the Gompertz growth equation) stochastic. Further, while
Tejada et al. (2015) applied equations from Plevritis et al. (2007) to determine the stage of BC during
clinical detection, we applied these equations at every time step to determine the stage of any patient,
whether diagnosed or not, based on their tumor size at that point in time.

In summary, the research contributions (RCs) of this work relate to the method of development of the
above modules in the presence of limited publicly available information: (RC1) the incidence module was
developed based on information from a cross-sectional study conducted to determine risk factors associated
with incidence of BC in the Indian capital of New Delhi; (RC2) the annual probability of diagnosis in
each stage via methods other than screening (e.g., symptomatic diagnosis) was estimated by combining
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estimates of time spent in each stage generated via our tumor growth and cancer stage assignment model
in conjunction with cross-sectional study information regarding the proportions of patients diagnosed in
each stage; and (RC3) the ‘personalized’ patient characteristic specific survival estimation module was
developed using a single survival curve published for the overall BC population and hazard ratios for
survival based on patient characteristics (Gajalakshmi et al. 1997). In particular, our approach towards
generating survival functions ‘personalized’ to individual patient characteristics may in particular be of
interest to researchers developing cancer progression models (or other disease progression models using
survival curves) in settings where survival data specific to relevant patient characteristics are not available.
Similarly, we did not identify another study that described an approach towards estimation of the stage-wise
probability of diagnosis in a given time duration similar to our approach.

We now describe the development of the simulation model.

2 SIMULATION MODEL DEVELOPMENT

The simulation is programmed in Python on a computer with 8 gigabytes memory, an Intel i7 6th generation
processor with a clock speed of 2.5 gigaHertz. The calibration results presented in this section are from
30 replications, each of which required on average 30 minutes of computational runtime. We initialize the
model with a population of 100,000 persons (women) aged above 30 years. We do not include persons below
the age of 30 years as BC incidence is very low in this age group (NCDIR 2020). The age distribution
of the cohort of 100,000 persons at the initialization of the model has been determined based on the
census information for women residing in New Delhi (Delhi–Government. 2017). We consider the model
applicable for the population of the Indian capital New Delhi, and utilize BC incidence, birth rate and
all-cause mortality information specific to New Delhi. The simulation time horizon is fifty years, with the
first ten years considered as a warm-up period. We use annual time steps to determine the occurrence of
all key events (e.g., births, cancer incidence) in the simulation.

We now describe the disease incidence module.

2.1 Disease Incidence Module

At the start of simulation, no person in the simulated cohort has BC. As the simulation progresses, a
set of persons enter the diseased state every year. Given that we geographically situate our model in the
New Delhi region of India, age-adjusted incidence rates (AARs, in number of cases per 100,000 persons
[women]) were obtained from the incidence data for the Delhi National Capital Region (NCR) published
by the National Cancer Registry Programme (NCDIR 2020). The AARs obtained from the NCDIR (2020)
report are summarized in Table 1. The proportion of the population in each age group was not reported in
the (NCDIR 2020) report; however, this was reported in the previous edition (NCDIR 2016), and hence
these parameters were obtained from the 2016 NCRP report. We note here that it is unclear whether the
AAR reported in the (NCDIR 2020) report is an annual incidence rate. We assume that this is the case; in
the event that it is not, we may overestimate the BC incidence. However, this is an input parameter that
can be modified easily by an analyst with incidence data relevant to their analysis.

We also consider other risk factors associated with BC incidence in the Indian context - more specifically,
as identified in New Delhi. Multiple cross-sectional studies have been conducted to determine the risk factors
associated with BC incidence in the Indian context; however, we identified one relevant study conducted
in the Delhi NCR (Pakseresht et al. 2009). Pakseresht et al. (2009) studied sociodemographic and
physiological factors associated with BC incidence and find that BC incidence has a significant association
(at a 5% level of significance) with BMI, marital status, educational status, occupational status and the
number breastfeeding years. The categories associated with each of these risk factors are provided in
Table 1, and the odds ratios from Pakseresht et al. (2009) associated with each of these risk factors are
also provided in Table 1.
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It is likely that the number of breastfeeding years is a proxy factor for parity (the number of children
the person has birthed), and hence it is unsurprising that parity, although included by the authors in their
study, was not found (marginally) to be a significant risk factor (p-value = 0.06). The rationale underlying
the relationship between marital status and employment status and incidence of BC is not entirely clear;
however, Pakseresht et al. (2009) discuss that these findings are consistent with other similar studies. We
have included these risk factors in our simulation model to be consistent with the policy of considering all
statistically significant risk factors for incidence in the simulation model.

Thus, upon instantiation of each person in the simulated cohort, we assign the characteristics listed in
Table 1 based on the probabilities in the third column of the table. For example, the ‘modal’ person would
be aged between 30-35 years, have a body mass index (BMI) between 18.5 and 25, live with their spouse,
be unemployed, and with their number of breastfeeding years ≤ 6.

The annual risk of incidence of BC, adjusted for each risk factor, is estimated as follows. If pi denotes
the AAR for the ith age group, and m risk factors are considered, with o jk( j = 1 to m, k = 1 to l j) being
the odds ratio for the kth category of the jth risk factor that the person belongs to, then the annual risk of
incidence ri for a person in the simulated cohort is estimated as follows.

ri = pi

m

∏
j=1

o jk (1)

It is important to note that the odds ratios in Table 1 cannot be used as is in equation 1, as applying the
odds ratios to pi would not yield the proportions of persons who are diagnosed with BC that also belong
to a particular risk factor category. This is because the corresponding proportions in Table 1 are those
associated with the entire cohort considered in the study, and not those associated with persons diagnosed
with BC. For example, in Pakseresht et al. (2009), we see that approximately 7% of persons diagnosed
with BC also have BMI < 18.5. This implies that our simulation model must also replicate this - that is,
the annual probability of incidence ri must be calibrated so that approximately 7% of persons diagnosed
with BC in the simulation have a BMI < 18.5.

We calibrate the ri by manually varying the odds ratios o jk until the proportions of patients belonging
to a risk factor category approach those observed in Pakseresht et al. (2009). The results of the calibration
process, including the modified odds ratios for the incidence risk factor characteristics, are provided in
Table 2. In all cases, we see that the proportion of BC patients possessing a given risk factor characteristic
as observed in Pakseresht et al. (2009) is within the 95% confidence interval (CI) associated with the
corresponding estimate from the simulation.

2.2 Tumor Growth, Staging, and Diagnosis Module

We now describe the tumor growth and BC staging module, and then describe the process for estimating
the probability of diagnosis in each stage.

At each time step, the probability of a person developing BC is given in (1). If it is determined that a
person will develop BC, then the tumor growth process initializes for this person. We assume that tumor
begins as a single cell. At every time step, the tumor grows according to the Gompertz tumor growth
equation (Norton 1988). This equation expresses the size of the tumor at a given time point in terms of the
number of cells. The size of the tumor is estimated using the volume of a single cell, which is assumed to
be constant (Plevritis et al. 2007). For two time points t1 and t2, where t2 > t1, the number of cells N(t2)
as a function of N(t1) is given by the Gompertz tumor growth equation (Norton 1988) as:

N(t2) = N(t1)× exp (k(1− exp(−b(t2− t1)))), and

k = ln
(

Nin f

N(t1)

)
(2)
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Table 1: Breast cancer incidence related input parameters.

Patient characteristic
Proportion of

population (%)
AAR/Odds ratio

Age Group

30-35 yrs 8.73 16.0
35 -40 yrs 8.00 32.8
40-45 yrs 6.61 56.5
45-50 yrs 5.47 83.4
50-55 yrs 4.12 115.0
55-60 yrs 3.18 131.0
60-65 yrs 3.11 135.0
65-70 yrs 1.73 155.2
70-75 yrs 1.24 155.4
> 75 yrs 1.45 122.2

Body mass index

< 18.5 9.9 1
18.5-24.99 53.9 1.44
25-29.99 28.6 1.81
≥ 30 7.6 4.54

Marital status
Living with spouse 80.2 0.38

Not living with
spouse

19.8 1

Employment status
Employed 8.8 0.28

Not employed 91.2 1

Number of breastfeeding years
≤ 6 years 53.4 1.91
> 6 years 46.6 1

Notes: the proportions of the population for the age group characteristic are from the NCDIR (2016) report, and those
for the risk factors are from Pakseresht et al. (2009). The parameter estimates associated with the age group patient
characteristic in the fourth column are all AARs from NCDIR (2020) report, and those associated with the other patient
characteristics are odds ratios.

Here b is the tumor growth rate parameter, with a lognormal distribution (Norton 1988), and Nin f is
the maximum tumor size, with a mean value of 3.1×1012 (Plevritis et al. 2007). Following the approach
in Tejada et al. (2015), we make the tumor growth parameter dependent on age by assigning the 25th

percentile of the original lognormal distribution as the expected value of b for persons aged 75 years and
above, and by assigning the 75th percentile of the original lognormal distribution as the expected value of b
for a 25-year old person. For the rest of the cohort (between the ages of 25 years and 75 years), the expected
value of b changes linearly between these two values. This is done to incorporate the clinical fact that the
rate of BC progression is inversely proportional to the age of the patient, as tumor growth is significantly
faster in younger persons when compared to older persons. We assume that the standard deviation of the
tumor growth parameter is 0.05 times the mean value per the assumption in Tejada et al. (2015), and then
sample b from a lognormal distribution with these mean and standard deviation values for each person in
the simulated cohort determined to develop BC. Nin f is also assumed to follow a normal distribution with
mean and standard deviation per the approach in Tejada et al. (2015) (coefficient of variation = 0.05).

N(t2) can thus be estimated at any time point t2 using the k and b values assigned to a particular person,
and if t1 is taken as the time of incidence, and by setting N(t1) = 1. The tumor density D was obtained
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Table 2: Breast cancer incidence module: calibration outcomes.

Incidence risk factor Calibrated
odds ratios

Prop. of pa-
tients: simu-
lation

Prop. of pa-
tients: ob-
served

Body-mass index

< 18.5 0.75 6.76 (0.39) 7.00

18.5 - 24.99 1.00 50.23 (0.82) 49.60

25 - 29.99 1.15 30.36 (0.59) 30.40

≥ 30 1.78 12.64 13.00

Marital status
Living with spouse 1.00 69.58 (1.40) 69.60

Not living with spouse 1.80 30.42 30.40

Occupational status
Employed 0.37 3.66 (0.20) 3.50

Not employed 1.00 96.33 96.50

Number of breastfeeding years
≤ 6 years 1.00 63.25 (0.65) 63.70

> 6 years 0.65 36.74 36.30

Notes: Prop. = proportion; the ‘observed’ proportion of patients with a given incidence risk factor category are obtained from
Pakseresht et al. (2009).

to be as 2.38732 × 105 cells/mm3 (Plevritis et al. 2007), and thus the tumor volume at time t is given by
v(t) = N(t)/D. The initial volume v0 of the tumor (i.e., a single cell), was determined using an estimate of
the diameter of a single tumor cell - 2 ×10−2 mm - and assuming a spherical shape of the cell (implying
that tumor volume and diameter are related as v(t) = d(t)3π/6). Note that while Tejada et al. (2015) use
the tumor diameter in determining the BC stage, we perform the stage assignment in a different manner,
which we describe below.

2.2.1 Disease Staging and Diagnosis

As the tumor grows at every time step, we update the stage of the cancer at every time step based on the
conditional probability of the cancer attaining a particular stage given the size of the tumor. We consider
three stages of the cancer: local, regional and distant. We consider this staging system because longitudinal
survival data in the Indian context is available for this staging system (Gajalakshmi et al. 1997). Staging
systems generally define cancer stages in terms of both tumor size and extent of spread into lymph nodes
and other regions; however, Plevritis et al. (2007) determine the cancer stage based solely on the tumor
size v(t), and define the probability of being in any stage as follows.

P(local | v(t) = v) =
(

β + γ(v− vo)

β +(η + γ)(v− vo)

)α+1

(3)

P(regional | v(t) = v) =
(

η

η−ω

){(
β + γ(v− vo)

β +(ω + γ)(v− vo)

)α+1

−
(

β + γ(v− vo)

β +(η + γ)(v− vo)

)α+1
}

(4)

P(distant | v(t) = v) = 1−P(regional | v(t) = v)−P(local | v(t) = v) (5)
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In the above equations, v(t) is determined from N(t), which in turn is determined from (2), where t
is the time from incidence. The model of disease progression as given in the above equations is based on
the work in Plevritis et al. (2007); however, we describe them in the form given in Tejada et al. (2015).
We refer the reader to Plevritis et al. (2007) for estimates of the parameters α,β ,γ,ω, and η .

Upon disease incidence, the cancer is assumed begin in the local stage. Subsequently, at every time
step, the probabilities of being in different stages are updated based on the tumor size at that time point.
Once the cancer reaches the regional stage, the probability of being in local stage is set to zero. Further
calculations of probabilities do not involve the local stage. Similarly, once the cancer reaches the distant
stage, it cannot revert to the local or regional stages, and the probabilities for stage assignment are no
longer computed for the patient. We now describe how we simulate clinical detection of BC, which can
either occur when a patient experiences symptoms, or during a routine health examination that is not part
of a targeted screening program.

In order to determine the annual probability of diagnosis by stage for a BC patient, we worked backwards
from the proportions of patients diagnosed in each stage, as published in the NCDIR (2020) report. These
proportions are 29%, 57%, and 10.30%. It is unclear as to whether the remaining 3.7% are not diagnosed
at all or whether their stage is unknown, and because this proportion is relatively small, we ignore it in our
subsequent analysis. Using these proportions, we estimate the annual probability of being diagnosed in
each stage as follows. If Tl represents the average number of years spent without treatment in, say, the local
stage, then we assume that getting diagnosed in this stage can be modeled by a geometric random variable
- that is, determining whether a BC patient gets diagnosed in each annual time step represents a trial, and
the number of trials until diagnosis in the stage is the geometric random variable. If we denote the overall
probabilities of diagnosis in the local, regional, and distant stages as Pl,Pr and Pd , and the corresponding
annual probabilities of diagnosis as al,ar and ad , then the latter set of probabilities can be estimated by
solving the following equations:

Pl = 0.29 = 1− (1−al)
Tl ;

Pr

1−Pl
=

0.57
0.71

= 1− (1−ar)
Tr ;

Pd

1−Pl−Pr
=

0.103
0.14

= 1− (1−ad)
Td (6)

Note that the left hand sides (LHS) of the equations for estimating ar and al are conditional probabilities
- for example, the LHS of the equation for estimating ar represents the probability that a patient is diagnosed
in the regional stage given that they were not diagnosed in the local stage. In order to solve (6), we require
the values of Tl, Tr, and Td . Given the ethical concerns in conducting trials involving untreated cancer
patients, we could not find literature regarding the time spent in each stage for untreated BC patients.
However, we were able to find a single study published in 1962 that retrospectively estimated the survival
of untreated BC patients presenting with distant stage cancer (Bloom et al. 1962). The authors estimate a
median survival of 2.7 years for these patients, and hence we assumed that Td = 2.7 years.

We conducted a separate Monte Carlo simulation of the untreated progression of BC using (3) - (5) for
estimating Tl and Tr. A single replication of this simulation involved initializing a BC patient at time t = 0
(in the local stage), simulating tumor growth and stage assignment until the cancer attained the distant
stage, and recording their times spent in the local and regional states. This process is repeated to estimate
Tl and Tr, which are then used to solve (6) to estimate al, ar, and ad .

The proportions diagnosed in the local, regional, and distant stages, as estimated from the simulation, are
30.24% (standard deviation [SD] = 0.52%), 58.32% (SD = 0.47%), and 11.42% (SD = 0.33%), respectively.
We remind readers that the NCDIR (2020) report estimates are 29.0%, 57.0%, and 10.30%, respectively.
Given the lack of information regarding uncertainty around the estimates from the NCDIR (2020) report,
it is difficult to comment on the statistical significance of the differences between the simulation outcomes
and those from the NCDIR (2020) report; however, it is evident the simulation outcomes are reasonably
close.

We now describe the implementation of the diagnosis BC via screening alongside clinical diagnosis.
At the start of the simulation, the screening program is initialized with parameters such as the time interval
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between screening programs (e.g., 1 year, 2 years), the groups of persons eligible for screening (e.g.,
persons aged between 35-64 years and with BMI ≥ 30), the sensitivity and specificity of the screening
technique, and the compliance rate (proportion of the eligible persons who voluntarily undergo screening).
The screening program itself is envisioned as a drive being conducted by public health authorities at regular
time intervals wherein persons (women) are invited to undergo screening at designated facilities.

In the simulation, screening is implemented as follows. As an example, we consider a screening
program conducted every 2 years, with persons aged 35-44 being eligible for the program. Under this
program, at every alternate time step, a certain proportion of persons in the eligible group (determined by
the program compliance parameter) undergo screening. Persons undergo screening until they are no longer
eligible; for example, a 41 year old person at the start of the screening program in the simulation could
undergo screening twice, at 41 years and 43 years of age. After every positive detection, we assume that
a biopsy is done for the confirmation of the diagnosis and staging of the cancer, and hence false positives
only incur the costs of screening and biopsy, and not of treatment.

2.3 Survival Estimation Module

Once a person is diagnosed with BC, we determine whether they survive or not at each time step. For
undiagnosed patients, all-cause mortality applicable to the general population is applied.

We estimate the survival of persons with a BC diagnosis using survival functions generated based on
specific characteristics determined to affect their survival. These ‘personalized’ survival functions were
generated by modifying a single published survival curve constructed for a cohort of BC patients with a
mix of these characteristics. A survival function ST (t) provides the probability of survival at time t. That
is, ST (t) = P(T ≥ t), where T is a random variable representing the time to death. Thus if FT (t) represents
the CDF of the time to death random variable (with PDF fT (t)), then ST (t) = 1−FT (t).

We identified only one study in the Indian context that presents a survival curve for BC patients -
Gajalakshmi et al. (1997). Gajalakshmi et al. (1997) accessed the survival data of BC patients from the
year 1982 to the year 1989, and estimated that the 5-year average survival of BC patients is 47.5%. They
also determined that the key factors which determine the survival of BC patients are age at diagnosis, level
of education, marital or relationship status, and the stage or clinical extent of disease. The authors provided
the hazard ratios corresponding to the different characteristic groups under each risk factor. As discussed in
Gajalakshmi et al. (1997), the link between educational status and marital status with BC survival is likely
due to the higher socioeconomic class associated with better educational qualifications and marriage, which
in turn may mean greater awareness and better access to treatment. From the perspective of calibration of
the survival estimation module, we focus primarily on physiological risk factors, which include the age
group and cancer stage. Hence, we do not list the information associated with all the risk factors in Table 3,
and only provide information regarding the risk factors that we consider in the calibration of the survival
estimation module - the age group and cancer stage risk factors.

Using the survival curve published for the entire cohort and the hazard ratios provided in Gajalakshmi
et al. (1997), we generated survival functions for each simulated BC patient based on the survival risk factor
categories to which they are assigned. The base survival curve was obtained directly from Gajalakshmi
et al. (1997) using the software DigitizeIt (www.digitizeit.de). We assume that the published survival
curve in applies to a modal person whose characteristics are most common for the survival-related risk
factors among the cohort considered in Gajalakshmi et al. (1997). Thus the modal person - from a survival
estimation standpoint - is assumed to be aged between 45-54 years, married, not educated, and diagnosed
with regional stage BC. The survival function obtained for this modal person is then modified using hazard
ratios based on those published in Gajalakshmi et al. (1997) to generate the personalized survival curves
for each simulated BC patient with a diagnosis.

Accomplishing this involved assuming the hazard function was related to the risk factor variables via
the Cox proportional hazards model (Cox 1972). The hazard function, which models the rate at which the
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survival probability is changing with time given that a patient has survived until time t, is the ratio between

the probability density function of T and the survival function: λ (t|Xi) =
fT (t|Xi)

ST (t|Xi)
.

The Cox proportional hazards model is given by the equation below.

λ (t|Xi) = λ0(t)× exp(Xi1β1 + · · ·+Xipβp) = λ0(t)× exp(XT
i β ) (7)

In (7), λ (t|Xi) represents the hazard function for the ith patient, whose p risk factor characteristics are
encoded by the vector Xi = (Xi1,Xi2, · · · ,Xip)

T . The coefficients of the Xi, β = (β1,β2, · · · ,βp), represent
the hazard ratios associated with each risk factor level, and p is the total number of characteristics across
all factors determining survival. We note here that p is not the number of risk factors, but rather the total
number of risk factor characteristics across all risk factors. For example, if we consider M (m = 1−M)
risk factors and each risk factor had nm characteristic levels (e.g., the three levels corresponding to tumor
stage), then p = ∑

M
m=1 nm. The Xi j ( j = 1− p) are binary variables ∈ {0,1}, and are set to 1 if the ith patient

is assigned the jth characteristic (i.e., all the other Xi j corresponding to that risk factor are set to 0 for this
patient).

Patient-specific survival functions are generated using the fact that ST (t|Xi) = 1−FT (t|Xi) and fT (t|Xi)

is the pd f of T . This implies λ (t|Xi) can be written as: λ (t|Xi) =−
d
dt

log(ST (t|Xi)).
Now, if we denote the hazard function representing the modal person (with characteristics given by,

say, Xm) as λm(t|Xm) = λ0(t)×exp(XT
m β ). Note that we have S(t|XM) from Gajalakshmi et al. (1997), and

hence λm(t|Xm) at a given time t can be extracted using the following finite difference equation:

λ (t|Xm) =−
log(ST (t|Xm))− log(ST (t−δ |Xm))

δ t
(8)

The value of δ t is taken as 0.01 time units (years). Note that at t = 0, ST (t|Xm) = 1. From the value of
ST (t|Xm), we require the hazard function λ (t|Xi) for the ith patient. We obtain this by exploiting the fact
that λ (t|Xi) = λ (t0)×exp(β T Xi), and that we know exp(β T Xm). This can then be utilized in the following

manner to obtain λ (t|Xi):
λ (t|Xi)

λ (t|Xm)
=

eXiβ

eXmβ
.

Once λ (t|Xi) is estimated as above, we can estimate ST (t|Xi) by performing the following numerical
integration: ST (t|Xi) = exp(−

∫ t
0 λ (t|Xi)dt). Note that at t = 0, log(ST (t|Xi)) = 0.

2.4 Survival Module Calibration

A key concern regarding the validation of survival estimation module involves its development based on
survival information obtained from a study published in 1997. 5-year mean survival of BC has improved from
47.5% as published in Gajalakshmi et al. (1997) to 66.1% as published in a significantly more recent study
(95% CI: 51.5%-80.8%) (Allemani et al. 2018). Therefore validation of the survival estimates generated
from the simulation model by comparison with corresponding survival estimates in Gajalakshmi et al. (1997)
is not adequate, as both the modeled survival functions as well as calibration targets require updating.
Gajalakshmi et al. (1997) publish average five-year survival for each of their risk factor characteristics,
each of which can serve as a calibration target. However, because the reasons for the association between
educational status and marital status and survival are not fully understood, we chose only the 5-year survival
estimates associated with the physiological risk factor characteristics - i.e., age group and tumor stage
based characteristics - as calibration targets.

The calibration targets based on age group and clinical stage were estimated using the ratio of the
5-year overall survival published in Allemani et al. (2018) and that from Gajalakshmi et al. (1997). The
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5-year mean survival estimate for each age group and tumor stage based risk factor characteristic was
multiplied by this ratio; for example, the observed 5-year survival for BC patients aged 35-44 was recorded
as 57.4% in Gajalakshmi et al. (1997), yielding an updated calibration target of approximately 79.7%.

Once the calibration targets are estimated, we calibrate the model by varying the relevant hazard ratios
(i.e., age group and tumor stage based hazard ratios) manually until the 5-year survival outcomes from the
simulation model all attained less than 15% deviation from their calibration targets. However, we placed
greater priority on achieving a simulation estimate of the 5-year survival for the entire cohort that was as
close as possible to the corresponding calibration target of 66.1%, given that it was the only calibration target
obtained directly from external sources. We consider this termination criterion for the calibration process
reasonable given that the uncertainty around the overall cohort 5-year survival estimate is considerable -
for example, the deviation of the lower limit of its 95% CI is approximately 18.2% from the mean. The
hazard ratios from Gajalakshmi et al. (1997), the calibrated hazard ratios, the updated calibration targets,
and the simulation survival outcomes are provided in Table 3.

Table 3: Survival estimation module information: hazard ratios and survival outcome comparison.

Survival risk-factor characteristic
Hazard ratios 5-year survival proportion (%)

Observed Calibrated Calibration target Simulation estimate

Age at diagnosis (years)

30-34 1.00 0.47 90.12 94.48 (1.25)

35-44 1.45 2.42 79.70 86.99 (0.68)

45-54 1.67 3.19 69.57 76.31 (0.97)

55-64 2.12 3.93 54.57 62.33 (0.87)

65-74 2.50 4.45 40.27 44.95 (1.52)

≥ 75 4.75 5.80 13.46 14.44 (1.39)

Cancer stage

Local 1.00 0.36 88.31 81.96 (1.07)

Regional 1.32 1.35 72.76 65.85 (0.72)

Status 3.19 2.90 27.00 25.94 (1.57)

Entire cohort – 66.10 (51.5 - 80.8) 66.16 (0.62)
Notes: the observed hazard ratios are those provided in Gajalakshmi et al. (1997).

Given that we have presented the simulation modules separately, we briefly discuss the overall set of
outcomes generated by the simulation. The outputs of interest from the simulation will depend upon the
analysis in question. If the analysis in question is evaluating the cost-effectiveness of a new treatment in
comparison to the standard of care, then the relevant outputs would be the medical costs associated with
the new treatment and the standard of care, respectively, and the corresponding average life years per BC
case associated with each treatment.

From the standpoint of evaluating a screening policy, the key outputs would be the proportion diagnosed
in each stage (e.g., the outputs in Section 2.2.1), and the total life years and costs (the sum of the individual
survival duration - life years - and medical costs associated with each BC case in the simulated cohort).
Thus, an effective screening policy would detect a greater proportion of BC cases in the less advanced
(e.g., local) stages, thereby yielding an increase in life years and decrease in costs when compared to a
less effective or nonexistent screening policy. These outcomes - total costs and life years - are integrated
into a single health economic quantity referred to as the monetary benefit associated with a given screening
policy. The difference in the monetary benefits associated with a given screening policy and the status quo
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(e.g., no screening) is estimated as the ‘net monetary benefit’, and a positive net monetary benefit implies
that the screening policy under consideration is cost-effective when compared to the status quo. Note that
we also consider the willingness of the target population to undergo screening via the incorporation of a
compliance parameter in the simulation.

3 DISCUSSION & CONCLUSIONS

In this study, we present a novel simulation model for BC incidence, tumor growth and staging, diagnosis,
and survival estimation. We have demonstrated the calibration of each module of the simulation model to
external data specific to the Indian context. We develop the model for the Indian context, and hence the
approach we have adopted to model incidence, staging, stage-wise clinical diagnosis, and post-diagnosis
survival has been driven by the amount and type of data available that is specific to the Indian context.
However, as mentioned in Section 1, the approaches we have developed for modeling stage-wise diagnosis
and post-diagnosis survival estimation may be useful for researchers/analysts working in settings where
data availability is similar to our case.

A limitation of the study involves the lack of age group specific and cancer stage specific survival
estimates that are more recently published than those in Gajalakshmi et al. (1997). Even though the National
Cancer Registry reports (NCDIR 2020) provide comprehensive cancer incidence information, they do not
publish the survival curves that we require for our simulation. Further, a study regarding survival among
locally advanced BC in India has been published (Dhanushkodi et al. 2021); however, it does not provide
information regarding survival among patients with other BC stages. We also note that our approach towards
calibration is a manual approach, which can be computationally inefficient. Therefore, we are exploring
the use of simulation optimization approaches to speed up the calibration process.

This simulation model was developed in order to optimize - via discrete simulation optimization methods
such as ranking and selection - various aspects of a BC screening program in the Indian context, and thus
an immediate avenue of future research involves completing this objective. However, the model may also
be adapted for other purposes, such as for evaluating the cost-effectiveness of new treatments or diagnostic
interventions.
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